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Abstract—We propose a novel hybrid framework for reg-
istering retinal images in the presence of extreme geometric
distortions that are commonly encountered in ultra-widefield
(UWF) fluorescein angiography. Our approach consists of two
stages: a feature-based global registration and a vessel-based local
refinement. For the global registration, we introduce a modified
RANSAC (random sample and consensus) that jointly identifies
robust matches between feature keypoints in reference and target
images and estimates a polynomial geometric transformation
consistent with the identified correspondences. Our RANSAC
modification particularly improves feature point matching and
the registration in peripheral regions that are most severely im-
pacted by the geometric distortions. The second local refinement
stage is formulated in our framework as a parametric chamfer
alignment for vessel maps obtained using a deep neural network.
Because the complete vessel maps contribute to the chamfer
alignment, this approach not only improves registration accuracy
but also aligns with clinical practice, where vessels are typically
a key focus of examinations. We validate the effectiveness of the
proposed framework on a new UWF fluorescein angiography
(FA) dataset and on the existing narrow-field FIRE (fundus
image registration) dataset and demonstrate that it significantly
outperforms prior retinal image registration methods in accuracy.
The proposed approach enhances the utility of large sets of
longitudinal UWF images by enabling: (a) automatic computation
of vessel change metrics such as vessel density and caliber, and
(b) standardized and co-registered examination that can better
highlight changes of clinical interest to physicians.

Index Terms—Image registration, vessel detection, fluorescein
angiography, retinal image analysis, RANSAC

I. INTRODUCTION

Retinal image registration is one of the crucial tasks in
ophthalmological image analysis that facilitates several clinical
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applications. Registration of multiple narrow-field color fundus
images captured during a clinical visit has been used to
produce a montage with large field-of-view (FOV) [1]. Regis-
tration of retinal images captured over a series of longitudinal
visits has also been used for quantitative and qualitative
assessment of temporal changes in vasculature [2]–[4].

The goal of automated retinal image registration is to
determine a geometric transformation between the spatial
coordinates of images captured from different viewpoints so
as to align their content. The problem has been studied exten-
sively and existing works can be broadly grouped into three
categories: intensity-based, keypoint-based, and segmentation-
based. Intensity-based approaches estimate the registration
transform by maximizing a similarity metric between the
image pairs under the registration transform. Various metrics
have been proposed, including mutual information [5], [6],
mean squared difference [7], cross-correlation [8], and phase
correlation [9]. Keypoint-based methods estimate the regis-
tration transform from correspondences of feature keypoints
extracted from the retinal images, where RANSAC [10] is
typically used to establish correspondences robustly. Both
hand-crafted feature detectors and deep-learning based feature
detectors have been used for retinal image registration [11]–
[14]. Methods in the third category, detect binary vessel
maps from the retinal images, which are then used to esti-
mate the registration transform via a number of alternative
methodologies. Specifically, the problem has been formulated
as deformable line-based registration for skeletonized vessel
maps [15], as two-dimensional registration of vessel pixel
point clouds [16], and as topological matching of the vessel
connectivity structure represented as a graph [17], [18]. In
addition to 2D transformations between image coordinates, a
few methods have also formulated the registration problem
as joint estimation of camera poses and 3D retinal struc-
ture [19], [20]. An interative framework has also been recently
proposed [21], which leverages an available deep-learning
based vessel detector for one imaging modality to jointly
perform cross-modal registration and weakly-supervised vessel
detection for another retinal imaging modality.

Most of the prior works are designed for narrow-field
retinal images, which constitute the predominant type of retinal
imagery. With advances in imaging techniques, ultra-widefield
(UWF) retinal images, such as UWF fluorescein angiography
(FA) and UWF fundus photography (FP), are also commonly
being utilized for clinical assessment [22]–[24]. Compared
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Fig. 1: Stereographic projection and extreme geometric dis-
tortion between individual UWF images and montages. (a)
Stereographic projection for UWF (purple) and narrow field
(brown) retinal images. Points A and B on the retinal surface
project to A′ and B′ on the image plane, respectively; (b)
and (c) two individual UWF FA retinal images; (d) the
corresponding stereographic projected montage FA image. The
blue and red grids in (d) correspond to the grids in (b) and (c),
respectively, and illustrate the extreme geomtetric distortions
that the registration must handle.

