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ABSTRACT

As the cost, size and power required by sensor devices de-
crease, an increasing range of applications are possible. We
focus on the application of tracking accelerometer data from
body worn sensors over long durations in health monitoring
applications. Body worn sensors must be compact for the
convenience of the patient and low power to support extended
operation, but these benefits can come at the cost of accuracy.
To mitigate this loss of accuracy we first examine the ability
of calibration to improve accuracy. Next we propose an in-
situ method for calibrating the accelerometers using the qui-
escent acceleration due to gravity as a calibration signal. This
in-situ calibration uses only the stored data from the duration
the sensor is worn by the patient and does not require any
extra procedures or measurements from the physical sensor
devices. Compared to a manual three-axis calibration tech-
nique, the proposed calibration can be applied to data without
the need for specific calibration procedures or even access to
the original sensor and provides comparable or better accu-
racy.

Index Terms— calibration, accelerometer, three axis sen-
sor, ellipsoid

1. INTRODUCTION

Three axis accelerometers are microelectromechanical sys-
tems (MEMS) that can provide a low cost solution to measure
both the magnitude and orientation of a device’s acceleration.
A key point is that on the Earth’s surface gravity produces
a constant acceleration of 9.81m/s2 in the downward direc-
tion which can be used to estimate a device’s vertical ori-
entation. Accelerometers have become ubiquitous in hand-
held electronic devices where they can be used to reorient
the screen according to how the device is held, and for ges-
ture recognition to augment the user-interface abilities of the
device [1]. Additionally, compact accelerometers have been
used in health monitoring applications [2, 3, 4] to collect data
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over long durations that would not be practical in a clinical
setting. In both applications an accurate estimate of the mag-
nitude and direction of the acceleration is key. However, in
low cost devices calibration errors can cause significant er-
ror, while manual calibration procedures would add signifi-
cant cost to the device and may not even be possible for some
in-situ applications where a user or patient cannot be expected
to carryout a specific procedure with the needed accuracy.

Many different three axis calibration techniques have
been proposed for the needs of different applications. Many
times it is sufficient to assume that the three sensors for each
axis are orthogonal and calibrate only the sensors’ gains and
offsets [5, 6]. Most prior calibration techniques require a spe-
cific procedure in which the sensor is put in multiple known
orientations, and a model for the calibration errors allows us-
ing the observed data from the known orientations to estimate
the calibration correction factors [7, 8, 9]. The key distinction
of the proposed calibration technique is that it automatically
detects durations during normal operation when the accel-
eration due to gravity is not obscured by other movements,
and uses these durations to automatically calibrate the three
axis sensors without the need for any specific procedures or
known orientations. Additionally, as opposed to [2] the pro-
posed technique is not iterative. Ellipsoid based fitting has
been proposed for three-axis magnetic sensors [10, 11] and
for accelerometers when offline procedures are used to collect
data when the device is at rest [12]. However, the proposed
calibration is calculated directly from the arbitrary observed
data itself after it is downloaded from the sensor. Calibration
takes into account the entire duration of data and calculates
a single set of calibration parameters without needing any
access to the physical device.

The organization of this paper is as follows: Section 2 for-
malizes the problem of three axis calibration; Section 3 gives
the proposed calibration technique; Section 4 gives the re-
sults of the proposed technique as compared to a typical cali-
bration proceedure using known orientations; and concluding
remarks are given in Section 5.
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Fig. 1. Calibration gives the orientation misalignment of the
X , Y and Z axis sensors as well as the gain and offset for
each sensor.

2. CALIBRATION METRICS

The calibration error of a three axis accelerometer is modeled
by three components for each of the three sensors correspond-
ing to the X , Y and Z axes: first, each sensor has a DC offset
that is always present. Even in the absence of any net accel-
eration the offset still causes the sensor to register a measure-
ment. Next, each sensor is modeled as linear with a gain that
can vary from unity. Gain is important because a relative dif-
ference in the gain between sensors for the different axes can
cause the measured magnitude of a constant acceleration to
vary depending on the device’s orientation. Offset and gain
are represented by the values bx, by and bz , and the factors
gx, gy and gz for the sensors corresponding to the X , Y and
Z axes respectively. This means that if the projection of the
true acceleration vector onto to orientation of the X sensor is
ax, the output xsense of the sensor will be,

xsense = gx ax + bx . (1)

