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Abstract

A level-embedded lossless compression method for continuous-tone still images is presented. Level (bit-plane)
scalability is achieved by separating the image into two layers before compression and excellent compression
performance is obtained by exploiting both spatial and inter-level correlations. A comparison of the proposed scheme
with a number of scalable and non-scalable lossless image compression algorithms is performed to benchmark its
performance. The results indicate that the level-embedded compression incurs only a small penalty in compression
efficiency over non-scalable lossless compression, while offering the significant benefit of level-scalability.
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1. Introduction

Image compression is an important tool for
reducing the bandwidth and storage requirements
for practical imaging systems. Although most
image processing applications can tolerate some
information loss, in several areas—such as medi-
cal, satellite, and legal imaging—Ilossless compres-
sion algorithms are preferred. CALIC [10,11],
JPEG-LS [4], and JPEG2000 [5] are among well-
known lossless image compression algorithms.
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Among these CALIC provides best compression
ratios over typical images, whereas, JPEG-LS is a
low complexity alternative with competitive effi-
ciency. The JPEG2000 standard, on the other
hand, is a wavelet-based technique, which provides
a unified approach for lossy-to-lossless compres-
sion.

In several applications, it is advantageous to
have scalable compression, where a desired level of
compression may be determined after the source
has been compressed. This allows flexibility in
determining the data rate to meet the bandwidth,
memory and processing power constraints im-
posed by the operating environment—with a
corresponding trade-off in image quality. Scalable
compression is typically achieved by generating an
embedded bit-stream which has the property that
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any truncation of the (compressed) bit-stream also
yields an efficient compressed representation of the
source in a rate-distortion sense. That is, the
distortion for the truncation of the embedded
stream to a particular rate should be comparable
to the distortion achievable for that rate by any
compressed representation, embedded or other-
wise.

In this paper, we develop a level-embedded
compression scheme, which is a specific instance of
scalable compression.! For an R bit-image, the
method generates an embedded bit-stream that
allows scalability in the pixel-wise peak (max-
imum) absolute error (PAE) ranging from 0
(lossless) to 2R=D (single bit-thresholded repre-
sentation) in suitably chosen steps. The method is
useful in several applications, where data is
acquired by a capture device with a high dynamic
range or bit-depth. A lower bit-depth representa-
tion is often sufficient for most purposes and the
higher bit-depth data is only required for specia-
lized analysis/enhancement or archival purposes.
For example, a digital camera may preserve an
acquired image without loss at full bit-depth of the
acquisition device, but truncate later if necessary,
say in order to create space for additional images.
If the full bit-depth image is stored in a conven-
tional lossless compressed stream, a subsequent
truncation of lower order bits requires a decom-
pression and reconstruction of the image prior to
truncation, followed by a compression of the
resulting level-truncated image. If on the other
hand, the compression scheme (and the corre-
sponding Dbit-stream) is level-embedded, the
truncation can effectively be performed in
the bit-stream itself by dropping the segment of
the stream corresponding to the truncated lower
levels. The latter option is often much more
desirable because of its memory and computa-
tional simplicity, which translate to lower power,
time, and memory requirements.

JPEG2000 offers scalability in resolution and
distortion by allowing reconstruction of lower
resolution and/or lower signal-to-noise-ratio
(SNR) images. The scalability in JPEG2000 is,

'A preliminary paper describing the method presented here
appears in [2].

however, different from the scalability provided by
level-embedded compression. Resolution scalabil-
ity in JPEG 2000 is a natural outcome of the
discrete wavelet transform on which it is based.
SNR scalability is implemented by aligning quan-
tized bit-planes of sub-band wavelet coefficients
according to their mean square error (MSE)
significance and encoding these progressively in
an order in which the data with the largest
distortion reduction per average bit of compressed
representation is coded first. This ensures that a
truncation of the encoded bit-stream at any point
closely approximates the MSE optimal reconstruc-
tion for the corresponding file size or rate.
However, this truncation in the wavelet transform
coefficient domain does not, in general, offer any
reasonable PAE guarantees in the image pixel
value domain. On the other hand, since the
truncation in level-embedded compression occurs
directly in the pixel domain, it offers tight MSE
and PAE bounds in the image pixel domain. In
this sense, the scalability in level-embedded com-
pression corresponds to an embedding with respect
to the L™ norm in pixel domain whereas the SNR
scalability of JPEG2000 roughly corresponds to an
L? norm embedding. Finally we note that because
it is a point-wise operation with no spatial
interactions, level-embedded compression is free
from spatial artifacts that may be encountered
with JPEG2000 in certain images due to the spatial
spread of the wavelet bases used.