with narrow-field retinal images that provide a FOV of 30◦ to
50◦, UWF images capture a substantially larger FOV (up to
200◦), typically covering the retinal surface from the posterior
pole to the periphery in a single image [25]. Significant
variation and geometric distortion depending on the direction
of capture are inevitably encountered for the larger FOV. While
the geometric distortions cannot be completely eliminated in
mapping from the nearly spherical retina to a planar image, a
standardized representation stereographic projection [26], [27]
has been developed that also combines information across
multiple images in a single montage. Figure 1 illustrates the
stereographic projection process and highlights the extreme
geometric distortions seen in individual capture UWF images.
Because generating montage images has challenges and can
introduce artifacts, such as ghost (duplicated) vessels, currently
the clinical analysis relies more on the original UWF images.
However, individual UWF images are numerous and are not
well aligned due to patient eye movement, which limits the
physician’s ability to examine multiple UWF images in detail.
Therefore, automated registration of UWF image to the mon-
tage representation is desirable to standardize the geometry
and to produce consistent and repeatable metric quantification.

In this paper, we address the problem of registering UWF
retinal images with a stereographic projected montage image
and make the following contributions. We propose a novel
two-stage hybrid registration approach for UWF retinal images
that uses the intensity image and the corresponding binary
vessel segmentation maps for the first and second stages,
respectively. The first stage coarsely aligns the grayscale UWF
images using feature-matching based global registration, and

the second stage provides fine registration using vessel-based
local chamfer alignment. The methodology enables precise
registration of UWF images despite the strong changes in
imaging geometries typical for such images. The choice of
vessel based chamfer alignment for the second stage makes is
also particularly well matched with clinical scenarios requir-
ing longitudinal comparisons between vessel structures. The
proposed approach opens up a new resaearch direction where
deep learning based vessel detection starts to aid operations
such as grayscale image registration, whereas traditionally
grayscale image registration is considered a preprocessing step
that is performed prior to vessel detection. We also propose
a modification to the well-known RANSAC algorithm that
separates sample and consensus sets to provide better estimates
of the global transformation parameters for our first stage,
which significantly improves accuracy in the in the peripheral
regions. To evaluate retinal image registration accuracy and
to facilitate further research, we introduce a new dataset
of UWF FA retinal images called FLoRI21, which presents
more realistic challenges for image registration relevant in
clinical applications. We present an extensive evaluation of
the proposed method on the new FLoRI21 dataset and on the
existing narrow-field FIRE dataset [28] and, for both datasets,
demonstrate significant improvement over prior methods.

The rest of this paper is organized as follows. In Section II,
we present the proposed hybrid retinal registration method. In
Section III, we conduct a series of analysis of the proposed
method and compare with existing works on retinal image
registration. Section IV summarizes the concluding remarks.

II. HYBRID REGISTRATION APPROACH

The proposed hybrid retinal image registration technique,
which is illustrated in Fig. 2, leverages the complemen-
tary strengths of the feature-based global registration and
the vessel-based local registration. Used in conjunction with
robust techniques, such as RANSAC, feature-based global
registration avoids local minima for transformation parameter
estimates. However, a global transformation cannot handle the
extreme geometric distortion that is introduced from mapping
the approximately spherical retinal surface to the image plane.
Thus, invariably, the global transformation does not provide
adequate registration accuracy. By limiting the scope to a re-
stricted smaller spatial region, the local registration, however,
can model the residual mismatch remaining after the global
registration. Specifically, for the local registration, we utilize
the anatomical segmentation of retinal vessels detected from
input images and partition the coarsely aligned vessel pairs
into overlapping patches. Unlike the global registration that
relies on a set of sparse feature correspondences, the local reg-
istration step optimizes a dense vessel pixel agreement metric
for each local patch via the parametric chamfer alignment.

Next, we describe details for the proposed feature-based
global registration and the vessel-based local registration.

A. Global Feature-based Registration

The global registration step aims to estimate a transforma-
tion T̄β between a reference image Ir (fixed geometry) and a
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Fig. 2: Overview of the proposed hybrid registration method. Best viewed in color.

target image It. Since the imaging geometry of the reference
and the target images are different and unavailable, we adopt
a parametric polynomial transformation that is flexible enough
to capture non-rigid changes in geometry. In this step, feature
points are first extracted from the reference image and the
target image, shown as the cyan and the magenta points
in the global registration block in Fig. 2, respectively. We
denote the set of the detected reference feature points by
Fr = {(f (r)i ,p

(r)
i )}Nr

i=1, where f
(r)
i ∈ Rd is the d-dimensional

feature descriptor, p(r)
i ∈ R2 is the location of feature point,

and Nr is the number of detected reference feature points.
Similarly, the set of target feature points is represented as
Ft = {(f (t)j ,p

(t)
j )}Nt

j=1. Alternative feature descriptors can be
used in the proposed method, including those that are hand-
crafted (e.g. SIFT [29]) or learned (e.g. SuperPoints [30]).