Lastly, the orientation of each sensor may not be perfectly
orthogonal to the other two sensors’ orientations. The unit
vectors nx, ny and nz represent the orientations of the sensors
for the X , Y and Z axes. Because of non-orthogonality, nz

may not align with the direction nx×y = nx×ny orthogonal
to nx and ny . Non-orthogonality is measured by the angle,

cos−1
nz · nx×y

‖nz‖ ‖nx×y‖
. (2)

These three error components can be corrected by using cal-
ibration to find the affine transformation between measure-
ments xsense = [xsense, ysense, zsense]

T from the X , Y and Z
sensors and an estimate xcal = [xcal, ycal, zcal]

T of the com-
ponents of the true acceleration vector in orthogonal X , Y
and Z coordinates. The affine transformation for calibration

is characterized by the matrix K and offset vector xoffset

xcal = Kxsense + xoffset . (3)

To get the intuition for how calibration corrects the three types
of errors (3) is manipulated to show the estimated character-
istics for the X , Y and Z sensors. The inverse matrix K−1 is
applied to both sides and we solve for xsense to get

K−1xcal −K−1xoffset = xsense . (4)

Comparing (4) to (1), it can be seen that the estimated orien-
tation of the sensors as plotted in Fig. 1 are the rows of the
inverse matrix K−1. For example, the orientation of the X
axis sensor is the direction for xcal that produces the largest
measured offset-corrected response in xsense. While the direc-
tion of each row of K−1 represents the sensor orientation, the
l2 norm [13] of each row is the gain for each sensor,

K−1 =

gx 0 0
0 gy 0
0 0 gz

nT
x

nT
y

nT
z

 . (5)

Furthermore, the term−K−1xoffset in (4) is the offset for each
sensor. The offsets are also plotted in Fig. 1 and represent the
acceleration vectors that calibration estimates would produce
a reading of 0g on each sensor.

3. AUTOMATIC CALIBRATION METHOD

The proposed automatic calibration method relies only on the
data recorded during durations when the sensor happens to be
at rest. The key intuition is that while the sensor is at rest
the only observed acceleration is the constant acceleration of
1g ≈ 9.81 m/s2 due to gravity. Deviations in the magnitude
of the sensor output measurements from 1g can be attributed
to calibration errors and can be used to recover the calibration
matrix K and offset xoffset.

Automatic calibration first separates out the segments of
data for which the sensor is at rest. The observed data is now
the time varying vector xsense(t) = [xsense(t), ysense(t), zsense(t)]
which is segmented into intervals k = 1, 2, . . . , N each of du-
ration T samples with the kth segment denoted xsense,k(t). For
each interval that the variance Var(k) =

∑T
t=1(‖xsense,k(t)‖−∑T

t′=1 ‖xsense,k(t′)‖/T )2/(T − 1) of the acceleration’s mag-
nitude is sufficiently small, the interval is added to the data
set used for calibration,

Krest = {k ∈ 1, 2, . . . N |Var(k) < τ} . (6)

For each interval in Krest, calibration calculates the mean ac-
celeration vector x̄sense,k =

∑T
t=1 xsense,k(t)/T . Figure 2

shows that the plotted the mean acceleration vectors from the
set Krest lie on the surface of an ellipsoid. In the absence of
calibration errors the resting data would lie on a sphere of
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Fig. 2. Data used for automatic calibration and the fitted ellipsoid.

radius 1g centered at the origin, while errors due calibration
cause the surface to be an ellipsoid. Figure 2 shows that an
ellipsoid is a good fit for the resting data and all sources of
error other than calibration are small and safely modeled as
zero mean additive white Gaussian noise (AWGN). Assuming
AWGN errors, the parameters of the ellipsoid can be found
by minimizing the sum of squared distances between the set
of resting accelerations and the surface of the ellipsoid. The
equation of the resulting fitted ellipsoid is,

