
 

 

 

 

 

  

Abstract- We present a methodology for detecting effective 

connections between simultaneously recorded neurons using an 

information transmission measure to identify the presence and 

direction of information flow from one neuron to another. Using 

simulated and experimentally-measured data, we evaluate the 

performance of our proposed method and compare it to the 

traditional transfer entropy approach.  In simulations, our 

measure of information transmission outperforms transfer 

entropy in identifying the effective connectivity structure of a 

neuron ensemble. For experimentally recorded data, where 

ground truth is unavailable, the proposed method also yields a 

more plausible effective connectivity structure than transfer 

entropy. 

I. INTRODUCTION 

By using microelectrode technology to record the spikes 

of many neurons simultaneously, neuroscientists are able to 

investigate how cortical neurons interact with one another to 

encode sensory stimuli or behavioral output. These 

interactions can be analyzed to determine the structure of 

functional or effective connections among the recorded 

population of neurons. Functional connections are identified 

using symmetric measures of statistical dependence, whereas 

effective connections are identified using asymmetric 

measures of causality [1]. Although there are a number of 

ways to evaluate causality [2], effective connections between 

neurons are typically identified by detecting the presence and 

direction of information flow [1].  

The standard measure of information flow between two 

neurons X and Y is transfer entropy [3]–[5], which detects 

whether the state transition probabilities of neuron X depend 

on the recent past state of neuron Y. If so, it is presumed that 

information flows from neuron Y to neuron X. Previous 

studies have found that transfer entropy more accurately 

detects effective connectivity than measures such as cross-

correlation or mutual information [3], [4]. 

In this paper we introduce an alternative information 
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transmission measure for identifying effective connections 

between neurons, which builds upon the direct method for 

quantifying how much information a neuronal response 

carries about a stimulus [6], [7]. Our proposed method 

operates by computing the total and noise entropies of 

neuron X’s response to a spike in neuron Y. This allows us to 

determine whether neuron X’s spike train conveys 

information about a recent spike in neuron Y, indicative of an 

effective connection from neuron Y to neuron X.  

Using simulated and experimentally-measured data, we 

evaluate the performance of our proposed method for 

inferring effective connectivity between neurons and 

compare its performance against the traditional transfer 

entropy approach. In simulations, our measure of 

information transmission outperforms transfer entropy in 

identifying the effective connectivity structure of a neuron 

ensemble. For experimentally recorded data, where ground 

truth is unavailable, the proposed method also yields a more 

plausible connectivity structure than transfer entropy. 

II. METHODS 

A. Information Transmission 

To measure the information transmitted from neuron Y to 

neuron X, we use the difference IT = Htotal – Hnoise where 

Htotal and Hnoise respectively denote the total entropy of 

neuron X’s spike train immediately following a spike in 

neuron Y and the portion of this entropy that is attributable to 

noise [7]. The total and noise entropies are defined as 
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where τ denotes a positive time lag,  p(xτ | y=1) denotes the 

empirically estimated probability distribution of the binary 

state of  neuron X, evaluated in 1ms bins, at lag τ following a 

spike in neuron Y, and <···>τ denotes an average over all lags, 

ranging from one to ten milliseconds. By Jensen’s inequality 

[8], IT is a non-negative quantity. 

 The computation of IT mirrors the direct method for 

quantifying the stimulus-response properties of neurons [6], 

[7], with key differences that: a) the response distributions of 

neuron X are estimated following neuron Y spikes as opposed 

to concurrent with a presented stimulus, b) the response 

distributions of neuron X define the random variable 

denoting the presence/absence of a spike at time lag τ rather 
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than binary words representing response patterns, and c) the 

responses of neuron X are allowed to overlap when the inter-

spike intervals of neuron Y are less than τmax = 10ms.  

B. Transfer Entropy 

Transfer entropy from neuron Y to neuron X is the 

Kullback-Leibler divergence between the probability 

distributions p(xF|xP,yP) and p(xF|xP) [5], defined as:  
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Consequently, if the Markov property holds that p(xF|xP,yP) = 

p(xF|xP), transfer entropy is zero. Using an approach similar 

to that described by Gourévitch and Eggermont [3], the past 

and future states of neuron X, xP and xF, are defined by 

counting the number of spikes in the intervals [t-10ms, t] and 

[t, t+10ms], respectively. The past states of neuron Y are 

defined by the presence or absence of a spike in the interval 

[t-1ms, t]. By evaluating transfer entropy in this manner, we 

measure the effect of the recent binary state of neuron Y on 

the spike-count state transition probabilities of neuron X.   