From the detected features Fr and Ft, we establish two
sets of (tentative) corresponding points. The first set Sc is
the consensus set containing the nearest feature matches and
the second set Ss is the sample set in which only distinctive
features are included. Specifically, for each reference feature
descriptor f

(r)
i , we first search its nearest neighbor f

(t)
ji,1

in
the feature space from the target feature set Ft, and add
the corresponding location pair (p

(r)
i ,p

(t)
ji,1

) to the consensus

set Sc. Next, if f
(t)
ji,1

is close to f
(r)
i by a significant margin

compared to other features in Ft, i.e., if∥∥∥f (r)i − f
(t)
ji,1

∥∥∥∥∥∥f (r)i − f
(t)
j

∥∥∥ < τ1, (1)

for all j 6= ji,1 for a suitably chosen threshold τ1 < 1, we
declare it a distinctive match and add it to the sample set Ss. To
make the feature matching robust, we perform the bidirectional
feature matching by swapping the reference features and the
target features.

The consensus and the sample sets have different charac-
teristics. While the mismatch rate in the sample set Ss is
relatively low, the number of matched feature points is small,
especially in the peripheral regions in which the registration
is prone to error. On the other hand, the consensus set Sc

includes a large number of matched features, even though
the mismatch rate is high as well. Using these two sets of
tentative matched features, we propose a modification to the
RANSAC algorithm to estimate parameters β for a polynomial
registration transformation. The same overall methodology
applies for different order polynomial transformations, though
the number of parameters and the form of the transformation
depends on the specific choice.

In the proposed modified RANSAC, we first randomly
select Nβ matched points from the sample set Ss. We de-
termine the optimal transformation parameter β such that
the transformed target coordinates closely approximate the
corresponding reference points, i.e., p

(r)
n ≈ T̄β(p

(t)
n ) for

n = 1, 2, . . . , Nβ. The least squares solution is

β = (AᵀA)
−1

Aᵀb. (2)

Detailed expressions for A and b are provided in Section S.II
in the Supplementary Material for the second, third, and
fourth order polynomial transformations that we used in our
experiments.

We then determine the inlier points from the consensus set
Sc that lie within a distance threshold τ2 under the estimated
transformation parameters. The random selection is repeated
for Ntrail times and the selection with the largest number of
inliers is used to determine the optimal global transformation
parameters. The overall algorithm for the global transforma-
tion estimation is summarized in Algorithm 1. We note that,
although simple, the proposed modification to the conventional
RANSAC algorithm using separate sample and consensus sets
provides significant gains in practice (as we demonstrate in our
experimental results).

Once the global transformation parameters have been esti-
mated, we apply the transformation T̄β to the target vessel
map Vt to obtain the warped version Vt0 . The resulting
coarsely aligned vessel pair (Vr,Vt0) is then fed to the local
registration step.
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Algorithm 1: Global transformation estimation
Given : Feature matching threshold τ1, inlier distance

threshold τ2, number of RANSAC trials
Ntrial, and number of pairs Nβ to estimate
transformation parameters β

Input : Reference image Ir, target image It
Output: Parameters β for optimal global registration

transformation
1 Nbest ← 0, Sc ← ∅, Ss ← ∅ ;
2 Extract feature descriptors Fr from Ir and Ft from It;

// Match features from Fr to Ft

3 (Sc,Ss)← (Sc,Ss) ∪ FMatches(Fr,Ft, τ1, 0);
// Match features from Ft to Fr

4 (Sc,Ss)← (Sc,Ss) ∪ FMatches(Ft,Fr, τ1, 1);
// Transformation Estimation via RANSAC

5 for n = 1 : Ntrial do
6 Randomly sample Nβ pairs from Ss to estimate

transformation parameters βn using (2);
// Find inlier matches from the consensus set

7 Sn ← {(p(r),p(t)) ∈ Sc|‖p(r) − T̄βn
(p(t))‖ < τ2};

// Maintain inliers corresponding to the best fit
8 if |Sn| > Nbest then
9 Nbest ← |Sn|, Sinlier ← Sn ;

10 end
11 end
12 Estimate global transformation parameters β from
Sinlier using (2);

// Unidirectional feature matching function
13 Function FMatches(F1, F2, τ , Π)
14 foreach (f

(1)
i ,p

(1)
i ) ∈ F1 do

15 Find the nearest feature neighbor f (2)ji,1
and the

second nearest feature neighbor f (2)ji,2
from F2;