As a result, in several applications, level-
embedded scalability is more natural and accep-
table than the scalability in JPEG2000. Document
scanning applications offer a specific example,
where one may require archival of complete gray
level information, even though most users of the
data may need only thresholded bi-level informa-
tion. These dual needs are readily and efficiently
met by using level-embedded compression. An-
other example is the use of digital photography for
legal evidence, where level-embedded scalability
may be more acceptable because the potential for
spatial artifacts in alternate scalable compression
schemes may cast doubts on the veracity of
photographic evidence. The bit-depth truncation
in level-embedded compression is analogous to
using an acquisition device with a lower resolution



M. U. Celik et al. | Signal Processing: Image Communication 18 (2003 ) 443454 445

A/D converter and therefore likely to be more
acceptable. In other non-critical applications, the
JPEG2000 scalability based on wavelet domain
truncation is often superior to level truncation,
because it results in a smaller visual distortion.
JPEG-LS, in its near-lossless compression
mode, provides per pixel maximum absolute error
guarantees without introducing any spatial arti-
facts, as in level-embedded compression. In this
mode, however, JPEG-LS provides only lossy
compression at a fixed level and not an embedded
lossless stream that allows subsequent level
scalability.

Level-embedded compression may be achieved
through independent compression of individual
bit-planes as in JBIG [3]. If the process is applied
directly to the natural binary coded values of
image pixels it performs extremely poorly in
comparison to non-level-embedded methods.
Gray-coding [6, pp. 177-178] of the sample values
prior to compression of individual bit-planes
provides a major improvement by increasing the
correlations among spatially adjacent bits in a
plane, but still fails to exploit correlations between
the different bit-planes of an image and conse-
quently incurs a significant penalty in compression
performance over non-level-embedded methods.
In this paper, we propose an alternative method
for achieving level embedded compression which
significantly reduces the penalty in compression
performance by exploiting the correlations among
different bit-planes as well as the correlations
among neighboring pixels.”

The remainder of this paper is organized as
follows. In Section 2, we develop the level-
embedded compression scheme, with subsections
detailing the underlying context modeling, and
context adaptive prediction and entropy coding
components. Experimental results obtained on test
images using this compression scheme are pre-
sented in Section 3. Finally, concluding remarks
and a discussion are included in Section 4.

2During the course of writing this paper, the authors became
aware of recent independent work by Avcibas et al. [1] which
provides an alternate algorithm for progressive lossless and
near lossless image compression with similar functionality.

2. Level-embedded compression algorithm

We first describe the algorithm for the case of
two embedding levels: a base layer corresponding
to the higher levels and a residual layer comprising
of the lower levels. The method is subsequently
generalized to multiple levels in Section 2.4.

The image is separated into the base layer and a
residual layer. The base layer is obtained by
dividing each pixel value by a constant integer
L (Br(s) = | s/L]). L specifies the amplitude of
the enhancement layer, which is the remainder,
which is also called the residual (r = s — L| s/L |).
We also call the quantity L| s/L | as the quantized
pixel, Qr(s). Note that the use of a power of 2 for
L corresponds to partitioning of the images into
more significant and less significant bit-planes, and
other values generalize this notion to a partition-
ing into higher and lower levels.

Since the resulting base layer representing the
most significant levels of the image is coded
without any reference to the enhancement layer
and its statistics closely resemble those of a full bit-
depth image, any lossless compression algorithm is
well suited for this layer. In this paper, we use the
CALIC algorithm for the base layer compression.
Details of the CALIC algorithm may be found in
[10,11]. The compression of the enhancement layer
is outlined in greater detail below.

Since the enhancement layer, or the residual
signal, represents the lowest levels of a continuous-
tone image, its compression is a challenging task.
For small values of L, the residual typically has no
structure, and its samples are virtually uniformly
distributed and uncorrelated from sample to
sample. Direct compression of the residual there-
fore is highly inefficient. However, if the rest of the
image information is used as side-information,
significant coding gains can be achieved in
the compression of the residual, by exploiting
the spatial correlation among pixel values
and the correlation between high and low levels
(bit-planes) of the image.

