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ABSTRACT
We present a novel method for prediction of common struc-
tures and alignment for two homologous RNA sequences. The
method, termed joint sampling, is based on sampling from the
structural alignment space of the sequences, i.e. the spaceof
joint representations of common secondary structures and se-
quence alignments of the sequences. The structural alignment
space is efficiently sampled by probabilistically generating struc-
tural alignments from building blocks termed structural align-
ment atoms. Structure and alignment predictions are obtained by
clustering the samples of structures and alignments. The exper-
imental results show that joint sampling offers improvements in
structure prediction over a sampling method that generatesstruc-
tures from Boltzmann ensemble of single RNA sequence. In ad-
dition, the joint sampling offers more accurate estimate ofalign-
ment as compared to estimates from a hidden Markov model.

1. INTRODUCTION
Recent years have witnessed the discovery of several new classes
of non-codingribonucleic acid (ncRNA) molecules that, unlike
their better understood messenger RNA (mRNA) counterparts,
serve a direct functional role in cellular biology without being
transcribed into proteins [1, 2]. The secondary structure of these
ncRNAs, i.e. the set of base pairings between the complemen-
tary nucleotides at different positions in the linear RNA chain,
mediated by hydrogen bonds, is crucial in determining theirfunc-
tion. Computational methods for the prediction of ncRNA sec-
ondary structure are therefore of significant research interest.
These methods operate on the primary structure of the RNA
molecule, which is obtained as a sequence of the basesA, U , G,
andC using conventional sequencing technology [1] and, using
this primary structure, attempt to predict secondary structure as
the set of base pairings between nucleotide pairs(A, U), (G, C),
and(G, U) in the RNA chain.

Evolutionary changes in an RNA molecule that substitute a
base pair in its secondary structure with another feasible base
pair from the possibilities outlined above, allow the secondary
structure to be conserved despite a change in the primary struc-
ture, i.e. the sequence. Such changes are indeed observed in
nature among homologous ncRNA sequences, which evolved
from the same ancestor sequence, and offer additional informa-
tion for secondary structure prediction because co-variation of
nucleotides at two positions that can form a base pair indicates
a base pairing that is conserved in the secondary structuresof
the ncRNA sequences. In fact, such comparative analysis over
large sets of homologs, performed in a human effort intensive
fashion, provides some of the most accurate predictions of sec-
ondary structure [3]. The success has also motivated the devel-

opment of computational methods for RNA secondary structure
prediction that also operate on multiple homologous RNA se-
quences, which have indeed offered improvements over methods
that operate on single sequences (See [4] for a review).

Stochastic sampling has recently been proposed as a promis-
ing technique for RNA secondary structure prediction usinga
single RNA sequence [5]. Stochastic sampling operates by sam-
pling the set of possible secondary structures of an RNA molecule
according to the (estimated) Boltzmann distribution of these struc-
tures obtained via a partition function computation [6]. A cluster
analysis on the resulting structures can then provide important
information about the known structure for the RNA sequence.
For instance, the representative structure of the most populated
cluster identified in the sample of structures can be a more ac-
curate predictor of the structure than other single sequence pre-
diction methods [7]. The extension of the stochastic sampling
methodology to situations where multiple ncRNA homologs are
available has, however, received rather limited attention. Al-
though a heuristic iterative sampling methodology has beenpro-
posed [8], a true stochastic sampling framework has not been
previously developed due to the difficulty in computing the cor-
responding partition function for the multiple homolog scenario.

In this paper, we propose a new method,joint sampling,
for ncRNA secondary structure estimation based on sampling
of the joint space of common structures and sequence align-
ments of two RNA sequences. The method is enabled by our
recent work in developing a formal mathematical characteriza-
tion of the joint space of common structures and alignment of
two RNA sequences and the determination of the corresponding
joint partition function [9, 10]. Using the joint partitionfunc-
tion, we sample the space of common structures and sequence
alignments of two RNA sequences according to the correspond-
ing pseudo-Boltzmann distribution. This process inherently har-
nesses the power of comparative analysis because the sampling
is constrained to the space of common structures for the se-
quences. Following the sampling, we perform a cluster anal-
ysis similar to [7], individually on the structures obtained for
each sequence in order to obtain representative structuresand
the centroid of the largest cluster serves as the predicted struc-
ture. The cluster analysis is also employed on the sample of
sequence alignments generated by the joint sampling for predic-
tion of alignment of the sequences.