// Add nearest neighbor matches to consensus set
16 Sc ← Sc ∪ {Swap(pi

1,p
ji,1
2 ,Π)} ;

17 if
∥∥∥f (1)i −f

(2)
ji,1

∥∥∥∥∥∥f (1)i −f
(2)
ji,2

∥∥∥ < τ then

// Add distinctive matches to sample set
18 Ss ← Ss ∪ {Swap(p(1)

i ,p
(2)
ji,1
,Π)}

19 end
20 end
21 return (Sc,Ss);
22 end
23 Function Swap(a, b,Π) // Conditional swap on Π = 1

24 if Π = 1 then return (b, a) else return (a, b) ;
25 end

B. Local Vessel-Based Parametric Chamfer Alignment

As indicated in Section I, a global transformation is usually
insufficient to model the extreme geometric distortion in the
UWF images. Therefore, in the second step, we refine the
registration at the local patch level via parametric chamfer
alignment of retinal vessels.

We first partition the coarsely aligned vessel maps Vr

and Vt0 into K pairs of overlapping patches (see the local
registration block in Fig. 2). The number K is determined

based on the patch size and the stride size, i.e., K =
(H − P + S)(W − P + S)/S2, where H , W , P , and S
are image height, image width, patch size, and stride size,
respectively. The parametric chamfer alignment is performed
for each pair of vessel maps separately. For each patch k, let
Qr,k = {p(r,k)

i }Mr,k

i=1 be the set of vessel pixel locations in the
reference patch where p

(r,k)
i is the pixel location in the local

patch coordinate system and Mr,k is the number of vessel
pixels. Similarly, we have a set of vessel pixel locations in the
coarsely aligned target vessel patch Qt,k = {p(t,k)

j }Mt,k

j=1

Conventional chamfer alignment [31] estimates the trans-
formation parameters βk that minimizes the mean-squared
chamfer distance from the target vessel pixels in Qt,k to
the reference vessel pixels in Qr,k. For each target vessel
pixel j, the squared chamfer distance dj(βk) is calculated
as the minimum squared distance between its transformed
location T̃βk

(p
(t,k)
j ) and the nearest pixel location in Qr,k.

This formulation, however, is not robust to outlier vessel pixels
that only exist in Qt,k and do not have correspondence in
Qr,k. To handle the outlier pixels, we adopt a probabilistic
framework for the parametric chamfer alignment [32]. Specif-
ically, we further associate each target vessel pixel j with a
latent variable zkj ∈ {0, 1} to indicate if the pixel j has a
correspondence in the reference vessel set (zkj = 1) or not
(zkj = 0) and refer to the pixels in the two groups as inliers
and outliers, respectively. We model the prior probability of
p(zkj = 1) as a Bernoulli distribution with unknown parameter
πk. Moreover, we assume that the registration error dj(βk)
for inlier vessel points should be close to 0 and thus model
the conditional probability p(dj |zkj = 1) as an exponential
distribution with unknown parameter λk. For outlier vessel
points, the registration error p(dj |zkj = 0) is modeled as a
uniform distribution over [0, P 2].

We apply the Expectation Maximization (EM) algo-
rithm [33] to obtain maximum-likelihood estimates of the
unknown parameters πk, λk, and βk. The EM algorithm
iterates between two steps: the Expectation step (E-step) and
the Maximization step (M-step). In the E-step, we calculate
the posterior probabilities pkj = p(zkj = 1|πk, λk,βk, dj) using
Bayes rule. In the M-step, we maximize the expectation of the
complete-data log likelihood and obtain the updated parame-
ters πk =

∑Mt,k

j=1 pkj /Mt,k, λk =
∑Mt,k

j=1 pkj /
∑Mt,k

j=1 pkj dj , and

β̂k = arg min
β

1

Mt,k

Mt,k∑
j=1

pkj dj(β). (3)

The minimization of (3) corresponds to a probabilistic
chamfer alignment in which the registration error dj for each
pixel is weighted by the posterior probability pj that it is
an inlier pixel. Using the EM framework, the distance metric
for probabilistic chamfer alignment concentrates on the inlier
pixels and reduces the impact of outlier pixels, which results
in robust parameter estimation. In addition, the computation of
the objective function in (3) can be done efficiently using the
distance transform [34]. We provide detailed derivations of the
posterior probability and the parameter updates in Section S.III
in the Supplementary Material.
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Fig. 3: Illustration of the displacement vector field interpo-
lation. The green and the magenta pixels are the vessels in
the reference and the target images, respectively. In the first
two columns, the cyan point shows a target pixel in four
patches and the yellow arrow is the local displacement vector
estimated from each patch. The interploated displacement
vector is shown in the third column. The rightmost image
shows the result from the local registration, where the white
pixels are the common vessels between the image pairs.

