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ABSTRACT opment of computational methods for RNA secondary strectur

We present a novel method for prediction of common struc- prediction that also operate on multiple homologous RNA se-
tures and alignment for two homologous RNA sequences. The quences, which have indeed offered improvements over mgtho
method, termed joint sampling, is based on sampling from the that operate on single sequences (See [4] for a review).
structural alignment space of the sequences, i.e. the sgace Stochastic sampling has recently been proposed as a promis-
joint representations of common secondary structures @nd s jng technique for RNA secondary structure prediction using
quence alignments of the sequences. The structural alignme gjngle RNA sequence [5]. Stochastic sampling operatestiy sa

space is efficiently sampled by probabilistically genegtruc- pling the set of possible secondary structures of an RNA cutde
tural alignments from building blocks termed structuragmad according to the (estimated) Boltzmann distribution othstruc-
ment atoms. Structure and alignment predictions are cidag tures obtained via a partition function computation [6]. lAster
clustering the samples of structures and alignments. Tperex analysis on the resulting structures can then provide itapor
imental results show that joint sampling offers improvetsen information about the known structure for the RNA sequence.
structure prediction over a sampling method that genesates- For instance, the representative structure of the mostlatsali
tures from Boltzmann ensemble of single RNA sequence. In ad- cjyster identified in the sample of structures can be a more ac
dition, the joint sampling offers more accurate estimataligh- curate predictor of the structure than other single secpipne-
ment as compared to estimates from a hidden Markov model.  {iction methods [7]. The extension of the stochastic samgpli
1. INTRODUCTION methodology to situations where multiple ncRNA homologs ar

available has, however, received rather limited attentié-
though a heuristic iterative sampling methodology has Ipeen
posed [8], a true stochastic sampling framework has not been
previously developed due to the difficulty in computing tloe-c
responding partition function for the multiple homolog 1sago.

Recent years have witnessed the discovery of several negeda
of non-codingribonucleic acid (hcRNA) molecules that, unlike
their better understood messenger RNA (mRNA) counterparts
serve a direct functional role in cellular biology withougibg
transcribed into proteins [1, 2]. The secondary structfitbese

NcRNAs, i.e. the set of base pairings between the complemen-  In this paper, we propose a new methgoint sampling
tary nucleotides at different positions in the linear RNAaich for ncRNA secondary structure estimation based on sampling
mediated by hydrogen bonds, is crucial in determining theic- of the joint space of common structures and sequence align-

tion. Computational methods for the prediction of ncRNA-sec Mments of two RNA sequences. The method is enabled by our
ondary structure are therefore of significant researchréste  recent work in developing a formal mathematical charazteri
These methods operate on the primary structure of the RNA tion of the joint space of common structures and alignment of
molecule, which is obtained as a sequence of the hasgs G, two RNA sequences and the determination of the correspgndin
andC using conventional sequencing technology [1] and, using Jjoint partition function [9, 10]. Using the joint partitiofunc-
this primary structure, attempt to predict secondary stmecas tion, we sample the space of common structures and sequence
the set of base pairings between nucleotide galtd/), (G, C), alignments of two RNA sequences according to the correspond
and(G, U) in the RNA chain. ing pseudo-Boltzmann distribution. This process inhdyerr-
Evolutionary changes in an RNA molecule that substitute a Nesses the power of comparative analysis because the sgmpli
base pair in its secondary structure with another feasibeb IS constrained to the space of common structures for the se-
pair from the possibilities outlined above, allow the sestamy quences. Following the sampling, we perform a cluster anal-
structure to be conserved despite a change in the primary-str ~ Ysis similar to [7], individually on the structures obtathéor
ture, i.e. the sequence. Such changes are indeed observed ifach sequence in order to obtain representative strucames
nature among homologous ncRNA sequences, which evo|vedthe centroid of the largest cluster serves as the predittad-s
from the same ancestor sequence, and offer additionanigfor ~ ture. The cluster analysis is also employed on the sample of