Our results demonstrate that the joint sampling offers more
accurate predictions of secondary structure than the single se-
quence sampling. Furthermore, the predictions of alignment are
also more accurate than those obtained with conventional hidden
Markov model based sequence alignments.
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2. OVERVIEW
Given two homologous RNA sequencesx1 andx2, the struc-
tural alignment[10] S of the sequences is a joint representa-
tion of the common secondary structures,S1 andS2, and align-
mentA of the sequences. The joint sampling aims to generate a
sample of structural alignments (each denoted byS) from struc-
tural alignment space of the sequences,Sall as per the distribu-
tion of structural alignments in the structural alignment space,
P (S) [9, 10]. The probability of a structural alignmentS is de-
fined according to a pseudo-Boltzmann distribution as [9, 10]:

P (S) =
e−∆G(S)

∑
S′∈Sall

e−∆G(S′)
(1)

where∆G(S) is the pseudo-free energy change of the structural
alignmentS [9, 10].

Figure 1 illustrates the steps for structure prediction utiliz-
ing the joint sampling. The joint sampling generates a sample
of structural alignments, denoted byS1, . . . ,Sn for input se-
quencesx1 andx2. Each structural alignment is composed of
a pair of common secondary structures for the sequences and a
sequence alignment. The generated sample of secondary struc-
tures for each sequence are individually clustered. In Figure 1,
the clustering of structures forx1 identifies two clusters,C1 and
C2, which are composed of single branched structures and two-
branched structures, respectively. For each identified cluster, the
cluster centroid is computed and the centroid of the largestclus-
ter serves as the predicted structure with other centroids as al-
ternative hypotheses. In Figure 1, cluster centroids forx1 are
a single branched structure and a two-branched structure. The
computation of cluster centroids are also performed for sample
of alignments and for sample of structures forx2, which are not
shown in Figure 1. The clustering process inherently identifies
structural “modes” that are sufficiently distinct from eachother.
The method offers improvement over structure prediction byes-
timating and thresholding base pairing probabilities because the
base pairing probability computations are averages over the dis-
tinct “modes.”

3. EFFICIENT SAMPLING OF STRUCTURAL
ALIGNMENT SPACE

Explicit enumeration ofP (S) over all possible structural align-
ments is computationally infeasible because the number of pos-
sible structural alignments is extremely large even for pairs of
relatively short sequences (e.g. tRNAs). Efficient sampling of
the distributionP (S) is achieved via an iterative sampling al-
gorithm, which builds a structural alignment from basic build-
ing blocks termedstructural alignment atoms(SAAs) [11]. The
SAAs represent the irreducible elements of structural alignments.

A structural alignmentS can be decomposed into a set of
SAAs{χ(i, j, k, l)}, wherei andj denote nucleotide indices in
x1 with i ≤ j, k andl denote nucleotide indices inx2 with k ≤
l. For each SAAχ(i, j, k, l), i−1 andj areco-incident[10, 12]
with k − 1 andl, respectively.χ(i, j, k, l) represents one of fol-
lowing 11 possibilities of pairing and alignment of nucleotides
at indicesi, j, k, andl [11]: 1) Insertion of paired nucleotides at
i andj; 2) Insertion of paired nucleotides atk andl; 3) Align-
ment of paired nucleotides ati andj to paired nucleotides atk
andl, respectively; 4) Alignment of paired nucleotides ati and
j to unpaired nucleotides atk andl, respectively; 5) Alignment
of unpaired nucleotides ati andj to paired nucleotides atk and
l, respectively; 6) Alignment of an unpaired nucleotide ati to
an unpaired nucleotide atk; 7) Alignment of an unpaired nu-
cleotide atj to an unpaired nucleotide atl; 8) Insertion of an
unpaired nucleotide ati; 9) Insertion of an unpaired nucleotide
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Figure 1: Overview of common structure prediction for two
RNA sequencesx1 andx2 by the joint sampling.

at j; 10) Insertion of an unpaired nucleotide atk; and 11) In-
sertion of an unpaired nucleotide atl. The SAAs represent all
the possible base pairing and sequence alignment interactions
between co-incident nucleotides in a structural alignmentof two
sequences. Any valid structural alignment can be decomposed
into a set of SAAs such that the pairing and alignment of each
nucleotide is identified by an SAA.