The proposed method for the compression of
the enhancement layer has three main compo-
nents: (i) prediction, (ii) context modeling and
quantization, (iii) conditional entropy coding.
The overall structure and components for the
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enhancement layer compression scheme are in-
spired by the CALIC algorithm [10] but adapted
to the special case of encoding an enhancement
layer rather than a full image. The prediction
component is aimed at decreasing the redundancy
in the enhancement layer data by exploiting both
correlations with the already decoded base layer
and with available spatial neighbors. The context
modeling stage allows the prediction to adapt to
locally varying statistics in the image and also
enables the same adaptation for the conditional
entropy coding. Finally, the conditional entropy
coding uses context dependent probability models
to encode the information into the smallest
number of bits. The algorithm is presented below
in pseudo-code.

1. §o = Predict Current Pixel();
2. d,t = Determine Context D, T(Sp);
3. $o = Refine Prediction($¢, d, ?);
4. 0 = Determine Context @(5¢);
5. If (0=0),

Encode/Decode Residual(ro, d, 0);
else,

Encode/Decode Residual(L — 1 — rg, d, |0]);

2.1. Prediction

Prediction is based on a local neighborhood of a
pixel which consists of its 8-connected neighbors.
In this neighborhood, we denote the current
(center) pixel(residual) position by O, and neigh-
boring positions by standard map directions:
W, NW, N,... . The residual samples are en-
coded and decoded in the raster scan order, i.e.
left-to-right and top-to-bottom. This order guar-
antees that residuals at positions W, NW, N, NE
have already been reconstructed when the center
residual, rp, is being decoded. In addition, all
quantized pixel values of the image, Qy(s), are
known as side-information. Therefore, at a given
position, pixel values s = Qp(s) + r at positions W,
NW, N, NE and quantized pixel values Q;(s) at
positions E, SE, S, SW are known. To simplify the
notation, we define a reconstruction function f(.),
which gives the best known value of a neighboring
pixel, exact value if known, or the quantized value

plus L/2 (to compensate for the bias in the
truncation Qg(.)).

Sk if ke{W,NW,N,NE},
S(se) = I .
Or(sk) +7 otherwise.

(M

A simple, linear prediction for the current pixel
value is calculated using the nearest, 4-connected
neighbors of a pixel.

. 1

So=7 >, Sl )

4 ke{W ,N.E.S}

Since this predictor is often biased, resulting in a
non-zero mean for the prediction error, so — So,
we refine this prediction and remove its bias using
a feed-back loop, on a per-context basis as in [10].
The refined prediction is calculated as

So = round(5p + &(d, 1)), 3)

where “round(-)” is the integer round, and &(d, 7) is
the average of the prediction error (¢ = 5o — $0)
over all previous pixels in the given context (d, ¢).
In order to avoid the propagation of rounding
errors, the average prediction error is computed
from the refined prediction instead of the raw
prediction in Eq. (2). The resulting predictor $o is
a context-based, adaptive, non-linear predictor.

2.2. Context modeling and quantization

Typical natural images exhibit non-stationary
characteristics with varying statistics in different
regions. This causes significant degradation in
performance of compression algorithms that
model the image pixels with a single statistical
model such as a universal probability distribution.
If the pixels can be partitioned into a set of
contexts, such that within each context the
statistics are fairly regular, the statistics of the
individual contexts (e.g. probability distributions)
may be exploited in encoding the corresponding
pixels (residuals) using conditional entropy coding.
If the contexts and the corresponding statistical
models are chosen appropriately, this process can
yield significant improvements in coding efficiency.
The context selection problem addresses the
fundamental trade-off concerning the number of
contexts. Increasing number of contexts better
adapt to the local image statistics hence improve



M. U. Celik et al. | Signal Processing: Image Communication 18 (2003 ) 443454

p(s |

447

d.s*) p(r| d.s*.Q.(s))

Q (7

0.32

0.3

0.28

0.26

0.24

p(r] d.s*,.Q(s))

0.22

0.2

.

p(e | d)
0.08 0.08
0.07 0.07
0.06 0.06
0.05 . 0.05
%
S 0
= 0.04 S 0.04
= @
0.03 = 0.03
0.02 0.02
0.01 0.01
0 0
20 0 20 s* -20s* -
(€Y € (b)

10 s*
S

s*+10 s*+20
(©

1
r

2 3=L-1

Fig. 1. (a) Prediction error PMF, p(¢|d), under Laplacian assumption (o4, = 10). (b) Corresponding pixel PMF p(s = s+ ¢|d, 3).