To fuse the multiple transformation parameters βk estimated
from the overlapping patches, we propose to perform the
displacement vector field interpolation, which is illustrated in
Fig. 3. For each patch k, we determine a local displacement
vector field φk. The local displacement vector field at pixel
location in the reference patch represents the vector offset from
this location to the corresponding location in the target patch.
The local displacement vector φk

(
xk
i

)
for the pixel location

xk
i can be obtained from the estimated transformation T̃βk

as

φk

(
xk
i

)
= T̃ −1βk

(
xk
i

)
− xk

i , (4)

where T̃ −1βk
is the inverse of the geometric transformation T̃βk

.
The interpolated displacement vector for pixel xi is obtained
as

φ (xi) =
1

|Ni|
∑
k∈Ni

φk

(
xk
i

)
, (5)

where Ni is the set of patches that contain the pixel xi. To
obtain the warped target image It→r that is align with the
reference image Ir, we transform the target image It according
the interpolated displacement vector field φ.

III. EXPERIMENTAL RESULTS

In this section, we first describe the datasets used for
quantitative assessment and introduce a new UWF FA dataset,
FLoRI21 [35], for retinal image registration. Next, we define
the metrics for quantitative evaluation and list the existing reti-
nal image registration methods for comparison. We then con-
duct extensive experiments to evaluate the proposed method
for retinal image registration. We first study the effectiveness
of the proposed two-stage method via a series of in depth
ablation studies and analysis (Section III-C) and then perform
a comparative evaluation of the proposed method against
existing retinal image registration methods (Section III-D).

A. Dataset

We validate the proposed method for retinal image regis-
tration on a new ultra-widefield FA dataset, FLoRI21, and

on the existing narrow-field FIRE (fundus image registration)
dataset [28].

The FLoRI21 (Fluorescein-angiography Longitudinal Reti-
nal Image 2021) dataset provides 15 pairs of UWF FA images
that were collected from subjects enrolled in the RECOVERY
study (ClinicalTrials.gov Identified: NCT02863354) [36]. For
each subject, there is one montage FA image (Fig. 1(a)) and a
set of longitudinal raw FA images (Figs. 1(b) and (c)) that were
taken nominally 24 weeks apart. The montage FA serves as the
common reference image and the raw FAs are target images.
All images are acquired using Optos California and 200Tx
cameras (Optos plc, Dunfermline, United Kingdom) [37] and
are stored in the TIFF format. The montage image, which was
created by the Optos software via an equatorial stereographic
projection of select individual images [26], [27], has a reso-
lution of 4000 × 4000 whereas the individual FA images are
3900×3072. For quantitative evaluation, we manually select a
set of corresponding points, which we will refer to as control
points, for each image pair. The control points are chosen to
be the landmarks on the images, such as bifurcation points
and endpoints of the retinal vessels. In addition, the locations
of control points are chosen to provide coverage of the entire
overlapping region between the two images.

The FIRE dataset consists of 134 pairs of narrow-field color
fundus images [28]. All images have the same resolution of
2912×2912 and the same of field-of-view of 45◦. The images
are split into three categories with different characteristics.
Category S contains 71 image pairs that carry high overlap
and no anatomical changes; Category A contains 14 image
pairs with large overlap and significant anatomical changes;
Category P includes 49 pairs of images with small overlap.
For each image pair, 10 control points are manually labeled
as the ground truth for evaluation.

B. Evaluation Metrics and Benchmark

We use the Mean Registration Error (MRE) [28], the area
under the success rate curve, and the chamfer distance for
quantitative evaluation. For each image pair, MRE is calculated
as the average residual Euclidean distance (in pixels) between
the control points under the estimated transformation. Given an
MRE threshold τe, we define the success rate as the percentage
of test image pairs in which the MRE is below the threshold
τe

SuccessRate (τe) =
1

N

N∑
i

1
[
MRE

(
Iir, I

i
t→r

)
< τe

]
, (6)

where N is the total number of image pairs in the test dataset
and 1 is the indicator function. The success rate curve is
plotted as a function of the MRE threshold τe. We compute
the area under the curve (AUC) using the trapezoidal method
and report the normalized AUC value in the range of [0, 1].

In addition to the area under the success rate curve, we
also report the residual chamfer distance (RCD) between
the registered binary vessel maps, which provides a good
proxy for the registration error. Since the chamfer distance
is asymmetric, we compute the two-way chamfer distance
by swapping the reference and the target images and report
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the median two-way chamfer distance computed over all test
image pairs.