Fig. 2 illustrates decomposition of a structural alignmentof
two hypothetical sequences into SAAs. The dashed rectangles
in Fig. 2 illustrate the decomposition of the structural alignment
into 8 SAAs such that each dashed rectangle encloses the nu-
cleotide indices whose pairing and alignment are defined by the
respective SAA. The pairing and alignment of nucleotides asde-
fined by each of8 SAAs is indicated below:

• χ1(1, 9, 1, 12): Paired nucleotides at1 and9 in x1 are
aligned to unpaired nucleotides at1 and12 in x2, respec-
tively.

• χ2(2, 8, 2, 11): Paired nucleotides at2 and11 in x2 are
both inserted.

• χ3(2, 8, 3, 10): Paired nucleotides at2 and8 in x1 are
aligned to paired nucleotides at3 and10 in x2, respec-
tively

• χ4(3, 7, 4, 9): Paired nucleotides at3 and 7 in x1 are
aligned to paired nucleotides at4 and 9 in x2, respec-
tively

• χ5(4, 7, 5, 9): Unpaired nucleotide at4 in x1 is aligned
to unpaired nucleotide at5 in x2.

• χ6(5, 7, 6, 9): Unpaired nucleotide at5 in x1 is aligned
to unpaired nucleotide at6 in x2.



• χ7(6, 7, 7, 9): Unpaired nucleotide at6 in x1 is aligned
to unpaired nucleotide at7 in x2.

• χ8(7, 7, 8, 9): Unpaired nucleotide at8 in x2 is inserted.

SAAs

SAAs
External

Internal
SAAs

C12
U11

C10
A9

C8

U7

C5

C6

C9

U8
A7

U6

G5

C4

U4U3

A2

G3G2

A1
G1

χ8(7, 7, 8, 9)
χ7(6, 7, 7, 9)
χ6(5, 7, 6, 9)
χ5(4, 7, 5, 9)

χ4(3, 7, 4, 9)

χ3(2, 8, 3, 10)

χ1(1, 9, 1, 12)

χ3(2, 8, 3, 10)

x1 pairing x2 pairing χ2(2, 8, 2, 11)

(a) Structures of sequences

External
SAAs

Internal
SAAs

4 7 111 2 5 6 8 9 103

1 92 3 84 5 6 7
G G U C G U

C

A U C

12
A A G U C C U A C U C

χ5,χ6,χ7,χ8

x2 nucleotidesx1 nucleotidesx1 indices
x2 indices

χ1(1, 9, 1, 12)
χ2(2, 8, 2, 11)
χ3(2, 8, 3, 10)
χ4(3, 7, 4, 9)

(b) Sequence AlignmentA between the sequences

Figure 2: Decomposition of a structural alignment of two hypo-
thetical sequences into SAAs. The bold lines in Fig. 2(a) denote
the base pairs. In Fig. 2(b), the aligned nucleotides are denoted
by lines with double-headed arrows and a bold line in a sequence
represents an insertion in other sequence.

The iterative sampling algorithm progressively builds a struc-
tural alignment by generating the current SAA,χ(i, j, k, l), via
sampling according toP (χ(i, j, k, l)|Sext(i, j, k, l)), the distri-
bution of SAAs in pseudo-Boltzmann ensemble conditioned on
the SAAs generated in the previous iterations. The SAAs gener-
ated in the previous iterations are referred to asexternalSAAs,
Sext(i, j, k, l). Therefore iterative sampling first generates the
external-most SAA in the structural alignment,χ(1, N1, 1, N2),
and subsequently generates theinternal SAAs. Given an SAA
χ(i, j, k, l), the internal SAAs correspond toχ(i′, j′, k′, l′) such
thati ≤ i′ < j′ ≤ j, k ≤ k′ < l′ ≤ l and external SAAs corre-
spond toχ(i′, j′, k′, l′) such thati′ ≤ i, j ≤ j′, k′ ≤ k, l ≤ l′.
The steps of iterative sampling are listed in Algorithm 1. The

