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Creating a Multitrack Classical Music Performance
Dataset for Multimodal Music Analysis: Challenges,
Insights, and Applications

Bochen Li

Abstract—We introduce a dataset for facilitating audio-visual
analysis of music performances. The dataset comprises 44
simple multi-instrument classical music pieces assembled from
coordinated but separately recorded performances of individual
tracks. For each piece, we provide the musical score in MIDI
format, the audio recordings of the individual tracks, the audio
and video recording of the assembled mixture, and ground-truth
annotation files including frame-level and note-level transcriptions.
We describe our methodology for the creation of the dataset,
particularly highlighting our approaches to address the challenges
involved in maintaining synchronization and expressiveness. We
demonstrate the high quality of synchronization achieved with
our proposed approach by comparing the dataset with existing
widely used music audio datasets. We anticipate that the dataset
will be useful for the development and evaluation of existing music
information retrieval (MIR) tasks, as well as for novel multimodal
tasks. We benchmark two existing MIR tasks (multipitch analysis
and score-informed source separation) on the dataset and compare
them with other existing music audio datasets. In addition, we
consider two novel multimodal MIR tasks (visually informed
multipitch analysis and polyphonic vibrato analysis) enabled by
the dataset and provide evaluation measurements and baseline
systems for future comparisons (from our recent work). Finally,
we propose several emerging research directions that the dataset
enables.

Index Terms—Multimodal music dataset, audio-visual analysis,
music performance, synchronization.

I. INTRODUCTION

USIC performance is a multi-modal art form. For thou-
M sands of years, people have enjoyed music performances
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at live concerts through both hearing and sight. The develop-
ment of recording technologies, starting with Thomas Edison’s
invention of the phonograph in 1877, has extended music en-
joyment beyond live concerts. For a long time, the majority of
music recordings were distributed through various kinds of me-
dia that carry only the audio, such as vinyl records, cassettes,
CDs, and mp3 files. As such, existing research on music anal-
ysis, processing, and retrieval focuses on the audio modality,
while the visual component was largely forgotten.

About a decade ago, with the rapid expansion of digital
storage and internet bandwidth, video streaming services like
YouTube gained popularity, which again significantly influenced
the way people enjoy music. In addition to listening to the sound,
audiences also want to watch the performance. In 2014, music
was the most searched topic on YouTube, and 38.4% of YouTube
views were from music videos [1]. The visual modality plays
an important role in music performances. Guitar players learn
new songs by watching how others play online. Concert atten-
dees move their gazes to the soloist in a jazz concert. In fact,
researchers have found that the visual component is not just a
marginal phenomenon in music perception, but an important
factor in the communication of meanings [2]. Even for presti-
gious classical music competitions, researchers have found that
visually perceived elements of the performance, such as ges-
ture, motion, and facial expressions of the performer, affect the
judge’s (experts or novice alike) evaluations, even more signif-
icantly than the sound [3].

Music Information Retrieval (MIR) research, which tradi-
tionally focused on audio and symbolic modalities (e.g., mu-
sical scores), started to pay attention to other modalities in re-
cent years. For example, players’ motion data captured from
sensors (MoCap) have been used to analyze players’ activities
[4] and enhance source separation quality [5]. However, such
data is not easy to obtain from natural music performances
because the methodology requires specialized motion capture
Sensors.

The visual modality is much more natural, and when avail-
able, it can be very helpful for solving many MIR tasks that
are challenging using an audio-only approach. Zhang et al. [6]
introduced a method to transcribe solo violin performances by
tracking the violin strings and fingers from the visual scene.
Similarly, remarkable success has been demonstrated for music
transcription using visual techniques for piano [7], guitar [8] and
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drums [9]. Other MIR tasks include onset detection [10] and vi-
brato analysis [11]. Note that the benefits of incorporating visual
information in the analysis of audio are especially pronounced
for highly polyphonic, multi-instrument performances, because
the visual activity of each player is usually directly observable
(barring occlusions), whereas the polyphony makes it difficult
to unambiguously associate audio components with each player.
Dinesh et al. [12] proposed to detect play/non-play activity for
each player in a string ensemble to achieve improved multi-pitch
estimation and streaming results than audio-based methods. A
similar idea is applied on different instrument groups among
symphony orchestras to achieve performance-score alignment
[13]. Additionally, audio-visual analysis opens up new frontiers
of MIR research. Researchers have proposed systems to analyze
the fingering of guitarists [14]-[17] and pianists [18], [19], the
baton trajectories of the conductors [20], the audio-visual source
association in multimedia music [21], and the interaction modes
between players and instruments [22].

Despite the increased recent interest, progress in jointly us-
ing audio and visual modalities for the analysis of music perfor-
mances has been rather slow. One of the main reasons, we argue,
is the lack of datasets. Although music takes a large share among
all kinds of multimedia data, music datasets are scarce. This is
because a music dataset should contain not only music record-
ings but also ground-truth annotations (e.g., note/beat/chord
transcriptions, performance-score alignments) to enable super-
vised machine learning and the evaluation of proposed meth-
ods. Due to the temporal and polyphonic nature of music, the
annotation process is very time consuming and often requires
significant musical expertise. Furthermore, for some research
problems such as source separation, isolated recordings of dif-
ferent sound sources (e.g., musical instruments) are also needed
for ground truth verification. When creating such a dataset, if
each source is recorded in isolation, it is a challenging task
to ensure that different sources are well tuned and properly
synchronized.

In this paper, we present the University of Rochester Multi-
modal Music Performance (URMP) dataset. This dataset covers
44 classical chamber music pieces ranging from duets to quin-
tets. For each included piece, the URMP dataset provides the
musical score, the audio recordings of the individual tracks,
the audio and video recordings of the assembled mixture, and
ground-truth annotation files including frame-level and note-
level transcriptions. In creating the URMP dataset, a key chal-
lenge we encountered and overcame was the synchronization
of individually recorded instrumental sources of a piece while
maintaining the expressiveness seen in professional chamber
music performances. We present our attempts and reflections
on addressing this challenge, and hope that this will shed light
on similar issues for future dataset creation efforts. We also
conduct objective and subjective evaluations on the synchro-
nization quality and compare it with two widely used datasets.
As the first audio-visual multi-instrument multi-track music per-
formance dataset, we anticipate that it will be valuable for MIR
research. Therefore, we benchmark URMP with existing widely
used music audio datasets on important existing tasks. We also
highlight our previous work on URMP to define two novel multi-
modal MIR tasks by proposing evaluation measures and provid-
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ing baseline systems for comparison. We further propose several
emerging novel research directions that URMP may support.