We consider the following methods as baselines for com-
parison: REMPE [20], AC-RegNet [38], Harris-PIIFD [39],
GFEMR [11], RIR-BS [40], SURF-PIIFD-RPM [41], and
GAIN [42]. We use the code provided by the authors and keep
the default parameter settings as suggested in the correspond-
ing papers. We also compare the proposed method with two
recent deep learning-based techniques: VoxelMorph [43] and
AC-RegNet [38]. These registration techniques cannot directly
deal with the extreme geometric changes seen in UWF images.
In order to compare them against our proposed approach, we
first coarsely align these images using our SIFT-based global
feature based registration and then utilize these methods for
residual local registration (on top of the global registration
transformation). Furthermore, we re-train these techniques for
UWF imagery, which is quite different from the MRI and X-
ray image modalities on which these methods were originally
applied and reported in their respective publications.

C. Implementation, Ablation Study, and Analysis

We implement the proposed method using MATLAB and
PyTorch [44]. We use the pre-trained neural network mod-
els [32] and [45] to detect vessels from UWF FA images and
narrow-field fundus images, respectively. Based on empirical
evaluation, the feature matching threshold τ1 is set to 0.5
and the inlier distance threshold τ2 is set as 25. We run 800
RANSAC trails Ntrial to find the best global transformation
parameters. In the local registration stage, we convert the
coarsely aligned images into 512×512 patches with a stride of
256 pixels. With this setting, the displacement field vector of
each pixel location is estimated from 4 overlapping patches.
Local registration cannot be reliably determined for patches
with very few vessel pixels without using additional context.
This situation is sometimes encountered for peripheral patches
and addressed by combing patches having under 1% vessel
pixels with the horizontally/vertically adjacent patch that has
the larger number of vessel pixels.

To demonstrate the contribution of each stage in the pro-
posed method and to verify the benefits of using vessel maps
for the local registration, we conduct a series of ablation
studies and algorithm analysis. We first provide an empirical
justification for the orders of polynomial transformation used
in the proposed hybrid registration framework. In Table I, we
report the AUC and the ROC metrics for the second, third,
and fourth order polynomial transformations in both global
and local registration steps. For the global registration step,
the third order polynomial transformation offers significant
improvements over the second and the fourth order transforma-
tions. For the local registration, all the transformations achieve
the similar performance with minor benefit from going to high-
order polynomial transformation. Therefore, we use the third
order and the second order polynomial transformations in the
global and the local registration steps, respectively.

Next, we compare the proposed modified RANSAC match-
ing algorithm with the traditional version on the FLoRI21
dataset. Note that the FLoRI21 dataset is more challenging

Order of Polynomial AUC ↑ RCD ↓

Global
2nd order 0.505 16.069
3rd order 0.742 11.859
4th order 0.719 14.462

Local
2nd order 0.840 5.127
3rd order 0.854 5.100
4th order 0.838 5.751

TABLE I: Evaluation of different orders of the polynomial
transformation used in the global and the local registration
steps on the FLoRI21 dataset.

Method #Inlier Points AUC ↑ RCD ↓

RANSAC Sc 220 0.170 19.798
RANSAC Ss 407 0.703 13.662

Prop. RANSAC 1418 0.742 11.859

TABLE II: Quantitative comparison between the proposed
RANSAC and the traditional RANSAC algorithms for esti-
mating the global transformation parameters on the FLoRI21
dataset. “#Inlier Points” means the median number of inlier
points determined by the RANSAC algorithms.

than the FIRE dataset for RANSAC matching because the
UWF FA images in the FLoRI21 dataset has significant geo-
metric distortion in periphery. We implement two versions of
the traditional RANSAC. The first one, denoted as RANSAC
Sc, estimates the global transformation parameters from the
consensus set Sc that contains the nearest neighbor for each
SIFT [29] feature point. The second version, denoted as
RANSAC Ss, uses the sample set Ss that includes only the
distinctive SIFT feature matches. In addition to the AUC and
RCD metrics, we also report the median number of matched
inlier points estimated by RANSAC. Table II summarizes
the results on the FLoRI21 dataset. The RANSAC Sc finds
the least number of inlier points because the tentative fea-
ture correspondences in Sc contain significant mismatches.
Therefore, RANSAC does not perform well on Sc. While
the median number of inlier points from RANSAC Sc is
220, these matched features are not wide distributed over the
image, as shown in Fig. 4(c). The RANSAC Ss method can
determine the transformation parameters that coarsely aligns
image pairs. However, the number of matched inlier points is
significantly smaller than the proposed RANSAC method (407
v.s. 1418, respectively). As shown in Fig. 4(b), RANSAC Ss
performs poorly in the peripheral regions with large geometric
distortion. The proposed RANSAC matching method is able
to robustly determine the inlier matched points by combining
both the sets Sc and Ss.