sampling utilizes a stack that makes it possible to generateSAAs
for structural alignments that contain structures with multibranch
loops, i.e. bifurcated structures. Each entry in the stack stores
the indices (i, j in x1 andk, l in x2) of fragments and also the
set of SAAs that are generated in the previous iterations, i.e.
Sext(i, j, k, l). Initially {i, j, k, l,Sext} = {1, N1, 1, N2, ∅} is
pushed on the stack. An iteration involves popping new indices
and set of previously generated SAAs, i.e.{i, j, k, l,Sext}, from
the stack, followed by a computation of conditional probability
of SAAs, P (χ(i, j, k, l)|Sext(i, j, k, l)). The conditional distri-
bution ofχ(i, j, k, l) accounts for the SAAs on structural align-
ments that contain single branched structures and SAAs on struc-
tural alignments that contain multibranched structures. Thus,
sampling of the conditional distribution of SAAs generatesone
of two possibilities for the SAA at indicesi, j, k, l. The first

Compute Partition Function Arraysψ(i, j, k, l) for all i, j, k, l such that
1 ≤ i < j ≤ N1 and1 ≤ k < l ≤ N2 as described in [9] ;
Push{i, j, k, l,Sext(i, j, k, l)} = {1, N1, 1, N2, ∅} on the Stack ;
while Stack not emptydo

Pop{i, j, k, l, Sext(i, j, k, l)} from the Stack ;
/* The conditional probabilities of χ(i, j, k, l)

accounts for SAAs on single branched
structures, i.e. χ(i, j, k, l), and
multibranched structures, i.e.
concatenation fragments i, ip, k, kp and
ip + 1, j, kp + 1, l. */

ComputeP (χ(i, j, k, l)|Sext(i, j, k, l)) ;
SampleP (χ(i, j, k, l)|Sext(i, j, k, l)) to obtainχ(i, ip, k, kp);
/* χ(i, j, k, l) is on a structural alignment that

contains single branched structures. */
if ip = j and kp = l then

if χ(i, j, k, l) defines structure and alignment fori then
i+ + ;
if χ(i, j, k, l) defines structure and alignment forj then
j − − ;
if χ(i, j, k, l) defines structure and alignment fork then
k + + ;
if χ(i, j, k, l) defines structure and alignment forl then
l− − ;
UpdateS1, S2 andA ;
Addχ(i, j, k, l) to Sext(i, j, k, l) ;
if i < j or k < l then

Push{i, j, k, l,Sext(i, j, k, l)} on Stack ;

else
/* This case introduces the multibranched

structures. The subsequences i, ip, k, kp

and ip+ 1, j, kp + 1, l are pushed on the
stack. */

Push{i, ip, k, kp, ∅} on Stack ;
Push{ip + 1, j, kp + 1, l, ∅} on Stack ;

Algorithm 1: Iterative Sampling Algorithm

possibility is that an SAAχ(i, j, k, l) on a single branched struc-
tural alignment is generated. The sequence indices whose struc-
tural alignment is established byχ(i, j, k, l) are updated such
that the new values of indices point to nucleotides whose struc-
tural alignment is not yet established. The established structure
and alignment of nucleotides are added toS1 and/orS2, andA

respectively. The generated SAA is added toSext(i, j, k, l) and
pushed onto the stack with updated indices. The second possi-
bility is that i, j, k, l is divided into two subfragmentsi, ip, k, kp

andip+1, j, kp+1, l such that each subfragment corresponds to
new branches in structures of sequences. In this case, each sub-
fragment of sequences is pushed onto the stack separately. SAAs
for each of the subfragments are generated in subsequent itera-
tions. The algorithm terminates when there are no more frag-
ments whose structures and alignments are not established,i.e.
when the stack is empty. The final structural alignment is formed
by S1, S2 andA. The details of the actual implementation are
available in a recent manuscript which is accepted for publica-
tion in Nucleic Acids Research[11].