(c) Conditional PMF of the residual (L = 4), p(r|d, $, QL(5)).

the coding efficiency. Since the corresponding
conditional statistics often have to be learned on-
the-fly observing the previously encoded (decoded)
symbols, convergence of these statistics and there-
by efficient compression is delayed when a large
number contexts are used. The reduction in
compression efficiency due to large number of
contexts is known as the context-dilution problem.
A good context model should avoid context-
dilution by choosing the optimum number of
contexts.

As a first step, we adopt a variant of d and ¢
contexts from [10], which are defined as follows:

A= 8f (sx) — Sol, 4
ke {W NW N,NE,E,SE,S,SW}
d = 0(4), (%)
1 if f(se) > So,
tk = { . (6)
0 otherwise,
t = twlltnlltellts, (N

where 7 is obtained by concatenating the individual
tr bits (16 values), and Q(4) is a scalar non-
uniform quantizer with 8 levels, whose thresholds
are experimentally determined so as to include an
approximately equal number of pixels in each bin.?
The context d corresponds to local activity as
measured by the mean absolute error of the

3For the experimental results of Section 3, the quantizer
Q()’s threshold are {1,2,3,4,6,10,15}.

unrefined predictor Eq. (2) and ¢ corresponds to
a texture context that is based on the relations of
the individual neighbors to the unrefined predic-
tion.*

As described earlier in 2.1, for each pixel, the
(d,t) context is determined and the prediction is
refined by using the average prediction error for
the previous pixels in the context as in Eq. (3).
In the encoding step, the average prediction error
for the context is then updated using the prediction
error for the current pixel, in the decoding step, the
pixel is first decoded and the update follows.

Typically, the probability distribution of the
prediction error, ¢ = s — §, can be approximated
fairly well by a Laplacian distribution with zero
mean and a small variance which is correlated with
the context d [6-8, p. 33]. In order to make precise
statements, for the following discussion, we
assume that the prediction error distribution
pleld) is exactly Laplacian with variance oy
determined by d. The arguments and the ensuing
conclusions and techniques, however, are largely
applicable even when the true distributions deviate
from this assumption. Fig. 1a shows a plot of the
probability mass function (pmf) p(¢|d) under this
assumption. Given §, the conditional probability
distribution of pixel values p(s =35+ ¢ld,s) is
obtained by shifting the prediction error distri-
bution p(¢ld) by s. The corresponding pmf is
illustrated in Fig. 1b.

*In order to avoid context-dilution during coding, ¢ contexts
are used only during prediction and not while coding.
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In base layer compression algorithms, pixel
values are coded using these conditional prob-
ability distributions. However, the residual com-
pression problem deviates from the base layer
compression problem in two aspects: (i) The
residual’s probability distribution for entropy
encoding should be obtained from the pixel
statistics; and (ii) The quantized value of the pixel
Qir(s) is known, and this knowledge should be
exploited. We address these issues by introducing
an additional context, 6, which is used only in the
coding process and not in prediction.

In order to motivate the context 0, note that the
known quantized value Qy(s) may be used as an
additional context directly. A known quantized
pixel value, Qy(s), limits the possible values of the
pixel s to the range [Q/(s), Qr(s)+ L). This is
illustrated in Fig. 1b as the region between the
two vertical broken lines. The conditional pmf
p(rld, s, Qr(s)) can therefore be obtained by
normalizing this segment of the pmf to sum
up to 1. Fig. Ic illustrates the conditional pmf
p(rld, s, Qr(s)) obtained for the segment illustrated
in Fig. 1b. Entropy coding the residual using this
conditional pmf restricts the symbol set required
thereby improving compression. Note, however,
that there are typically a large number of possible
values for Q;(s), which would cause significant
context-dilution since a large number of samples
would be required to learn the statistics for each of
these contexts on the fly. The characteristics of
the Laplacian distribution, however, allow for
a significant reduction in the number of these
contexts.
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Since the Laplacian distribution decreases ex-
ponentially about its peak at s, the conditional pmf
p(rld, s, Qr(s)) can be determined from the relative
positions of § and Qy(s). For instance, if s<Qy(s),
the peak is at r=0 and the pmf decreases
exponentially and is identical for all cases corre-
sponding to $§< Oy (s). This case corresponds to the
one illustrated in Fig. 1b and c. This allows all the
cases corresponding to $<Qy(s) to be combined
into a single composite context. Similarly, if
$=2Qr(s)+ L —1, the peak is at r =L —1 and
the distribution increases exponentially, which
may all be combined into a single context as well.
In other cases, when Q(s)<$s<Qr(s)+ L — 1, the
peak is at r = § — Qr($). Although total number of
contexts after the above reductions is not large, it
can be reduced further, if the symmetry of the
Laplacian is exploited.