In the rest of the paper, in Section II, we first review existing
music performance datasets for MIR tasks and especially high-
light the challenges involved in creating multi-track datasets.
Then, in Section III, we describe our different attempts aimed
at overcoming these challenges while recording the URMP
dataset and, in Section IV, elaborate on the approach adopted. In
Section V, we describe the content of the URMP dataset and
analyze the quality of the dataset. In Section VI, we compare
the URMP dataset with other existing music audio datasets by
benchmarking two pre-existing audio-only MIR tasks on the
datasets and also mention several novel multi-modal MIR tasks
enabled by the multi-modal data in URMP. Finally, we conclude
the paper in Section VII.

II. REVIEW OF MUSIC PERFORMANCE DATASETS

Music performance datasets are not easy to create be-
cause recording music performances and annotating them with
ground-truth labels (e.g., pitch, chord, structure, and mood) re-
quire musical expertise and are very time consuming. Commer-
cial recordings can generally not be used due to copyright issues.
Recording music performances in research labs is subject to the
availability of musicians and recording facilities. Also, when
different instruments are recorded in isolation (for evaluating
musical source separation), we need to ensure proper meth-
ods for synchronization. The annotation process often requires
experienced musicians to listen through the musical recording
multiple times. It is especially difficult when the annotations are
numerical and at a temporal resolution on the order of millisec-
onds (for evaluating pitch transcription, audio-score alignment,
etc.). As a result, music performance datasets are scarce and
their sizes are relatively small.

A. Existing Datasets

In this section, we briefly review several commonly-used mu-
sic performance datasets that are closely related to the URMP
dataset, which can support some MIR tasks like music transcrip-
tion, source separation, audio-score alignment, etc. A summary
of these datasets is provided in Table I. Most of the datasets
contain only audio, and only six are multi-modal.

The first group of datasets are single-track polyphonic record-
ings with MIDI transcriptions for music transcription research.
While recording this type of music is straightforward, obtaining
the ground-truth transcription is not. A large portion of existing
single-track datasets focus on piano music [23]-[25], where the
transcription can be obtained automatically: a pianist plays on
a MIDI keyboard to generate a MIDI performance with pre-
cise note timings and dynamics; the MIDI file is then fed to a
reproducing piano (e.g., Yamaha Disklavier') to render acous-
tical recordings. The MIDI file naturally serves as the ground-
truth transcription. For other instruments that do not have the
MIDI-driven sound reproducing systems, manual annotation of
ground-truth transcription is the most accurate approach, which,
however, is notoriously labor intensive. To address this issue,

"http://www.disklavier.com
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TABLE I

MULTI-MODAL MUSIC ANALYSIS

Name Instrument/Genre # Pieces Total Duration Content
Audio-modality, Single-track

MAPS [23] Piano 270 18.6 h Audio, Note annotation

LabROSA [24] Piano 130 27h Audio, Note annotation

Score-informed Piano Piano 7 6.4 m Audio, Note annotation, Performance error an-
Transcription [25] notation

RWC [26] (Subset) Multi-instrument 100 9.2 h Audio, Note annotation

Su et al. [27] Multi-instrument 10 S5m Audio, Note annotation

MedleyDB [28]

SSMD [29]
MASS [30]
Mixploration [31]
iKala [32]

WWQ [33]
TRIOS [34]
Bach10 [35]

PHENICX-Anechoic
[36],[37]

Multi-genre

Songs
Songs, Multi-genre
Multi-genre
Songs
Multi-instrument
Multi-instrument
Multi-instrument
Multi-instrument

Audio-modality, Multi-track

122 73 h Audio, Pitch contour, Instrument activity,
Genre label
104 6.8 h Audio, Structure annotation
6 4.8 m Audio, Lyrics
12 4.9 m Audio
252 2.1 h Audio, Lyrics, Pitch contour
1 9m* Audio, Note annotation
5 32 m Audio, Note annotation
10 55m Audio, Note annotation, Pitch contour
4 10.6 m Audio, Note annotation

Multi-modality, Single-track

Multi-modal Guitar Guitar 10 10 m Audio, Video

[38]

C4S [10] Clarinet 54 45h Audio, Video, Visual annotation
Multi-modality, Multi-track

ENST-Drums [39] Drum kit N/A 3775 h Audio, Video (multi-camera views)

AbeBer et al. [40] Guitar, Drum, Bass N/A 1.2 h Audio, Video (multi-camera views)

EEP [41] String quartet 23 N/A Audio, Note annotation, Bow MoCap data

URMP Multi-instrument 44 1.3 h Audio, Video, Note annotation, Pitch contour

*): Only 54 seconds are publicly available.

the RWC dataset [26] (classical and jazz subset) aligns a refer-
ence MIDI score to the audio performance in a semi-automatic
fashion, and uses the aligned MIDI score as the transcription.
The dataset proposed by Su et al. [27] uses a different approach,
where a professional pianist was employed to follow and play
the music on an electric piano to generate well-aligned ground-
truth transcriptions.

The second group of datasets are multi-track recordings,
where each instrumental source is on one track. A multi-track
dataset generally has the merit of better versatility and scalabil-
ity. First, it can support more MIR tasks (e.g., source separation).
Second, it significantly reduces the annotation complexity, from
polyphonic to monophonic music. With a robust monophonic
pitch analysis tool, fine-grained annotations (e.g., pitch height
in musical cents for each time frame) can be acquired with less
labor. Third, a large variety of music excerpts can be reproduced
by mixing the monophonic tracks of the same piece with differ-
ent combinations. The difficulty in creating multi-track datasets
is during the recording process, which will be discussed in the
Section II-B.

The largest multi-track music dataset is MedleyDB [28]. It
contains multi-track audio recordings of 122 pieces with various

styles together with the melody pitch contour and instrument ac-
tivity annotations. The second largest dataset is the Structural
Segmentation Multitrack Dataset (SSMD) [29], which contains
multi-track audio recordings of 104 rock and pop songs, to-
gether with structural segmentation annotations. Most record-
ings of MedleyDB and SSMD are from third-party musical or-
ganizations (e.g., commercial or non-profit websites, recording
studios). This lessens the burden of recoding by the researchers
themselves. The other multi-track datasets are of a much smaller
scale. The MASS dataset [30] contains several raw and effects-
processed multi-track audio recordings. Mixploration dataset
[31] contains 3 raw multi-track audio recordings together with
anumber of mixing parameters. The iKala dataset [32] contains
the vocal melody and the accompaniment part of 252 pop songs
in separate tracks. The Wood Wind Quintet (WWQ) dataset
[33] contains individual recordings of 1 classical quintet. The
original 9-min recording serves as an internal benchmark for the
MIREX? Multi-FO Estimation & Tracking task since 2007; only
a 54-second excerpt is publicly available. The TRIOS dataset
[34] contains 5 multi-track recordings of musical trios together

Zhttp://www.music-ir.org/mirex/wiki/MIREX_HOME
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with their MIDI transcriptions. The Bach10 dataset [35] contains
10 multi-track instrumental recordings of J.S. Bach four-part
chorales, together with the pitch and note transcriptions and the
ground-truth audio-score alignment. The PHENICX-Anechoic
[37] provides the denoised recordings and note annotations for
the Aalto Anechoic Orchestral Database [36], which contains
four symphony pieces, each one has 8—10 instrumental parts and
each part was recorded in isolation using multiple microphones.