tion for secondary structure prediction because co-variaaf ~ Sequence alignments generated by the joint sampling foligre
nucleotides at two positions that can form a base pair itetica  tion of alignment of the sequences.
a base pairing that is conserved in the secondary structfires Our results demonstrate that the joint sampling offers more

the ncRNA sequences. In fact, such comparative analysis ove accurate predictions of secondary structure than the esisegf
large sets of homologs, performed in a human effort intensiv. quence sampling. Furthermore, the predictions of aligriraen
fashion, provides some of the most accurate predictione®@f s  also more accurate than those obtained with conventiodekhi
ondary structure [3]. The success has also motivated thel-dev Markov model based sequence alignments.
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2. OVERVIEW
Given two homologous RNA sequences and x2, the struc-
tural alignment[10] S of the sequences is a joint representa-
tion of the common secondary structur8s,andS-, and align-
mentA of the sequences. The joint sampling aims to generate a
sample of structural alignments (each denotedpfrom struc-
tural alignment space of the sequencg&sg, as per the distribu-
tion of structural alignments in the structural alignmepace,
P(S) [9, 10]. The probability of a structural alignmegtis de-
fined according to a pseudo-Boltzmann distribution as [, 10

o—AG(S)
B ES/esan e~ 8d(S)

whereAG(S) is the pseudo-free energy change of the structural
alignmentsS [9, 10].

Figure 1 illustrates the steps for structure predictiofiziti
ing the joint sampling. The joint sampling generates a sampl
of structural alignments, denoted 8, ...,S, for input se-
guencesx; andxz. Each structural alignment is composed of

P(S) @

a pair of common secondary structures for the sequences and a

sequence alignment. The generated sample of secondaty stru
tures for each sequence are individually clustered. Inreidu

the clustering of structures far identifies two clustersC; and

Cs, which are composed of single branched structures and two-
branched structures, respectively. For each identifiestetuthe
cluster centroid is computed and the centroid of the largjest

ter serves as the predicted structure with other centraids-a
ternative hypotheses. In Figure 1, cluster centroidsxfporre

a single branched structure and a two-branched structune. T
computation of cluster centroids are also performed forpdam
of alignments and for sample of structures far which are not
shown in Figure 1. The clustering process inherently idiesti
structural “modes” that are sufficiently distinct from eather.
The method offers improvement over structure predictioedy
timating and thresholding base pairing probabilities bseahe
base pairing probability computations are averages oeeditt
tinct “modes.”

3. EFFICIENT SAMPLING OF STRUCTURAL
ALIGNMENT SPACE

Explicit enumeration of(S) over all possible structural align-
ments is computationally infeasible because the numbeo®f p
sible structural alignments is extremely large even forpaf
relatively short sequences (e.g. tRNAs). Efficient sangpbh
the distributionP(S) is achieved via an iterative sampling al-
gorithm, which builds a structural alignment from basicltui
ing blocks termedtructural alignment atoméSAAs) [11]. The
SAAs represent the irreducible elements of structurahatignts.

A structural alignmentS can be decomposed into a set of
SAAs {x(i, j, k,1)}, where: andj denote nucleotide indices in
x1 With ¢ < 7, k andl denote nucleotide indices i with &£ <
l. For each SAA(i, 7, k, 1), i — 1 andj areco-incidenf10, 12]
with & — 1 andl, respectivelyx(i, j, k, ) represents one of fol-
lowing 11 possibilities of pairing and alignment of nuclieets
at indices, 7, k, andl [11]: 1) Insertion of paired nucleotides at
1 andy; 2) Insertion of paired nucleotides Atand!; 3) Align-
ment of paired nucleotides aand; to paired nucleotides &t
andl, respectively; 4) Alignment of paired nucleotides; @nd
j to unpaired nucleotides &tandl, respectively; 5) Alignment
of unpaired nucleotides atand; to paired nucleotides &tand
1, respectively; 6) Alignment of an unpaired nucleotide &
an unpaired nucleotide &t 7) Alignment of an unpaired nu-
cleotide atj to an unpaired nucleotide &t 8) Insertion of an
unpaired nucleotide &t 9) Insertion of an unpaired nucleotide
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Figure 1: Overview of common structure prediction for two
RNA sequences; andxs by the joint sampling.