The symmetry of possible residual statistics is
illustrated in Fig. 2. In particular, the distributions
with peaks at rp and L — 1 — ry are mirror images
of each other. If the residual values are re-mapped
(flipped rpew = L — 1 —rgq) in one of these two
contexts, the resulting distributions will be iden-
tical. As a result, we can merge these contexts
without incurring any penalty. Furthermore,
we encode the re-mapping instruction into the
sign of the 0 context. We assign each pair of
symmetric distributions to an opposite sign,
equal magnitude context value (%6;). During
entropy encoding, first the residuals are re-
mapped if necessary. Afterwards, the absolute
value of 0 is used as the coding context, together
with d.

03 ss—f{ o3} <+ 0.3 03
. s*—> - s*
2

2
@25 0.25 0.25 0.25
0
<
=

0.2 0.2 0.2 0.2

0.15 0.15 0.15 0.15

0 1 2 L1 0o 1 2 L1 1 2 L1 0 1 2 L1

r r

r r

Fig. 2. Conditional PMFs p(r|d, s, Qr(s)) for contexts 0 = {+1, +2} (L = 4). Symmetric contexts are merged by re-mapping the

residual values.



M. U. Celik et al. | Signal Processing: Image Communication 18 (2003 ) 443454 449

The 0 contexts differentiate between statistically
different (after incorporating all symmetries)
residuals using the knowledge of s and Qy(s). This
enables the conditional entropy coder to adapt to
the corresponding probability distributions in
order to achieve higher compression efficiency.
Minimizing the number of such contexts allows the
estimated conditional probabilities to converge
to the underlying statistics faster. Therefore, it
prevents context dilution and improves the com-
pression efficiency.

Finally, we have empirically determined that
assigning a separate 0 context to the cases § =
Q:r(s) and § = Qr(s) + L — 1 further enhances the
compression efficiency. These cases have been
formerly included in the context where $§< Qy(s)
and §>Q;(s) + L — 1. We believe that the round-
ing in Eq. (3) partially randomizes the prediction
when Qy(s)~s and causes this phenomenon. The
number of 6 contexts and (d,0) coding contexts
become | (L+1)/2+1] and 8| (L+1)/2+1],
respectively.

2.3. Conditional entropy coding

At the final step, residual values are entropy
coded using estimated probabilities conditioned on
different contexts. In order to improve efficiency,
we use a context-dependent adaptive arithmetic
coder [9] as in [10]. In a context-dependent
adaptive entropy coder, conditional probability
distribution of residuals in each coding
context (d, ) is estimated from previously enco-
ded(decoded) residual values. That is, the observed
frequency of each residual value in a given context
approximates its relative probability of occur-
rence. These frequency counts are passed to an
arithmetic coder which allocates best code-lengths
corresponding to given symbol probabilities.

2.4. Multi-level-embedded coding

The above description outlined level-embedded
compression for two levels, a base layer and a
single enhancement level. Multi-level embedded
coding can be obtained as a straightforward
extension by applying the algorithm recursively.
In the first stage, the image is separated into a base

layer B; and an enhancement layer r; using level
L. In the second stage, the base layer Bj is further
separated into a base layer B, and enhancement
layer r, using a (potentially different) level L,. The
process is continued for additional stages as
desired. Each enhancement layer r; is compressed
using the corresponding base layer B;, and last
base layer B, is compressed as earlier.

3. Experimental results

We evaluated the performance of the proposed
scheme using the six 512 x 512 8-bit gray-scale
images seen in Fig. 3.