In the third experiment, we demonstrate the effectiveness of
the local registration step by comparing the proposed hybrid
registration framework with global registration methods. We
experiment with both hand-crafted SIFT [29] features and
the learning-based SuperPoint [30] features. For SIFT feature
extraction, we use the publicly available VLFeat library [46].
For SuperPoint [30] features, we adopt the pre-trained network
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(a) (b) (c)

Fig. 4: Visual results of feature matching obtained from (a)
the proposed RANSAC, (b) RANSAC Ss, and (c) RNASAC
Sc. The red and green markers are the corresponding inlier
SIFT features from the montage FA and the transformed raw
FA, respectively.

Global Local AUC ↑ RCD ↓

SIFT [29] - 0.742 11.859
SuperPoint [30] - 0.723 12.724

SIFT [29] SIFT [29] 0.790 9.242
SIFT [29] Diff Demons [47] 0.813 8.313
SIFT [29] Optical Flow [48] 0.779 9.293
SIFT [29] Intensity-MI [5] 0.793 9.432

SIFT [29] Chamfer (Unsup. VD [49]) 0.796 10.168
SIFT [29] Chamfer (Sup. VD [32], Prop.) 0.840 5.127

TABLE III: Quantitative evaluation of the global and the local
registration steps in the proposed method on the FLoRI21
dataset. Diff Demons: diffeomorphic demons; Unsup. VD:
unsupervised vessel detection; Sup. VD: supervised vessel
detection (proposed method). The methods in the first two
rows only do not perform the local registration.

provided with the publication1. Table III reports the quanti-
tative results on both the FLoRI21 and the FIRE datasets.
Using the global registration as the initial step, the local
registration step in the proposed hybrid framework, improves
the registration accuracy significantly. On the FLoRI21 dataset,
the proposed framework improves the AUC metric from 0.802
to 0.866 and reduces the RCD error from 8.859 to 5.127
pixels. A similar gain is also obtained on the FIRE dataset:
the proposed framework achieves an AUC of 0.894 and the
RCD of 1.730 pixels. We also note that the coarse alignment
from the SuperPoint features, although slightly worse than that
from the SIFT features, still provides good initialization for the
local registration step.

In the fourth experiment, we justify the choices of the
binary vessel map for the local registration by comparing
the proposed method against alternative keypoint-based and
intensity-based registration techniques for the second stage.
To ensure the same experiment setting, we use the patch size

1https://github.com/magicleap/SuperPointPretrainedNetwork

of 512 × 512 pixels for all methods and perform the SIFT-
based global registration to coarsely align the input image
pairs. For the keypoint-based method, we select the matched
SIFT features that lie inside each patch to estimate the local
transformation using (2). For methods that take the intensity
image as input, we consider the non-parametric deformable
registration (diffeomorphic demons [47]), the optic flow using
the TV-L1 solver algorithm [48], and the intensity-based reg-
istration that maximizes the mutual information (MI) between
the image pair [5]. Quantitative results on the FLoRI21 dataset
are listed in the second block of Table III. Compared with the
global registration (AUC of 0.742 and RCD of 11.859), both
feature-based and intensity-based local registration methods
improves the registration accuracy (AUC of 0.813 and RCD of
8.313 for the best performing diffeomorphic demons method),
which further reinforce the advantages of the two-stage hybrid
registration framework. The proposed method, which uses
binary vessel map in the local registration step, outperforms
all alternative methods.

Lastly, we highlight that the local registration step in the
proposed method benefits from the recent advances deep
learning based vessel detection. Prior work in [4] adopts an
unsupervised vessel detection method, MSMA [49], for the
chamfer alignment. For comparison, we replace the pre-trained
network model [32] in our implementation with MSMA and
test the registration accuracy. Both methods are initialized
using the feature-based global registration. Quantitative com-
parison on the FLoRI21 dataset, listed in the penultimate row
in Table III, show that the registration using unsupervised
vessel detection performs worse than that using deep neural
network model. The unsupervised vessel detection method
fails to detect many vessel branches from the FA image,
especially in the low contrast region in the periphery. In
contrast, the deep neural network can robustly detect both
major and minor vessels, regardless of image contrast. An
accurate vessel segmentation map is crucial in the local
registration of the proposed method because the parametric
chamfer alignment relies on binary vessel maps for anchoring.
It is also worth noting that prior work in [4] directly applied
the chamfer alignment on the input image, without the global
registration step, which tends to be non-robust because the
chamfer alignment is only locally convergent.