at j; 10) Insertion of an unpaired nucleotide/gtand 11) In-
sertion of an unpaired nucleotide lat The SAAs represent all
the possible base pairing and sequence alignment intenacti
between co-incident nucleotides in a structural alignnoéhivo
sequences. Any valid structural alignment can be decondpose
into a set of SAAs such that the pairing and alignment of each
nucleotide is identified by an SAA.

Fig. 2 illustrates decomposition of a structural alignmefnt
two hypothetical sequences into SAAs. The dashed rectangle
in Fig. 2 illustrate the decomposition of the structuragjatnent

into 8 SAAs such that each dashed rectangle encloses the nu-

cleotide indices whose pairing and alignment are definedhdy t
respective SAA. The pairing and alignment of nucleotidedeas
fined by each o8 SAAs is indicated below:

e x1(1,9,1,12): Paired nucleotides dtand9 in x; are
aligned to unpaired nucleotideslaand12 in x2, respec-
tively.

x2(2,8,2,11): Paired nucleotides &and11 in x, are

bothinserted. ) )
x3(2,8,3,10): Paired nucleotides & and8 in x; are

aligned to paired nucleotides atand 10 in x2, respec-
tively

x4(3,7,4,9): Paired nucleotides & and 7 in x; are
aligned to paired nucleotides atand9 in x2, respec-
tively

x5(4,7,5,9): Unpaired nucleotide at in x; is aligned
to unpaired nucleotide &tin xo.

x6(5,7,6,9): Unpaired nucleotide &i in x; is aligned
to unpaired nucleotide &tin xo.



e x7(6,7,7,9): Unpaired nucleotide & in x; is aligned
to unpaired nucleotide &tin xs.
e xs(7,7,8,9): Unpaired nucleotide &t in x is inserted.
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Figure 2: Decomposition of a structural alignment of two dyp
thetical sequences into SAAs. The bold lines in Fig. 2(aptken
the base pairs. In Fig. 2(b), the aligned nucleotides aretden
by lines with double-headed arrows and a bold line in a sexpien
represents an insertion in other sequence.

The iterative sampling algorithm progressively builds st
tural alignment by generating the current SAAj, 7, k, 1), via
sampling according t@(x(i, 7, k, 1)|Sex(4, 7, k, 1)), the distri-
bution of SAAs in pseudo-Boltzmann ensemble conditioned on
the SAAs generated in the previous iterations. The SAAsigene
ated in the previous iterations are referred t@gernalSAAS,
Sexi(i, 7, k,1). Therefore iterative sampling first generates the
external-most SAA in the structural alignmegt,1, N1, 1, N2),
and subsequently generates thiernal SAAs. Given an SAA
x(i, j, k, 1), the internal SAAs correspond tdi’, 7', k', 1’) such
thati < i’ < j' <j,k <k’ <1 <Ilandexternal SAAs corre-
spond tox (7', ', k',1") such that’ <i,7 < j' k' <k, 1 <.
The steps of iterative sampling are listed in Algorithm 1.eTh
sampling utilizes a stack that makes it possible to gen&Afes
for structural alignments that contain structures withtibtéinch
loops, i.e. bifurcated structures. Each entry in the stacies
the indices 4, j in x; andk, [ in x2) of fragments and also the
set of SAAs that are generated in the previous iteratioes, i.
Sext(i,j, k, l) Inltlally {’L, j, lf, l, Sext} = {1, Ni,1, Na, @} is
pushed on the stack. An iteration involves popping new eslic
and set of previously generated SAASs, Ké.7, k, [, Sext}, from
the stack, followed by a computation of conditional proligbi
of SAAs, P(x(3,J, k,1)|Sex(t, J, k,1)). The conditional distri-
bution of x (i, 7, k, 1) accounts for the SAAs on structural align-
ments that contain single branched structures and SAAs e st
tural alignments that contain multibranched structurefwusl
sampling of the conditional distribution of SAAs generabes
of two possibilities for the SAA at indices j, k,1. The first