C. Ensemble Simulation 

To evaluate information transmission as a measure of 

effective connectivity between neurons, and to compare its 

performance to that of transfer entropy, we simulated a 10-

neuron ensemble using a Poisson generative model [9]. The 

conditional intensity function, λi(t|µi,αi,k), for each neuron 

was defined as:  
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where µi is the mean firing rate of neuron i, αi(t) is the firing 

rate variation of neuron i, kji(τ) is the effective connection 

from neuron j to neuron i at time lag τ, and βj(t-τ) is the 

binary state of neuron j at time t minus τ.  

The mean firing rate, µi, of each neuron in the ensemble 

was 20 spikes per second (sps). The firing rate variations, 

αi(t), were defined as random walks over a range of ±15 sps, 

starting at 0 sps at time zero (Fig. 1c). The connectivity 

kernels, kji, were defined as random walks over lags ranging 

from 1-10 ms, starting with a weight of 0 at 1 ms lag and 

constrained to a range of ±1 (Fig. 1d). Refractory effects, kii, 

were modeled as exponential decays from a weight of -5 at 

1ms lag to 0 at 10ms lag (Fig. 1e). For each neuron, the 

number of spikes occurring at each millisecond time step was 

determined by drawing from a Poisson distribution with rate, 

λi(t|µi,αi,k).  

To determine if our information transmission measure 

could distinguish between functional and effective 

connectivity, we modeled functional interactions between 

selected neurons by setting their firing rate variation 

parameters αi(t) equal, producing firing rate co-variation 

[10]. The network structure of the simulated ensemble is 

shown schematically in Fig. 1a. Arrows indicate the presence 

and direction of effective connections. Firing rate co-

variation occurred between neurons 4 and 9 and between 

neurons 3, 6, and 7. The corresponding connectivity 

structure matrix is shown in Fig. 1b. Effective connections 

between neurons, where kji is nonzero, are indicated with 

circles. Refractory effects are shown in gray. Functional 

connections, where αi(t) = αj(t), are indicated with exes. 

Twenty minutes of simulated data were used for analysis.  

D. Data Collection 

Experimental data was collected from a single Rhesus 

macaque monkey implanted with a 16-channel floating 

microelectrode array (Microprobes for Life Science, Inc., 

Gaithersburg, MD) in the upper extremity region of left 

hemispheric primary motor cortex (M1). The monkey 

performed a center-out, reach-to-manipulate task with its 

right upper extremity. Each trial in this task consisted of the 

monkey initially grasping and holding a centrally-located 

pull-object for a duration of 500 ms. The monkey was then 

cued to reach for and manipulate one of three peripherally-

located objects (rotational knob, pull handle, push button) 

within an allowed response time of 500 ms. Trials were 

separated by 1000 ms intertrial intervals.  

Neural data was recorded using a Plexon acquisition 

system and sorted offline using OfflineSorter software 

(Plexon Inc, Dallas, TX). The data analyzed in this paper is 

from a single experimental session in which 12 well-isolated 

neurons were recorded throughout a 30 minute experimental 

session.  

Fig. 1.  A 10-neuron ensemble was simulated using a Poisson generative 

model. The structure of simulated network connections is shown in (a). 

Arrows indicate the presence/direction of effective connections. Firing 

rate co-variation was simulated between neurons 4 and 9 and between 

neurons 3, 6, and 7. b) The neuron connectivity matrix corresponding to 

(a).  Circles mark effective connections and exes mark functional 

connections.  c) Example firing rate variation, αi(t). d) Example effective 

connection, kji. e) Refractory effect, kii.  
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III. RESULTS 

The significance of information transmission, IT, and 

transfer entropy, TE, between any pair of neurons X and Y 

was evaluated by comparing the measured IT and TE values 

with IT and TE values obtained using shuffled data. Shuffled 

data were generated by randomly shuffling the inter-spike 

intervals of neuron X, eliminating any effective or functional 

connection between neuron Y and neuron X. This procedure 

was repeated 1000 times, providing bootstrapped estimates 

of the distributions of IT and TE values based on chance 

alone. Values obtained for unshuffled data that fell outside 

the range of these distributions thus could be considered 

significant at the p<0.001 level.  

A. Simulated Data 

Fig.s 2A and 2B show the effective connections (shown in 

black) identified by IT and TE, respectively, for the 

simulated ensemble defined in Fig. 1. Information 

transmission correctly identified all eight simulated effective 

connections (indicated with circles) and erroneously 

identified an effective connection from neuron 9 to neuron 2. 

Transfer entropy correctly identified seven out of eight 

simulated effective connections, but incorrectly identified six 

functional interactions (indicated with exes) as effective 

connections.  