Existing multi-modal musical datasets include the Multi-
modal Guitar dataset [38], the Clarinetists for Science (C4S)
dataset [10], the ENST-Drums dataset [39], the AbeBer er al.
[40], and the Ensemble Expressive Performance (EEP) dataset
[41]. The first two are single-track datasets. The Multi-modal
Guitar dataset contains 10 audio-visual recordings of guitar per-
formances. The audio was recorded using a contact microphone
to capture the vibration of the guitar body and to attenuate the
effects of room acoustics and sound radiation. The video was
recorded using a high-speed camera with markers attached on
joints of the player’s hands and the guitar body to facilitate hand
and instrument tracking. The C4S dataset consists of 54 videos
from 9 clarinetists, each performing 3 different classical music
pieces twice. Visual annotations are also provided including the
coordinates of the face, mouth, left hand, right hand, and the clar-
inet. The latter three are multi-track datasets. The ENST-Drums
contains mixed stereo audio tracks, audio and video recordings
of each instrument of a drum kit playing different sequences.
All instruments were recorded simultaneously using 8 micro-
phones and 2 cameras. Similarly, instruments in [40] were also
recorded simultaneously. Since different instruments were not
recorded in isolation, there is some sound leakage across in-
strumental tracks. In EEP, each instrument was recorded using a
contact microphone; while sound leakage is greatly reduced, the
acoustic properties can be very different from using a near-field
microphone. There are several other video datasets that contain
a subset of music performance such as FCVID [42], YouTube-
8M [43], Google AudioSet [44], etc. We do not include them in
Table I since no content-level annotations are provided, which
limits applications in MIR tasks.

B. Synchronization Challenges in Creating
Multi-Track Datasets

The coordination between simultaneous sound sources dif-
ferentiates music from general polyphonic acoustic scenes. One
important aspect of this coordination is synchronization, which
is typically accomplished in real-world music performances by
players rehearsing together prior to a performance. During the
performance, players also rely on auditory and visual cues to
adjust their speed to other players. For large ensembles such as
a symphony orchestra, a conductor sets the synchronization.

In order to have a music performance dataset simulate real-
world scenarios, good synchronization between different instru-
mental parts is desired. However, creating a multi-track dataset
without leakage across different tracks is challenging. To elim-
inate leakage, different instruments need to be recorded sepa-
rately, which makes it difficult to achieve synchronization be-
cause players cannot rely on interactions with other players to
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adjust their timing. In this subsection, we review existing ap-
proaches that researchers have explored for ensuring synchro-
nization when recording multi-track datasets.

For SSMD, MASS, Mixploration, and a large portion of
MelodyDB, recordings were obtained from professional mu-
sical organizations and recording studios instead of being
recorded in a laboratory setting. The pieces are also mostly rock
and pop songs, which have a steady tempo, making synchro-
nization easier. In fact, in the music production industry, pop
music is almost always produced by first recording each track in
isolation and then mixing them and adding effects. This proce-
dure, however, does not apply to classical music, which involves
much less processing. Different instrumental parts of a classical
music piece are almost always recorded together. This is why
these datasets do not contain many classical ensemble pieces.
The multi-track recordings in ENST-Drums, AbeBer et al., and
EEP were recorded using multiple microphones simultaneously,
hence there are no synchronization issues with the recording.
However, leakage between microphones is inevitable for the
first two of these datasets, and the contact microphone used in
EEP alters the acoustic properties from normal near-field mi-
crophone recordings, which makes the dataset less desirable for
source separation research.

Existing multi-track datasets that have dealt with the syn-
chronization issue when recording each track in isolation are
WWQ, TRIOS, Bach10, and PHENICX-Anechoic. WWQ only
has one quintet piece, and the recording process has two stages.
In the first stage the performers played together with separate
microphones, one for each instrument. Audio leakage inevitably
existed in these recordings but they served as a basis for syn-
chronization in the second stage. In the second stage players
recorded their parts in isolation while listening to a mix of the
other player’s recordings in the first stage through earphones.
Because these players had rehearsed together and listened to
their own performance (the first-stage recordings), the synchro-
nization among individual recordings in the second stage was
very accurate. In TRIOS, for each piece, a synthesized audio
recording was first created for each instrument from the MIDI
score. Each player then recorded his/her part in isolation while
listening to the mix of the synthesized recordings of other parts
synchronized with a metronome through earphones. Although
the players did not rehearse together prior to the recording,
the synchronization was easy to address as all the pieces have
a steady tempo. In BachlO, instead of using the synthesized
recordings and a metronome as the synchronization basis, each
player listened to the mix of all previously recorded parts. The
first player, however, determined the temporal dynamics and did
not listen to anyone else, resulting in a less-than-ideal synchro-
nization in Bach10. Due to significant variation in the tempo,
a listener could easily find many places where notes were not
articulated together. In fact, each piece contains several fermata
signs, where notes were prolonged beyond their normal dura-
tion when the performance was held. For recording the dataset
as annotated by PHENICX-Anechoic, a pre-recorded conduct-
ing video with a pianist playing was used to set the common
timing for the instrumental players. The detailed description of
the dataset creation process is presented in [36]. In this paper,
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Fig. 1. (a) A summary of all attempts for solving the synchronization issue.
(b) A quantitative evaluation on the onset time deviation among score-notated
simultaneous notes of several key attempts. Red bars and text show the median
values. Blue circles are the notes occurring after a rest of at least 2 beats, which
are not necessarily outliers.

we arrived at the same synchronization approach as that in [36]
independently. Unlike [36] where an audio-only dataset was
generated, we create a multi-modal audio-visual dataset that we
compare comprehensively with existing datasets and also set up
performance baselines for several typical tasks on the dataset.
Additionally, we also provide a quantitative assessment of al-
ternative synchronization approaches, which has not previously
been done.