Compute Partition Function Arrays(i, j, k, 1) for all 4, j, k, I such that

1<i<j<Niandl <k<l< Ny as described in [91;

Push{i, j, k, I, Sext(3, 7, k, 1)} = {1, N1, 1, N2, @} on the Stack ;

while Stack notemptgo

Pop{i, j, k, I, Sext(t, 4, k, 1)} from the Stack ;

/* The conditional probabilities of x(i,j, k1)
accounts for SAAs on single branched
structures, i.e. x(¢,4,k, 1), and
nul tibranched structures, i.e.
concatenation fragnments ¢,ip, k, kp and
ip+1,j,kp+ 1,1

ComputeP (x (4, 5, k, 1) |Sex(i, 4, k, 1)) ;

SampleP (x(i, j, k, 1)|Sext(%, 7, k, 1)) to obtainx (¢, ip, k, kp);

I* x(i,4,k,1) is on a structural alignnent that
contai ns single branched structures. */

if ip = j and kp = [ then

if x(¢, , k, 1) defines structure and alignment fothen

i+ 4

if x(%, j, k, 1) defines structure and alignment fgptthen

*/

|f x (1, ], k, 1) defines structure and alignment forthen
k++;
if x(¢, j, k, 1) defines structure and alignment fbthen
UpdateS,, S2 andA ;
Add x(z, 7, k, ) to Sext(¢, 4, k, 1) ;
ifi < jork <lthen

| Push{i, j, k, I, Sex(s, j, k, 1) } on Stack ;

/+ This case introduces the nultibranched
structures. The subsequences i,ip,k, kp
and ip+ 1,5, kp + 1,1 are pushed on the
st ack.

Push{i, ip, k, kp, 0} on Stack ;

| Push{ip +1,j,kp+1,1,0} on Stack;

*/

Algorithm 1: Iterative Sampling Algorithm

possibility is that an SAA(i, 7, k, 1) on a single branched struc-
tural alignment is generated. The sequence indices whase st
tural alignment is established by(s, j, k, 1) are updated such
that the new values of indices point to nucleotides whosestr
tural alignment is not yet established. The establishedtre

and alignment of nucleotides are addedtoand/orS2, and A
respectively. The generated SAA is addedSta(z, j, k, 1) and
pushed onto the stack with updated indices. The second-possi
bility is thati, j, k, I is divided into two subfragmentsip, k, kp
andip+1, j, kp+ 1,1 such that each subfragment corresponds to
new branches in structures of sequences. In this case, elach s
fragment of sequences is pushed onto the stack separaddlg S
for each of the subfragments are generated in subsequest ite
tions. The algorithm terminates when there are no more frag-
ments whose structures and alignments are not establisbed,
when the stack is empty. The final structural alignment isuf

by Si, S2 and A. The details of the actual implementation are
available in a recent manuscript which is accepted for pabli
tion in Nucleic Acids Researdi1].

4. CLUSTERING SAMPLESOF STRUCTURESAND
ALIGNMENTS

Given a sample of structural alignments generated by tha-ite
tive sampling algorithm, the sample sets of common secgndar
structures of each sequence and sample set of sequence align
ments are clustered individually using tdiena[13] algorithm
to obtain20 different clusterings of each sample such that the
number of clusters ranges frotrto 20. The optimal number of
clusters is determined as the number of clusters that magani
Calinski-Harabasz pseudo-f statisfit4] (CH Index).

Following the clustering, a representative structure ignal
ment, called thecluster centroid is computed for each of the
identified clusters. The centroid of a cluster is the stmgctr
alignment that has the smallest average distance of basegpai



aligned positions, respectively, to all structures orratignts in
the cluster. The centroid of the most populated clusterilized
as estimated structure or alignment and the accuracy of tes
timates is evaluated.