To demonstrate why the information transmission and 

transfer entropy measures give different results, in Fig. 2c-e 

we show the across-lag spiking probabilities for neurons 8, 

6, and 4, following spikes in neurons 10, 1 and 9, 

respectively. Information transmission detects an effective 

connection if the spikes of neuron Y evoke a modulation in 

the across-lag spiking probabilities of neuron X (solid black 

lines) that is significantly different from chance (black dotted 

lines mark the 99
th

 percentile of spiking probabilities for 

shuffled data). Conversely, transfer entropy detects an 

effective connection if the dependence of neuron X’s future 

state (indicated by solid red lines which show the across-lag 

average spike probabilities) on the recent past of neuron Y is 

significantly different from chance (red dotted lines mark the 

99
th

 percentile of across-lag spike probability averages for 

shuffled data).  

Fig. 2c shows that the spikes of neuron 8 evoke a 

significant modulation in the across-lag spiking probabilities 

of neuron 10; that is, the average response of neuron 10 to 

spikes in neuron 8 is significantly different than what might 

be observed by chance alone. Consequently, information 

transmission correctly detects an effective connection from 

neuron 8 to neuron 10. In addition, the future state of neuron 

10, given a spike in neuron 8, is significantly lower than 

chance; that is, the across-lag average spiking probability for 

neuron 10 (red solid line) lies below the range for shuffled 

data (demarcated by red dashed lines). This indicates that the 

spike-count transitions of neuron 10 depend on the state of 

neuron 8 – for example, p(xF=0|xP=1,yP=1) > p(xF=0|xP=1), 

and transfer entropy also identifies an effective connection 

from neuron 8 to neuron 10. 

Fig. 2d shows that the spiking probabilities of neuron 1 

are significantly modulated by spikes in neuron 6, and, as 

expected, information transmission detects effective 

connectivity between these neurons. However, the future 

state for neuron 1, given a spike in neuron 6, is not 

significantly different from chance, and transfer entropy 

therefore does not identify the effective connection that 

exists between these neurons.  

Most interestingly perhaps, Fig. 2e shows that the average 

spiking probabilities of neuron 9 are elevated (due to firing 

rate co-variation) but not modulated following a spike in 

neuron 4. Information transmission therefore does not detect 

an effective connection between these neurons. It might be 

expected that transfer entropy would likewise not detect an 

effective connection here, given that the spiking probabilities 

of neuron 9 are elevated both before and after a spike in 

neuron 4, and transfer entropy operates in part by 

conditioning the future state of neuron 9 on its own past. 

However, due to firing rate co-variation, the presence of a 

neuron 4 spike likely coincides with neuron 9 transitioning 

between high states (e.g., p(xF=2|xP=3,yP=1) > p(xF=2|xP=3)) 

and, conversely, the absence of a neuron 4 spike likely 

coincides with neuron 9 transitioning between low states 

(e.g., p(xF=0|xP=0,yP=0) > p(xF=0|xP=0)). Consequently, 

transfer entropy incorrectly identifies firing rate co-variation 

between neurons 4 and 9 as an effective connection.  

Fig. 2.  Simulated ensemble results. a) Effective connections (marked in 

black) identified by information transmission. b) Effective connections 

identified by transfer entropy. c-e) Across-lag spiking probabilities for 

neurons 10, 1, and 9, following spikes in neurons 8, 1, and 4, respectively.  

f-g) Incidence of detecting a neuronal interaction as effective over 100 

simulations using information transmission and transfer entropy, 

respectively.  
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To confirm that the results shown in Fig. 2a-b are not just 

specific to a particular set of simulated connectivity kernels 

and firing rate co-variations, we repeated the simulation 100 

times. Though each simulation used the connectivity 

structure shown schematically in Fig. 1a, new connectivity 

kernels, kji, and firing rate variation parameters, αi(t), were 

generated for each simulation.  Fig. 2f-g show the incidence 

of classifying any pairwise interaction as effective, using 

information transmission and transfer entropy, respectively, 

over the 100 ensemble simulations. Information transmission 

correctly identified 91.0±3.8% of simulated effective 

connections and misidentified 0% of simulated functional 

connections. Transfer entropy correctly identified 76.4±6.1% 

of simulated effective connections and misidentified 

65.8±4.5% of simulated functional connections.  

B. Motor Cortex Data 

Fig. 3a-b show the effective connectivity structure 

identified by information transmission and transfer entropy, 

respectively, for the population of neurons recorded from 

M1 in an awake, behaving monkey. Fig. 3c-e show the 

across-lag spiking probabilities for neurons 8, 8, and 3, 

following spikes in neurons 5, 6 and 8, respectively. 