Although the algorithm works for arbitrary
values of the embedding level L, in order to allow
comparison with bit-plane compression schemes,
here we concentrate on bit-plane embedded cod-
ing, which corresponds to using L = 2. Further-
more, the recursive scheme outlined in Section 2.4
is used to obtain multi-level embeddings with more
than one enhancement layer, each consisting of a
bit-plane. The number of enhancement layers, i.e.
embedded bit-planes, is varied from 1 to 7. One (1)
enhancement layer corresponds to the case where
the LSB-plane is the enhancement layer and 7
MSB-planes form the base layer. Likewise, seven
(7) enhancement layers correspond to a fully
scalable bit-stream, where all bit-planes can be
reconstructed consecutively, starting with the most
significant and moving down to the least signifi-
cant. As indicated earlier, in each case, the
corresponding base layer is compressed using
CALIC algorithm.

In Table 1, the performance of the proposed
algorithm is compared with that of state-of-the-art
lossless compression methods. The methods in-
cluded in this benchmarking include the regular
(non-embedded) lossless compression methods:
CALIC, JPEG2000, JPEG-LS; and embedded
compression using JBIG (independent bit-planes),
gray-coded JBIG-“JBIG(gray)”, and the level-
embedded scheme proposed in this paper. The
different level embeddings are denoted as L.E. 1,
L.E. 2, ..., L.E. 7 for the cases corresponding to
1,2, ...,7 enhancement layers. In our experiments,
CALIC provided the best compression rates for
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Fig. 3. Test images used for experiments. Each image is 512 x 512 in size and has 256 gray levels (8-bits).

Table 1

Performance of level-embedded compression scheme against different lossless compression methods. Percent increase with respect to

CALIC is indicated

Image F-16 Mand

Boat Barb Gold Lena Avg.

Comp. method

Best loss-less compression rate (baseline)

CALIC (bpp) 3.54 5.66

4.15 4.42 4.58 4.08 4.40

Percent increase in bit-rate wrt baseline

E CALIC 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 JPEG2000 7.6 4.0 6.2 4.6 46 52 52
& JPEG-LS 1.9 2.8 24 6.2 1.8 34 3.1

JBIG 46.6 262 35.8 36.3 33.6 39.7 35.5
5 JBIG(gray) 17.5 11.2 15.8 17.6 13.7 15.8 15.0
3 LE. 1 2.0 0.2 1.6 1.4 0.7 1.1 1.1
3 LE. 2 4.1 0.9 4.1 4.1 22 3.7 3.0
£ LE.3 7.0 22 6.3 6.3 4.7 5.8 5.1
4 LE. 4 10.6 34 9.9 10.1 6.6 8.6 78
E LE.S 13.7 5.3 124 14.0 8.5 11.7 10.5

LE. 6 159 6.6 14.5 17.5 10.7 14.4 12.8

L.E.7 18.8 7.6 16.4 20.0 12.6 17.5 14.9

non-embedded

compression.

Therefore,

Nonetheless, just like CALIC these methods are

Table 1, we tabulate results for all non-embedded
schemes and the level-embedded scheme proposed
here as the percentage increases in bit-rate with
respect to the CALIC algorithm.

From the table, it is apparent that JPEG-LS and
JPEG2000 offer fairly competitive performance to
CALIC with only modest increases in bit-rate.

not bit-plane scalable. JPEG2000 provides resolu-
tion and distortion scalability but not bit-plane
scalability. In its default mode, JBIG provides bit-
plane scalability, however at a significant loss of
coding efficiency (almost a 35% increase in bit-rate
over CALIC, on average). The level-embedded
compression scheme does significantly better than
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Fig. 4. Percent increase in data-rate over CALIC algorithm for a given number of enhancement layers.

JBIG in this mode. The performance of JBIG is
significantly improved when pixel values are gray-
coded [6, pp. 177-178] prior to separation into bit-
planes. In the gray-coded representation, spatially
adjacent bits have a significantly higher correlation
than in the natural binary coded [6, p. 177]
representation. This translates to improved com-
pression performance. The results for the gray-
coded JBIG compression are shown in the row
labeled “JBIG(gray)” in the table. If the gray code
bit-planes are suitably arranged,’ for any chosen
number of MSB bit-planes, there is a one-to-one
correspondence between the values of these planes
in the natural binary coded representation and the
values of the same MSB planes in the gray-coded
representation. This property allows for a bit-
plane-embedded compressed stream to be con-
structed using JBIG(gray)—with some additional
processing. In this case, JBIGs performance is
comparable to that of the proposed method.
Nevertheless, proposed scheme offers additional

SNote that the permutation of the bit-planes of a gray-code
retains its gray-code properties.

flexibility in that the number of embedded levels
are not constrained to be equal to the number of
bit-planes and a smaller number of embedded
levels can be used if required with a corresponding
improvement in compression efficiency. For a
small number of embedding levels the penalty is
quite small with up to 4 enhancement layers
requiring under 8% increase in bit-rate over
CALIC.