5. RESULTS
The structure prediction performance of joint sampling e@s-

sive benchmarking of the algorithm performance compareld wi
other multisequence RNA structural alignment algorithms.

6. CONCLUSION AND DISCUSSION

The improved structure prediction accuracy of joint sangli
over the single sequence sampling demonstrates the ageanta
of utilizing multiple sequences in the sampling.

In additio

pared to the single sequence sampling method that samgles thine joint sampling utilizes structure commonality conistisain
Boltzmann distribution of structures of an RNA sequence [5] glignment prediction and offers improvements over the eege:

and the alignment prediction performance of joint samplsg

alignment methods that utilize sequence data alone, ftarios

compared to a sequence alignment hidden Markov model [15, {he sequence alignment hidden Markov model.

12]. All methods are evaluated on datasets containing 2800 r

It is worth noting the centroids of few clusters identified by

domly chosen pairs of tRNA sequences from the Sprinzl tRNA ¢jyster analysis can be as alternative predictions forttbetsire
Database [16], 2000 randomly chosen pairs of 5S RNA seqeencef the sequence. The alternatives are valuable if therepiarix
from the 5S Ribosomal RNA Database [17] and 40 randomly mental data to guide the choice of the correct conformation.

chosen pairs of RNase P sequences from the RNase P Data®gse
The cluster analysis was performed on the samplé8@f struc-
tures and 000 sequence alignments generated by joint sampling
and single sequence sampling. This analysis identified er av
ageb.45 clusters for joint sampling and.31 clusters for sin-
gle sequence sampling. The centroid structure or centtigid-a
ment of the most populated cluster identified for each method
are evaluated in terms of accuracy.

The accuracy of predicted structures and alignments are re-
ported in terms of sensitivity and positive predictive \&(BPV).
The sensitivity of structure prediction is the ratio of eantly
predicted base pairs to the total number of base pairs in the
known structure. The PPV is the ratio of number of correctly
predicted base pairs to the total number of predicted base pa
The sensitivity and PPV for prediction of alignments areruedfi
similarly in terms of the number of correctly predicted akgl
positions in the predicted alignment and number of aligresi-p
tions in the known alignment. Table 1 shows that the centroid
structure of the most populated cluster for the joint sangpli
method is a more accurate predictor of secondary strudtare t
its counterpart obtained via single sequence samplinguli®es
in Table 2 indicate that the centroid alignment of the mogt-po
ulated cluster from the joint sampling is more accurate than
hidden Markov model based sequence alignment prediction us [g]
ing sequence data alone without utilizing any structuresicter-
ations [15].

(1]

(2]
(3]

(4]

(5]

(6l

(7]

(8]

[10]
Joint Sampling | Single Sampling
Sens.| PPV | Sens. PPV
tRNA 0.808 | 0.862 | 0.716| 0.683 [11]
5SRNA | 0.737| 0.766 | 0.642| 0.609
RNaseP | 0.631| 0.746 | 0.613| 0.644 12

Table 1: Prediction accuracy of most populated clustemroeht
structures in the sample sets generated by joint samplidg an
single sequence sampling.

[13]
Joint Sampling HMM
Sens.| PPV | Sens.| PPV [14]
tRNA 0.857| 0.856 | 0.794 | 0.787 [15]
5SRNA | 0.940| 0.946 | 0.906 | 0.902
RNaseP | 0.744 | 0.720 | 0.743 | 0.703
[16]

Table 2: Prediction accuracy of most populated clustero@ht
alignments generated by joint sampling and the ML sequence
alignment computed by sequence alignment hidden Markov 17
model.

The joint sampling method is more computationally involved
than single sequence sampling and the HMM based sequenc L
alignment. The computation times for these algorithms ane-c
pared in [11]. The results in [11] also include a more exten-
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