III. APPROACHES TO SYNCHRONIZATION

Similar to the creation of existing multi-track datasets, the
creation of URMP dataset faced the synchronization issue. This
issue is even more significant because of the following seem-
ingly conflicting goals: 1) Efficiency. Our goal is to create a
large dataset containing dozens of pieces with different instru-
ment combinations. We also hope that each player could par-
ticipate in the recording of multiple pieces. Therefore, it would
be difficult and time consuming to arrange players to rehearse
together before the recording for each piece, which is the ap-
proach adopted by the creation of WWQ dataset. 2) Quality. We
want the players to be as expressive as what they would be in
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real musical concerts. This requires them to vary the tempo and
dynamics significantly throughout a piece. However, without
the live interactions between players, this goal makes the syn-
chronization more difficult. We tried different ways to overcome
this challenge and eventually arrived at the same approach used
in [36] independently, which achieved both good efficiency and
quality. We present our attempts here and hope that this will
give some insights into the dataset creation problem. Fig. 1(a)
summarizes our attempts. We also quantitatively evaluate the
quality of several typical attempts by showing the maximal on-
set time deviation in Fig. 1(b), which calculates the maximal
absolute time difference among the score-notated simultaneous
notes from different tracks. The blue circles represent notes af-
ter a rest of at least 2 beats, which are more challenging to
synchronize due to fewer temporal hints.

A1) The first approach that we tried was to pre-generate a beat
sequence using an electronic metronome, and then have each
player listen to the beat sequence through an earphone while
recording his/her part. Different instrumental tracks were thus
synchronized through the common beat sequence. We tested
this approach on a violin-cello duet (Minuet in G major by J. S.
Bach). Although the synchronization was good, we found that
the performance was too rigid and did not reach our desired
level of expressiveness.

A2) In order to have better expressiveness, we replaced the
beat sequence with a pre-recorded piano performance. The pi-
anist played both instrumental parts simultaneously and var-
ied the tempo and dynamics throughout the piece. However,
when the players later followed it to record their individual
parts, the synchronization was not satisfactory, as shown in
Fig. 1(b). They did not get enough hints on when to start nor
when to jump in after a long break, which resulted in some
extreme outliers (shown by the blue circles).

A3) This attempt is inspired by WWQ’s approach: players
rehearsed together and used their rehearsal recordings as the
basis for synchronization. We further added a conductor to the
rehearsal process to improve the expressiveness by varying the
tempo and dynamics. The conductor also vocalized several beats
before the start of the piece to signal the players. We tested on an-
other violin-cello piece (Melody by Schumann). Fig. 1(b) shows
that the synchronization quality is greatly improved with a me-
dian onset microtiming value of 16ms. However, this approach
is time-consuming and difficult to scale to many pieces with
different instrument combinations.

A4) In the following attempts, we aim at an approach that
does not require joint rehearsals while keeping both the syn-
chronization and expressiveness at an acceptable level. Similar
to Bachl10, we let one leading player record first and let the
other(s) follow. Differently, the follower(s) not only listened
to but also watched the first player’s recording. We tested on
the same piece as in Al and A2, and found that this approach
improved the synchronization from A2, especially at places af-
ter long rests. This improvement, reported by the players, was
mainly thanks to the visual cues displayed in the first player’s
motion. This cue, however, would depend on the leading player
and the arrangement of the piece. Overall, its synchronization
quality is still much worse than A3.
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A5) Building on the previous approach, we asked each player
to watch and listen to a professional video performance down-
loaded from YouTube during the recording. Due to the availabil-
ity of professional performances, we chose a different piece, The
Art of Fugue No. 1 by J. S. Bach string quartet (same for the
following attempts). We tested this approach only on the violin
and cello parts. Our players reported that the visual cues were
not always clear, and it was challenging for them to follow the
professional performance even after watching it repeatedly in
advance. They were not able to complete the recording using
this approach hence we could not quantitatively analyze the
synchronization quality in Fig. 1(b).

A6) This attempt focused on relieving players’ synchroniza-
tion burden by applying a professional conductor to “conduct”
the YouTube video used in AS. The conducting video was pre-
recorded along with the played-back audio. Fig. 1(b) shows
that this approach achieved synchronization quality similar to
the approach with joint rehearsal (A3). However, the conduc-
tor needed to practice multiple times to memorize the temporal
dynamics of the performance and behave in a timely fashion
following the performance. This was very non-intuitive for con-
ductors. In addition, it is difficult to find YouTube videos that
exactly match our arrangements (e.g., instrumentation, key, and
notes). Nonetheless, from this attempt, we learned that watch-
ing a conductor is more beneficial than watching other players’
playing.

A7) In order to strike a balance between the burden placed
on the conductor and the players, our final attempt had two key
steps. In the first step, we asked the conductor to conduct a
pianist performing the piece, and recorded both the conducting
video and the piano audio. The conductor varied the tempo and
dynamics and the pianist adjusted the performance accordingly.
The conductor also gave cues to different instrumental parts in
front of the camera to help players jump in after a long rest. As a
second step, we asked each player to watch the conducting video
as well as listen to the corresponding audio during the recording.
The result from this attempt also yielded a satisfying quality.
Fig. 1(b) shows a median onset deviation value of 14 ms, similar
to A3 and A6. Without mandating a joint rehearsal among the
players, this method simultaneously meets the requirements of
quality, efficiency, and scalability. Furthermore, it is natural for
the conductor, the pianist, and the players.

Because the onset times are ambiguous for some soft artic-
ulations, the numerical evaluation of onset time deviation in
Fig. 1(b) is only a limited indicator of synchronization qual-
ity. Therefore during the preliminary attempts, we also valued
players’ subjective evaluation. To collect players’ opinions on
different pieces, the attempts at synchronization were not always
tested on the same piece. The synchronization difficulty of the
pieces is comparable thanks to their similar tempo and expres-
siveness, and is representative for most of the finally selected
pieces in URMP.

IV. DATASET CREATION PROCEDURE

This section explains in detail the execution of the two key
steps introduced in A7 in Section III. It covers the entire process
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of dataset creation, from piece selection and musician recruit-
ment, to recording, post-production, and ground-truth annota-
tion. The whole process is summarized in Fig. 2 using a duet as
an example.

A. Piece Selection

Our criteria of piece selection were:

e Generality: We want to have a good coverage of polyphony,
composers, and instrumentations.

® Complexity: The pieces should be relatively simple so that
all players could handle them without much practice. The
duration should not be too long (ideally 1 to 2 minutes) to
ease the burden of the recording process.

e Expressiveness: To avoid rigidness, the score should allow
some self interpretations by the conductor or players, such
as tempo rubato, dynamic variations, and ornamentations.