4. CLUSTERING SAMPLES OF STRUCTURES AND
ALIGNMENTS

Given a sample of structural alignments generated by the itera-
tive sampling algorithm, the sample sets of common secondary
structures of each sequence and sample set of sequence align-
ments are clustered individually using thediana [13] algorithm
to obtain20 different clusterings of each sample such that the
number of clusters ranges from1 to 20. The optimal number of
clusters is determined as the number of clusters that maximizes
Calinski-Harabasz pseudo-f statistic[14] (CH Index).

Following the clustering, a representative structure or align-
ment, called thecluster centroid, is computed for each of the
identified clusters. The centroid of a cluster is the structure or
alignment that has the smallest average distance of base pairs or



aligned positions, respectively, to all structures or alignments in
the cluster. The centroid of the most populated cluster is utilized
as estimated structure or alignment and the accuracy of these es-
timates is evaluated.

5. RESULTS
The structure prediction performance of joint sampling wascom-
pared to the single sequence sampling method that samples the
Boltzmann distribution of structures of an RNA sequence [5]
and the alignment prediction performance of joint samplingis
compared to a sequence alignment hidden Markov model [15,
12]. All methods are evaluated on datasets containing 2000 ran-
domly chosen pairs of tRNA sequences from the Sprinzl tRNA
Database [16], 2000 randomly chosen pairs of 5S RNA sequences
from the 5S Ribosomal RNA Database [17] and 40 randomly
chosen pairs of RNase P sequences from the RNase P Database [18].
The cluster analysis was performed on the samples of1000 struc-
tures and1000 sequence alignments generated by joint sampling
and single sequence sampling. This analysis identified on aver-
age5.45 clusters for joint sampling and4.31 clusters for sin-
gle sequence sampling. The centroid structure or centroid align-
ment of the most populated cluster identified for each methods
are evaluated in terms of accuracy.

The accuracy of predicted structures and alignments are re-
ported in terms of sensitivity and positive predictive value (PPV).
The sensitivity of structure prediction is the ratio of correctly
predicted base pairs to the total number of base pairs in the
known structure. The PPV is the ratio of number of correctly
predicted base pairs to the total number of predicted base pairs.
The sensitivity and PPV for prediction of alignments are defined
similarly in terms of the number of correctly predicted aligned
positions in the predicted alignment and number of aligned posi-
tions in the known alignment. Table 1 shows that the centroid
structure of the most populated cluster for the joint sampling
method is a more accurate predictor of secondary structure than
its counterpart obtained via single sequence sampling. Results
in Table 2 indicate that the centroid alignment of the most pop-
ulated cluster from the joint sampling is more accurate thana
hidden Markov model based sequence alignment prediction us-
ing sequence data alone without utilizing any structure consider-
ations [15].

Joint Sampling Single Sampling
Sens. PPV Sens. PPV

tRNA 0.808 0.862 0.716 0.683
5S RNA 0.737 0.766 0.642 0.609
RNase P 0.631 0.746 0.613 0.644

Table 1: Prediction accuracy of most populated cluster centroid
structures in the sample sets generated by joint sampling and
single sequence sampling.

Joint Sampling HMM
Sens. PPV Sens. PPV

tRNA 0.857 0.856 0.794 0.787
5S RNA 0.940 0.946 0.906 0.902
RNase P 0.744 0.720 0.743 0.703

Table 2: Prediction accuracy of most populated cluster centroid
alignments generated by joint sampling and the ML sequence
alignment computed by sequence alignment hidden Markov
model.

The joint sampling method is more computationally involved
than single sequence sampling and the HMM based sequence
alignment. The computation times for these algorithms are com-
pared in [11]. The results in [11] also include a more exten-

sive benchmarking of the algorithm performance compared with
other multisequence RNA structural alignment algorithms.

6. CONCLUSION AND DISCUSSION
The improved structure prediction accuracy of joint sampling
over the single sequence sampling demonstrates the advantage
of utilizing multiple sequences in the sampling. In addition,
the joint sampling utilizes structure commonality constraints in
alignment prediction and offers improvements over the sequence
alignment methods that utilize sequence data alone, for instance
the sequence alignment hidden Markov model.

It is worth noting the centroids of few clusters identified by
cluster analysis can be as alternative predictions for the structure
of the sequence. The alternatives are valuable if there is experi-
mental data to guide the choice of the correct conformation.
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