D. Results and Benchmarking

Figure 5 shows the success rate curves for different retinal
image registration methods on both the FLoRI21 dataset and
the FIRE dataset. Table IV summarizes the corresponding area
under the curve (AUC) and the RCD metrics. On both datasets,
the proposed hybrid registration method shows significant
improvement over existing methods. The proposed method
achieves an AUC of 0.866 and a RCD of 5.127 pixels on
the FLoRI21 dataset and 0.894 AUC and 1.730 pixels RCD
on the FIRE dataset. We observe that the performance of
existing methods on the FLoRI21 datasets is much worse than
those on the FIRE dataset. The primary reason for the poor
performance is that these methods do not account for the
significant distortion in the peripheral regions. For instance,
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(a) FLoRI21 Dataset (b) FIRE Dataset

Fig. 5: Success rate curves for different retinal image regis-
tration methods on (a) the FLoRI21 dataset and (b) the FIRE
dataset.

the REMPE method [20] assumes that retinal camera can be
modeled as a pinhole camera model without lens distortion.
This assumption, however, is not valid for UWF retinal images.

Native implementations of the recent learning based reg-
istration techniques AC-RegNet [38] and VoxelMorph [43]
cannot directly handle the large geometric variations seen in
the FLoRI21 dataset. When coarsely registered images ob-
tained by the SIFT-based global registration from the proposed
approach are provided as the input and these methods are
retrained on UWF imagery, they can provide reasonably regis-
tered images. The results in Table IV indicate that, when aug-
mented with our first stage coarse registration, these learning-
based methods provide better registration accuracy than prior
non learning-based methods. However, their performance is
still worse than that of the proposed method.

Comparing the results presented in Table III, we notice
that, on the FLoRI21 dataset, the proposed approach still
performs better than existing methods even using alternative
local registration techniques. The results further demonstrate
the benefits of the proposed hybrid registration framework.

Figure 6 shows sample registered binary vessel maps ob-
tained from different methods on the FLoRI21 dataset and the
FIRE dataset. For a better visualization, we only include local
vessel patches in Fig. 6 and provide the entire registered vessel
images in Section S.IV in the Supplementary Material. The
proposed hybrid registration method can accurately register
the retinal images. For existing methods, we can see clear
misalignment between the reference vessel map (magenta) and
the registered target vessel map (green).

IV. CONCLUSION AND DISCUSSION

The novel two-stage hybrid registration framework proposed
in this paper provides a useful approach for registering UWF
retinal images to standardized stereographic projections where
extreme geometric distortions are commonly encountered.
Experimental evaluations on two datasets, including a new
FLoRI-21 UWF dataset [35], show that the proposed approach
outperforms prior retinal registration methods by a significant
margin. The FLoRI21 dataset is made publicly available [35]2

to facilitate further research on retinal image registration.

2A sample pair of low resolution images is currently provided and the entire
dataset will be released with the publication of the paper.

Method
FLoRI21 Dataset FIRE Dataset

AUC ↑ RCD ↓ AUC ↑ RCD ↓

Harris-PIIFD [39] - - 0.589 3.774
RIR-BS [40] 0.131 17.626 0.497 4.460
GAIN [42] 0.491 13.557 0.791 2.283

SURF-PIIFD-RPM [41] 0.372 16.029 0.680 2.420
GFEMR [11] 0.454 14.507 0.666 2.755
REMPE [20] 0.427 14.240 0.773 3.342

AC-RegNet∗ [38] 0.792 7.946 0.807 2.209
VoxelMorph∗ [43] 0.815 7.124 0.831 2.180

Proposed 0.840 5.127 0.894 1.730

TABLE IV: Comparative evaluations for different retinal
vessel registration methods on the FLoRI21 and the FIRE
datasets. ∗These learning-based methods take coarsely aligned
image pairs as input, which are obtained by the SIFT-based
global registration used in the proposed approach. The best
result is shown in bold.

The second stage in the proposed framework effectively
leverages the advances made in vessel segmentation and
focuses on the anatomical features of interest, which is well
matched with clinical scenarios where the longitudinal changes
in vessel structures are of interest. Although beyond the scope
of the present work, the idea could also be generalized to
other image modalities, for instances, leveraging anatomical
segmentation to register longitudinal brain MRI images [43].
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