Bearing these guidelines in mind, we select pieces from a

sheet music website®, which provides thousands of simplified
and rearranged musical scores of different polyphony, styles,
composers, and instrumentations. We select a number of clas-
sical ensemble pieces, covering duets, trios, quartets, and quin-
tets. Different instrumentations include string groups, wood-
wind groups, brass groups, and mixed groups. Percussion in-
struments are not included. The pieces are simple enough so
most players could play them by sight-reading or after practic-
ing for one or two times. The durations of these pieces range
from 40 seconds to 4.5 minutes, and most are around 2 min-
utes. In most pieces, ritardando (gradual slowing down) ap-
pears towards the end, and various expressions on notes can
be applied such as #rill, mordent, pizzicato. This results in 44
piece arrangements, including 11 duets, 12 trios, 14 quartets,
and 7 quintets. There are 28 unique pieces from 19 differ-
ent composers, from which we derive different instrument ar-
rangements and/or keys. After such adaptations, the sheet mu-
sic was regenerated using Sibelius 7.5 [45]. For the detailed
piece list please refer to the documentation included in the
dataset.

B. Recruiting Musicians

Creating the URMP dataset requires three kinds of musi-
cians: a conductor, a pianist, and musicians who recorded the
instrumental parts of the pieces. All of the musicians were ei-
ther students from the Eastman School of Music or members of
various music ensembles and orchestras from the University of
Rochester. The conductor had more than 20 years of conduct-
ing experience. The pianist was a graduate student majoring in
piano performance. Background statistics of the instrumental
players are summarized in Fig. 3. In total, 22 players recorded
all the instrumental parts, with each player playing only one in-
strument but maybe multiple tracks. All of the musicians signed
a consent form and received a small monetary compensation for
their participation.

3http://www.8notes.com
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Fig. 2. The general process of creating one piece (a duet in this example) of the URMP dataset.
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Fig. 3. Demographic statistics of the total 22 musicians who recorded instru-

mental parts of the dataset. (The playing experience of 4 players is unknown).

C. Recording Conducting Videos

For each piece, a video consisting only of a conductor con-
ducting a pianist playing on a Yamaha grand piano was recorded
to serve as the basis for the synchronization of different in-
strumental parts. These conducting videos were recorded in a
25’ x 18’ recording studio using a Nikon D5300 camera and its
embedded microphone. Before recording each piece, the con-
ductor and the pianist rehearsed several times and the conductor
always started with several extra beats for the pianist (and later
other players) to follow. The tempo of each piece was set by the
conductor and the pianist together after considering the tempo
notated in the score. All repeats within a piece were reserved for
integrity. All the expression notations in the score were imple-
mented for high expressiveness. Note that although we still need
rehearsals between the conductor and the pianist for recording
the conducting videos, this is much less effort than arranging
joint rehearsals for all instrumental players, especially for larger
ensembles and players who played in multiple pieces.

D. Recording Instrumental Parts

The recording of the isolated instrumental parts was con-
ducted in an anechoic sound booth with the floor plan shown in
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Fig. 4.

The floor plan of the sound booth (top-down view).

Fig. 4. The wall behind the player was covered by a blue curtain
and the lighting of the sound booth was through fluorescent
lights affixed at wall-ceiling intersections around the room. We
placed a Nikon D5300 camera on the front-right side of the
player to record the video with a 1080P resolution. Since the
built-in microphone of the camera did not achieve adequate
audio quality, we also used an Audio-Technical AT2020
condenser microphone to record high-quality audio with a
sampling rate of 48 KHz and a bit depth of 24. We connected
the microphone to a laptop computer running Audacity [46] for
the audio recording thereby making camera and the stand-alone
microphone independently controllable.

During the recording, the player watched the conducting
video on a laptop with a 13-inch screen placed about 5 feet in
front of the player. The player also listened to the audio track of
the conducting video through a blue-tooth earphone with no no-
ticeable latency. For simpler pieces, the recording was finished
in one shot; while for long and difficult ones, several shots were
conducted before we approved the quality of the recordings.
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E. Mixing and Assembling Individual Recordings

For each instrumental part, we first replaced the low-quality
audio in the original video recording with the high-quality (HQ)
audio recorded using the stand-alone microphone. Because the
camera and the stand-alone microphone were controlled inde-
pendently, the video and the high-quality audio recordings need
a relative shift to ensure proper alignment, which was acccom-
plished automatically by using the “synchronize clips” function
of the Final Cut Pro software [47].

We then assembled individual instrumental recordings. Al-
though the individual instrumental parts of each piece were all
aligned with the conducting video, the starting times of the in-
dividual recordings were not aligned with each other. We had
to manually time-shift the individual recordings to align them.
This was achieved by focusing on the fast sections with clear
note onsets. We also manually adjusted the loudness of some
tracks to achieve a better volume balance. This subjective ad-
justment achieved a more natural balance than objective normal-
ization methods such as root-mean-square normalization. Then
the assembled audio is the mixture (addition) of the individual
high-quality audio recordings. Finally, we assembled the syn-
chronized individual video recordings into a single ensemble
recording. In the video, all players were arranged at the same
level from left to right. The order of the players followed the
order of score tracks.

F. Video Background Replacement

In order to make the assembled videos look more natural
and similar to live ensemble performances, we used chroma
keying [48] to replace the blue curtain background with a real
concert hall image.

We use the Final Cut Pro software [47] for video composit-
ing. The blue background in the videos was unevenly lit and
had players’ shadow and significant textural variation. To avoid
compositing artifacts due to this uneven lighting, we did color
correction as a pre-processing step followed by chroma keying.
By adjusting the keying and color correction parameters and
by setting suitable spatial masks, we were able to get a good
separation between the foreground and the background. Once
the foreground was extracted, we used a more realistic image as
the background for the composite video. The background photo
was captured from the Hatch Recital Hall* using a Nikon D5300
camera.

G. Ground-Truth Annotation

We also provide ground-truth pitch annotations for each audio
track. This annotation was performed on each single audio track
using the Tony melody transcription software [49], which im-
plements pYIN [50], a state-of-the-art frame-wise monophonic
fundamental frequency (FO) estimation algorithm. For each au-
dio track, we generated two files: a frame-level pitch trajectory
and a note sequence. The pitch trajectory was first calculated
with a frame hop size of 5.8 ms, and then interpolated to 10 ms

“http://www.esm.rochester.edu/concerts/halls/hatch/
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according to the standard format of ground-truth pitch trajecto-
ries in MIREX. The note sequence was extracted by the Tony
software using Viterbi decoding of a hidden Markov model. The
pitch of each note takes un-quantized frequencies. To guarantee
a good annotation quality, we manually went through all the files
introducing necessary corrections. For the frame-level pitch an-
notation, the annotation from the automatic tool is precise to
musical cents, and we only manually corrected insertion, dele-
tion, and octave errors. For the note-level pitch annotation, man-
ual corrections were performed on more than half of the notes,
mostly about adjusting the note onset/offset, such as splitting
the wrongly merged notes. On average, the correction of each
track required about half an hour. We provide the visualizations
of all the annotations on the project website [51].