In Fig. 4 the relative performance results from
Table 1 are plotted for the level-embedded
compression scheme. From the figure, we see that
the proposed method incurs a penalty which
increases roughly linearly for each image with
increase in the number of enhancement layers
(embedded bit-planes). In a hypothetical applica-
tion, where 2 bit-planes are embedded, for
instance, to truncate 8-bits to 6-bits in a digital
camera, the increase in bit-rate is 3% on the
average. This number is quite competitive with the
non-scalable JPEG-LS and CALIC algorithms in
view of the added functionality. It is also better
than the corresponding rate for the JPEG2000
algorithm. When all bit-planes are embedded the
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Fig. 5. Comparison of rate-distortion (MSE) performance (averaged over all images) for proposed level-embedded scheme and

JPEG2000.

penalty increases to 15%. This is approximately
equal to the JBIG(gray) and is considerably worse
than the JPEG2000, where alternate scalability
is provided. The degradation at higher levels of
embedding is not a major concern because most
applications of level-embedded compression are
likely to require only a small number of embedded
bit-planes.

Note that at first the loss of efficiency in level-
embedded compression may seem non-intuitive
because the information in the base layer is
exploited in the compression of the enhancement
layer. However, the information in the enhance-
ment layers is not utilized in the compression of
the base layer and subsequent enhancement
layers—this can lead to inefficiency in the com-
pression of the base layer. For instance if at a
given pixel, multiple bit-planes in increasing order
of significance are zero, it is likely that the
subsequent higher order bit-planes will also be
zero. This information cannot be exploited in
level-embedded compression and therefore some
penalty over regular loss-less compression is to be
expected.

The rate distortion performance of the level-
embedded scheme is compared against the rate-
distortion performance for JPEG2000 in Fig. 5 for
the MSE based peak signal-to-noise-ratio (PSNR)
distortion metric and in Fig. 6 for the PAE
distortion metric. The MSE, PAE, and PSNR
metrics are defined as

1 N-1 >
DIMSE) = 7 D (5 = 5 ®)
D(PAE) = max [ls; — §il ©)
PSNR(dB) = 101 S (10)
— %0\ DMSE) )’

where s; and §; represent the original and
reconstructed values, respectively, at pixel position
i and the maximum is over all pixels in the image.
Note that, for the proposed scheme the recon-
struction level is selected as the mid-point of the
quantization interval. For instance, if only the
most significant bit is received and its value is
zero then actual value of the pixel lies in [0, 128)
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JPEG2000.

(for an 8-bpp image) and § = 64 is sclected as the
reconstruction value.

Fig. 5 shows the rate in bits per pixel vs. the
MSE PSNR for the proposed level-embedded
compression scheme (for different choices of
embedding) and for JPEG2000. In order to
generate the points on these plots for JPEG2000,
the rate for the JPEG2000 encoder was adjusted to
roughly match the MSE distortion points for the
different embedding levels. Note that for high
rates the proposed scheme offers a better rate
distortion performance but at lower rates
JPEG2000 does better in the MSE distortion
sense.

Fig. 6 shows a plot of the rate vs. peak absolute
error (PAE) for the proposed level-embedded
compression scheme (for different choices of
embedding) and for JPEG2000. For JPEG2000,
the compressed images used to generate Fig. 5
were used for estimating the PAE for this graph.
As may be expected, the proposed level-embedded
scheme offers a superior rate distortion perfor-
mance in comparison to JPEG2000 wrt the PAE

metric. For all points shown, the proposed
embedding scheme has a significantly lower PAE
than JPEG2000 for the same rate.

4. Conclusions

We present a level-embedded lossless image
compression method, which enables bit-plane
scalability, or more generally level scalability. In
situations, where the resulting compressed bit-
stream needs to be truncated to produce a lower
bit-rate (and lower quality) image, the proposed
scheme guarantees freedom from compression
induced spatial artifacts and tight bounds on per
pixel maximum error, making it especially suitable
in certain medical, legal, and document imaging
applications. Experimental results comparing the
method with state-of-the-art lossless compression
methods indicate that level scalability is achieved
with only a small penalty in the compression
efficiency over regular (non-level-embedded) com-
pression schemes.
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