Information transmission identified effective connections 

between the first and second neuron pairs (Fig. 3c-d), 

whereas identified effective connections between the first 

and third pairs (Fig. 3c and Fig. 3e). Overall, information 

transmission identified 13 effective connections between 132 

neuron pairs, whereas transfer entropy identified 93 effective 

connections. This difference in result could be attributable to 

the fact that transfer entropy detects firing rate co-variation 

as effective connectivity (see Fig. 2g) whereas information 

transmission does not. Furthermore, the incidence of firing 

rate co-variation between neurons recorded in a 2mm x 2mm 

x 4mm region of motor cortex (the volume sampled by the 

microelectrode array) is likely very high, given that these 

neurons likely represent similar motor outputs [11].  

IV. CONCLUSION 

This study presents a novel approach for identifying 

effective connections between cortical neurons. Using 

simulated neuronal ensembles, we show that this method, 

which measures information transmission between neurons, 

is more sensitive to and selective for effective connectivity 

than the standard information theoretic method for 

identifying causal interactions between neurons, transfer 

entropy. We also use our method to identify effective 

connections between motor cortical neurons recorded on a 

microelectrode array implanted in an awake, behaving 

monkey and show that our measure of information 

transmission yields a more plausible effective connectivity 

structure than what is obtained using transfer entropy. Future 

work aims to extend this method to measure information 

transmission using the frequency distributions of a neuron’s 

response patterns (i.e., binary words) given a spike in 

another neuron. We believe that the information transmission 

measure introduced here provides more accurate 

identification of the effective connectivity structure among 

simultaneously recorded neurons, which may provide insight 

into how ensembles of neurons collectively encode behavior.  

REFERENCES 

[1] E. Bullmore and O. Sporns. “Complex brain networks: graph 

theoretical analysis of structural and functional systems.” Nat. Rev. 

Neurosci., vol. 10, pp. 1-13, Feb. 2009. 

[2] M. Lungarella, K. Ishiguro, Y. Kuniyoshi, and N. Otsu. “Methods for 

quantifying the causal structure of bivariate time series.” Internat. J. 

Bifur. Chaos Appl. Sci., vol. 17, no. 3, pp. 903-922, 2007.   

[3] B. Gourévitch and J. J. Eggermont. “Evaluating information transfer 

between auditory cortical neurons.” J. Neurophysiol., vol. 97, pp.  

2533-2543, Jan. 2007. 

[4] M. Garofalo, T. Nieus, P. Massobrio, and S. Martinoia. “Evaluation 

of the performance of information theory-based methods and cross-

correlation to estimate the functional connectivity in cortical 

networks.” PLoS ONE, vol. 4, no. 8, pp. e6482, Aug. 2009.  

[5] T. Schreiber. “Measuring information transfer.” Phys. Rev. Lett., vol. 

85, no. 2, pp. 461-464, Jul. 2000.   

[6] R. R. de Ruyter van Steveninck, G. D. Lewen, S. P. Strong, R. 

Koberle, and W. Bialek. “Reproducibility and variability in neural 

spike trains.” Science, vol. 275, pp. 1805-1808, Mar. 1997.  

[7] A. Borst and F.E. Theunissen. “Information theory and neural 

coding.” Nat. Neurosci., vol. 2, no. 11, pp. 947-957, Nov. 1999.   

[8] T. M. Cover and J. A. Thomas. Elements of Information Theory. New 

York: John Wiley, 1991. 

[9] W. Truccolo, U.T. Eden, M.R. Fellows, J. P. Donoghue, E. N. Brown. 

“A point process framework for relating neural spiking activity to 

spiking history, neural ensemble, and extrinsic covariate effects.” J. 

Neurophysiol., vol. 93, no. 2, pp. 1074-1089, Sept. 2004.  

[10] A. Riehle, S. Grun, M. Diesmann, A. Aertsen. “Spike synchronization 

and rate modulation differentially involved in motor cortical 

function.” Science, vol. 278, pp. 1950-1953, Dec. 1997.  

[11] A. P. Georgopoulos, H. Merchant, T. Naselaris, B. 

Amirikian. “Mapping of the preferred direction in the motor cortex.” 

PNAS, vol. 104, no. 26, pp. 11068-11072, June 2007. 

Fig. 1.  Motor cortex ensemble results. a) Effective connections (marked in 

black) identified by information transmission. b) Effective connections 

identified by transfer entropy. c-e) Across-lag spiking probabilities for 
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