V. THE DATASET
A. Dataset Content

The URMP dataset contains audio-visual recordings and
ground-truth annotations for all the 44 pieces, each of which
is organized in a folder with the following content:

¢ Score: we provide both the MIDI score and the sheet music

in PDF format. The sheet music is directly generated from
the MIDI score using Sibelius 7.5 with minor adjustment
(clef, key set, note spelling, etc.) for display purposes. The
encoded track IDs in MIDI files are ordered following the
score track order.

¢ Audio: individual and mixed high-quality audio recordings

in WAV format, with a sampling rate of 48 KHz and a bit
depth of 24. The naming convention of individual tracks
follows the same order as the tracks in the score.
® Video: assembled video recordings in MP4 format en-
coded with an H264 codec. Videos have 1080P resolution
(1920x1080), and a frame rate of 29.97 FPS. Players are
rendered horizontally, from left to right, following the same
order as the tracks in the score. Additional details regarding
object-level spatial resolution are provided in Section V-C.

* Annotation: ground-truth frame-level pitch trajectories
and note-level transcriptions of individual tracks in ASCII
delimited text format.

An overview of the dataset and a sample piece are available
at [51] along with a document that lists all 44 pieces and their
instrumentations. The full 12.5 GB dataset is deposited in the
Dryad Digital Repository [52].

B. Synchronization Quality

Because maintaining the synchronization among different in-
strumental parts is the main challenge in creating the URMP
dataset, we compare the synchronization quality of this dataset
with that of Bach10 and WWQ. Both datasets have been used in
the development and/or testing phases for the MIREX Multi-FO
Estimation & Tracking task in the past. We did not include
PHENICX-Anechoic because it used the same approach as
URMP and its pieces are symphony pieces with many more
parts than the other datasets.

1) Quantitative Evaluation: We first numerically compare
the synchronization quality by calculating the onset time de-
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Fig. 5. Synchronization quality for individual pieces in the URMP, Bach10,

and WWQ dataset assessed by onset time deviation for score-notated si-
multaneous notes. On average, the synchronization quality is ranked as
WWQ > URMP > Bachl0.

TABLE II
SUBJECTIVE RANKING RESULTS OF THE SYNCHRONIZATION QUALITY OF THE
THREE DATASETS PROVIDED BY EIGHT SUBJECTS

Rank #1  #2 #3
URMP 9 17 6
WWQ [33] 22 9 1
Bach10 [35] 1 6 25

viations as described in Section III. When the polyphony is
higher than two, the maximum deviation among the score-
notated simultaneous notes is calculated. Fig. 5 shows a boxplot
of the maximum deviation for each piece in URMP, Bach10, and
WWAQ. The best synchronization quality is achieved by WWQ,
where players rehearsed before recording, a methodology that
does not scale to larger datasets. Also note that only a 54-second
excerpt out of the 9-minute recording is publicly available and is
evaluated here. This excerpt has a strong rhythmic pattern which
might help the synchronization. The URMP dataset achieves the
second best synchronization quality, with the maximum onset
deviation being in the range of 20 to 60 ms. This deviation is
larger than our preliminary evaluations in Fig. 1(b). This is be-
cause we include all of the pieces here and many of them are
larger ensembles. Bach10 achieves the worst synchronization
quality, showing the maximum onset deviation in the range of
60 to 80 ms.

2) Subjective Evaluation: The numerical evaluation based
on onset time deviations has its own limitation, considering
the ambiguity of onset instances for some soft articulations.
So we also conducted a subjective evaluation. We recruited
8 subjects who were students at the University of Rochester
from various fields. Half of them had musical background, and
none of them were familiar with these datasets. For each subject,
we randomly chose pieces from these datasets to form 4 triplets,
one piece from each dataset. We then asked the subjects to listen
to the three pieces of each triplet and rank their synchronization
quality. Table II shows the ranking statistics. It can be seen that
out of the 32 rankings (4 rankings per subject for 8 subjects),
URMP ranks first 9 times, and ranked second 17 times. This is
consistent with our quantitative evaluation.

C. Spatial Occlusion & Resolution

In this section we analyze several aspects of the visual qual-
ity of the dataset, i.e., the spatial occlusion and resolution on
Regions of Interest (ROI) where the musician-instrument in-
teractions take place. As we mentioned in Section IV-D, the
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videos were captured from the right-side of the players, whose
locations and orientations were kept unchanged throughout the
piece. So only the right-side faces are in the view without occlu-
sions. From this camera angle, self-occlusions on the players’
hands or arms vary for different instrument types:

® Violin/Viola: Both the right-arm bow motion and left arm
is visible. The detailed fingering of the left hand is partially
occluded.

e (Cello/Bass: The right-arm bow motion and left-hand fin-
gering motion are visible. The left arm is sometimes oc-
cluded by the instrument body.

® Woodwind: One arm is in the front and the other arm is
occluded. The fingering motion of both hands are visible.

® Brass: Only one hand contributes to the fingering and it is
visible.

The spatial resolution on ROIs is a relevant parameter to know
which tasks can be tackled using our dataset. Since we used a
fixed camera-player distance through the whole recording pro-
cess, this resolution is roughly the same for all the individual
video recordings. After rescaling the players’ size in the 1080P
assembled video (with some resolution loss), the players’ faces,
hands, and mouths have the resolutions of about 100 x 100,
70 x 70, 40 x 40 pixels, respectively. We sample several typi-
cal ROIs from video frames and indicate corresponding spatial
resolutions in Fig. 6. Note that the resolution loss from indi-
vidual to assembled videos depends on the ensemble size. For
example, for the same ROI, the spatial resolution of a quintet is
slightly lower than that of a duet, as more players occupy the
1080P video frame.

D. Limitations of the Dataset

Although we used our resources to create a high-quality
audio-visual dataset, there are still limitations we need to point
out, which may prevent some potential usage. The limitations
mainly existin the visual part: the limited camera view. Through-
out the whole recording process, only one camera was used, so
the videos all have a single-camera view. Alternatively, stereo (or
even multi-view) datasets are becoming available nowadays and
can support more tasks, e.g., depth estimation, 3D reconstruc-
tion. Also, our camera view is not always optimal. For example,
it is difficult to infer the pitch being played by a violinist from
the finger position on the string board, even though the fingering
motion is generally visible. Also, in some scenarios, important
objects such as the end point of a violin bow and the head of the
bass player, are outside the camera view. This is because of the
limited size of the sound booth. The single-camera view limi-
tation also makes the arrangement of players in the assembled
videos less natural: players all face to the same direction, which
rarely happens in real chamber music performances.

Another limitation of the assembling process is that possible
occlusions between players or by the music stand were not con-
sidered. This may make the video analysis on our dataset easier
than real scenarios. Also, because the instrumental parts were
recorded in isolation, natural interactions among players such
as eye contacts and body motion interactions do not exist in the
assembled videos even though such interactions are commonly
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Fig. 6.

observed in real performances. Thus player interactions cannot
be visually analyzed using the dataset.

There are several other minor issues that could be avoided in
the future work of dataset creation. For example, the bluetooth
earphone still has a short wire which resulted in irrelevant move-
ments. The chroma keying operation during the background re-
placement step sometimes causes slight changes in the color of
the foreground.

VI. APPLICATIONS OF THE DATASET

As the first audio-visual multi-track multi-instrument music
performance dataset, URMP can support a large variety of MIR
tasks, several of which are highlighted in this section. In the
first part, we describe two existing MIR tasks that only require
the audio modality. We run well-known algorithms on URMP
and another widely used multi-track music audio dataset. This
also helps benchmark URMP’s audio modality with existing
datasets. In the second part, we propose novel tasks that require
both the audio and visual modalities of URMP. We also set up
evaluation metrics and provide baseline systems. We hope that
the baseline results that we provide will invite other researchers
to pursue these new research directions and explore other direc-
tions with URMP.

A. Existing Tasks Using Only Audio Modality

There are many existing MIR tasks that URMP can support,
and here we only describe two tasks that take the full use of
the audio modality and the associated annotations: multi-pitch
analysis and score-informed source separation. For these tasks,
URMP can be benchmarked with suitable existing multi-track
musical audio datasets. Within the multi-track category, only the
Bach10, TRIOS, WWQ, and PHENICX-Anechoic have clean
individual audio tracks with required annotations. The publicly
available audio recording from WWQ is too short for a system-
atic comparison. For TRIOS, one instrument is a piano, which
makes it difficult to define the polyphony and to perform a fair
comparison. Also, PHENICX-Anechoic has orchestra pieces
with 8—10 instrumental parts and 10-39 individual tracks, which
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Fig. 7. Comparison between URMP and Bach10 for multi-pitch analysis.

makes the algorithm performance not comparable for the same
reason. Therefore, we just use Bach10 for a comparison with
URMP.

1) Multi-Pitch Analysis: This task consists of multi-pitch es-
timation (MPE) and multi-pitch streaming (MPS), which are de-
fined as estimating concurrent pitches and organizing them into
temporal streams according to their sound sources, respectively.
It is a fundamental task towards automatic music transcription
and many other MIR applications. For MPE, we run the algo-
rithm described in [35], which proposes a maximum likelihood
method to model relations between the magnitude spectrum and
underlying pitches. For MPS, we run the algorithm proposed in
[53], which clusters pitches into pitch streams according to their
timbre and locality. Both methods are well known and have been
tested on Bach10. Performance on both MPE and MPS is often
measured by accuracy, which is defined as

#TP
#TP + #FP + #FN’

where TP, FP, FN represent true positives, false positives and
false negatives, respectively. They are calculated by compar-
ing the estimated and ground-truth pitch with a tolerance of a
quarter-tone [33].

The results on URMP (the first 1-min excerpt of each piece)
and Bach10 are shown as boxplots in Fig. 7, where each piece
constitutes one data point, and the red line in each box shows
the median value. As expected, both MPE and MPS accura-

Accuracy =
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cies decrease when polyphony increases on URMP. When the
polyphony is 4, both MPE and MPS accuracies are signifi-
cantly lower than those on Bachl0, suggesting that URMP is
a more challenging dataset than Bach10. Indeed, URMP has
a larger variety of music pieces, instrumentation, and playing
techniques than Bach10, which only contains Bach chorales.
Furthermore, different tracks of the same piece of URMP may
use the same instrument while Bachl0 always uses different
instruments. This makes it more difficult to exploit the timbre
cues for pitch streaming.

2) Score-Informed Source Separation: This task leverages
score information to separate musical audio sources. The algo-
rithm we use first aligns the score to the audio mixture using
dynamic time warping on chroma feature sequences [54]. Then
audio sources are separated using harmonic masking as de-
scribed in [55]. The quality of the separated audio sources is
measured using the Signal-to-Distortion Ratio (SDR) [56]. We
further calculate the ASDR, which measures the improvement
of SDR from the audio mixture to the separated source. Fig. 8
shows boxplots of the results, where each track constitutes one
data point, and the circle in each box shows the median value.
In contrast with the trends in Fig. 7, we can see that the perfor-
mance on URMP and Bachl0 is very similar, for pieces with
the same polyphony (quartets) and tracks played by the same
instrument. This shows that the score information helps signif-
icantly in overcoming the greater challenges posed by URMP
compared with Bach10. Also, the harmonic masking method for
source separation does not model timbre information; and thus
underexploited the “distinct timbre” advantage of the Bach10
dataset.

B. New Tasks Using Both Audio and Visual Modalities

With the visual modality available, URMP not only serves
for the development and evaluation of audio-based approaches,
but also opens up new frontiers for MIR tasks. In this section,
we propose two representative tasks that require both the audio
and visual modalities. We define the tasks, set up evaluation
strategies, and provide baseline results on the URMP dataset
to invite the research community to pursue these new research
directions.

1) Visually Informed Multi-Pitch Analysis: This is the same
task as defined in Section VI-A1, but here visual information is
available. Visual information about the music performance can
significantly help multi-pitch analysis: Observation of the fin-
gering can directly help predict the notes being played; detection
of play/non-play activity of instrument players may help esti-
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Fig. 9. Comparison between the proposed visually informed method (white)
and the audio-based method (gray) on the multi-pitch analysis task. For each
boxplot, the mean and standard deviation values are listed above the plot. Results
are reproduced from [12].

mate the instantaneous polyphony and assign pitches to correct
sources. There exist several systems that utilize visual informa-
tion to estimate pitches for instrument solos such as violin [6],
piano [7], and guitar [8], but little work has been done for other
instruments or ensembles, due to the lack of datasets.

We propose to start this task with the 11 string ensembles in
the URMP dataset, which provide the most pronounced motion
information. Our previous work in [12] addresses both MPE
and MPS for these pieces and can serve as a baseline for future
approaches. The basic idea of this work is to model the play/non-
play (P/NP) activity of each player from the visual modality
and then use it to constrain audio-based pitch analysis. The
P/NP activity is classified in each video frame using the bowing
motion features that are calculated from optical flow estimation
[57]. For MPE, the detected P/NP label provides a more accurate
estimate of the instantaneous polyphony in each frame. For
MPS, this label constrains the assignment of pitch estimates to
sources: pitch estimates are only assigned to active players.
This idea was implemented based on the same audio-based
MPE/MPS algorithms as described in Section VI-Al.

Fig. 9 compares the MPE and MPS accuracies of this method
with those of the audio-based method, where each piece consti-
tutes one data point. Note that each polyphony category is the
expanded set using all the possible track combinations within
each piece. An improvement between 2—12% can be seen across
the tasks and pieces.

We want to state that this baseline approach is just a pre-
liminary attempt to address the multi-pitch analysis problem
for string instruments. Much visual information such as the fin-
gering is not exploited. In addition, reliable detection of P/NP
activity for non-string instruments where motion is more subtle
is also an open problem [13].

2) Polyphonic Vibrato Analysis: In music performances, vi-
brato is an important artistic effect that adds expressiveness and
emotions by slight variations in pitch. Vibrato analysis provides
basis for comparing different articulation styles, and thus has
broad impact in musicological studies. It also facilitates other
tasks such as melody extraction and music synthesis. How-
ever, most of the existing automatic vibrato analysis tools are
audio-based with a focus on monophonic recordings. In poly-
phonic cases, even if the score is provided, the task is chal-
lenging due to the severe interference among sources. Existing
audio-based techniques are not yet capable of this task.
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Fig. 10.  Video-based vibrato note detection and parameter analysis results,
reproduced from [11]. For each boxplot, the mean and standard deviation values
are listed above the plot.

The visual modality of a music performance can be very
helpful for vibrato analysis. This is especially true for string in-
struments, where the left-hand fingers’ rolling motion along the
fingerboard is the direct cause of the fluctuation of pitch. Com-
pared to the audio signals, this motion cue does not degrade as
polyphony increases. This makes the polyphonic vibrato analy-
sis task possible.

We define this task on the 19 pieces that use at most one
non-string instrument in the URMP dataset. This task contains
two subtasks: 1) vibrato note detection and 2) vibrato parameter
(rate and extent) estimation. To obtain ground-truth annotations,
we first threshold the auto-correlation value of the ground-truth
pitch contour of each note to determine whether the note has
vibrato or not, and then calculate the vibrato rate and extent for
vibrato notes from the auto-correlation function. To evaluate vi-
brato note detection performance, we propose to use precision,
recall, and F-measure on each track. To evaluate vibrato param-
eter estimation, we propose to calculate the absolute difference
between the estimated value and the ground-truth value.

Our previous wok [11] serves as the baseline method. It tracks
the left hand of each string player using the KLT tracker [58],
and then extracts the hand motion features by optical flow esti-
mation [57]. The aligned score is utilized to temporally segment
the raw motion features into temporal-spatial blocks at each
note onset/offset time. We then train a support vector machine
(SVM) to classify each block as vibrato/non-vibrato. For vibrato
parameter estimation, we perform principal component analy-
sis (PCA) on the raw motion features to get a 1D motion curve
corresponding to the hand rolling motion along the fingerboard.
This amplitude of the motion curve is then normalized by that
of the corresponding noisy pitch contour extracted from the au-
dio mixture using a score-informed pitch estimation method.
Vibrato rate and extent are finally measured on the motion
curve.

We compare this proposed video-based baseline method with
an audio-based method that extracts pitch contours in a score-
informed fashion on the vibrato note detection subtask. The
results are shown in Fig. 10 (a), where each track constitutes
one data point, and the red line in each box denotes the median
value. In all of the polyphony cases, the video-based method
always achieves a high F-measure (generally over 90%), while
the audio-based method degrades as the polyphony increases.
We further evaluate the vibrato parameter estimation perfor-
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mance. Results show that our video-based baseline achieves an
average error of 0.38 Hz for rate estimation and 3.47 musical
cents for extent estimation. Boxplots of these errors are shown
in Fig. 10 (b), where each vibrato note constitutes a data point,
and the red lines denote the median values. 90% of the errors
are within 1 Hz and 10 musical cents, respectively.
Although the current task is limited to vibrato analysis, we
anticipate that it can be extended to playing technique detection
of string instruments in general [59]. These playing techniques
may include vibrato and positioning from the left hand, as well as
bowing/plucking, up-bow/down-bow, and legato/détaché bow-
ing from the right hand. We hope that this current task will
promote the use of multi-modal analysis techniques in musi-
cological studies. Furthermore, we anticipate an extension of
music performance analysis to non-string instruments in near
future [10], [60].
3) Other Emerging New Tasks: Besides the two new tasks
that we defined above, several other emerging tasks can be
developed based on the URMP dataset:
¢ Visually Informed Source Separation: Audio events (e.g.,
a violin note) are often associated with visual movements
(e.g., a bowing motion) [5]. Designing methods that can
leverage visual information for source separation is an
interesting task.
® Audio-visual Source Association: A related problem to
source separation is how to associate sound sources or
their components (e.g., a note) to visual objects (e.g., a
player). A restricted version of this task has been defined
and explored in [21] and [61] for string instruments by
modeling their bowing motion and vibrato motion, respec-
tively. Such techniques can be used to design novel music
streaming services that allow users to target sound tracks
from the visual scene [62].

¢ Audio-visual Cross Modality Generation: By further mod-
eling the audio-visual relations, one may design a sys-
tem that can generate one modality from the other. Chen
et al. [63] made the first attempt using conditional Genera-
tive Adversarial Networks (GAN) to cross-generate static
audio spectrograms and instrument-playing images. Ex-
tending this task to consider temporal dependencies is an
interesting direction [64].

VII. CONCLUSION

In this paper, we presented the URMP dataset, a multi-modal
music performance dataset that is useful for a broad range of
research applications including source separation, music tran-
scription, audio-score alignment, music performance analysis,
etc. Synchronization of separately recorded individual instru-
mental parts while maintaining expressiveness is a key challenge
in recording such a dataset and we discussed the approaches for
addressing this challenge. The approach successfully adopted
for URMP involved having individual instrument players watch
and listen to a pre-recorded conducting video when recording
their individual parts. Objective and subjective comparisons be-
tween URMP and two other widely used multi-track music per-
formance datasets showed that the multi-track synchronization



in URMP has a high quality. We highlighted how the URMP
dataset supports existing MIR tasks and also defined two novel
multi-modal MIR tasks by providing evaluation measures and
baseline systems. We further proposed several emerging re-
search directions that URMP can support. We anticipate that the
URMP dataset will become a valuable resource for researchers
in the field of music information retrieval and multimedia.
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