(xsense − b)
T
Q (xsense − b) = 1 , (7)

where Q is a positive definite matrix and b is a vector of
the coordinates for the center. The matrix Q and center b
are determined by using a nonlinear least-squares curve fit-
ting [14, 15] (e.g. such as lsqnonlin in Matlab). Using
the Cholesky factorization of Q = KT K we get the ma-
trix K needed to produce the calibrated accelerometer data
xcal = Kxsense + xoffset lying on a sphere,

(xsense − b)
T
KT K (xsense − b) = 1

(K (xsense − b))
T
K (xsense − b) = 1 (8)

xT
cal xcal = 1

where (8) is the equation for a sphere on which the calibrated
resting data points lie on. From (8) we can see that the rotation
and gain matrix for calibration is K and the offset vector in
(3) is xoffset = −Kb.

Note that the absolute orientation of the sensor is not
known at any time within the duration of observed data.
This means that the absolute rotation of the three axis ac-
celerometers remains a free parameter. By choosing an upper
triangular Cholesky factorization it is assumed that sensor for
the Z axes is oriented correctly (nz =

[
0 0 1

]T
), and only

the relative calibration errors are corrected. Results show that
the most significant calibration errors are due to offset and
this relative calibration provides high accuracy.
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Fig. 3. Validation of calibration for resting data from a differ-
ent day than used for calibration.

4. RESULTS

To validate the proposed technique, calibration parameters are
first found for the three-axis accelerometers in the five devices
given in Table 1. The three-axis accelerometers are integrated
into BioStampRC R© devices provided by MC10, Inc.. Accel-
eration data is collected at 50 Hz and in-situ calibration looks
for 1 second durations (T = 50 samples) of rest to isolate the
acceleration of gravity. A threshold of τ = 10−4g2 is used
to find the resting intervals. While T and τ are heuristically
chosen, Fig. 2 shows that the chosen parameters both limit the
noise and outliers present in the data, and provide a sufficient
number of data points for fitting.

In addition to proposed in-situ calibration using the pa-
rameters of the fitted ellipsoid, a second manual calibration
[16] is also performed for reference. The manual calibration
takes advantage of an offline procedure to calibrate the same
five devices as the proposed calibration. The offline procedure
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Table 1. Comparison of the calibration corrections calculated by both the manual and in-situ techniques.

Device ID 1 2 3 4 5
manual in-situ manual in-situ manual in-situ manual in-situ manual in-situ

X offset +0.04g +0.03g -0.01g -0.01g +0.09g +0.09g +0.05g +0.05g +0.03g +0.02g
Y offset +0.07g +0.08g +0.01g +0.02g -0.00g -0.01g +0.06g +0.07g -0.00g +0.01g
Z offset +0.17g +0.17g +0.15g +0.15g +0.19g +0.20g +0.19g +0.18g +0.20g +0.20g
X gain 1.01 1.01 1.00 1.00 0.96 0.96 1.01 1.00 0.99 0.99
Y gain 1.05 1.04 1.05 1.04 1.04 1.04 1.02 1.02 1.05 1.05
Z gain 0.99 0.99 0.98 0.98 1.01 1.00 0.97 0.97 0.98 0.99

X non-ortho 2.1◦ 2.8◦ 2.5◦ 3.2◦ 2.7◦ 3.6◦ 2.3◦ 3.2◦ 2.2◦ 2.9◦

Y non-ortho 2.0◦ 2.7◦ 2.5◦ 3.2◦ 2.6◦ 3.5◦ 2.2◦ 3.2◦ 2.1◦ 2.8◦

Z non-ortho 0.6◦ 1.0◦ 0.6◦ 0.7◦ 0.9◦ 1.2◦ 0.6◦ 0.2◦ 0.8◦ 0.7◦

requires placing the devices in six known orientations:

xcal ∈


1

0
0

 ,
−1

0
0

 ,
0

1
0

 ,
 0
−1
0

 ,
0

0
1

 ,
 0

0
−1

 ; (9)

and records the response of the X , Y and Z axes accelerom-
eter sensors for each orientation. Because the orientations are
known, the calibration can be computed from the observed
response using a least squares solution. A key distinction of
the manual calibration is that offline procedure provides an
absolute frame of reference for the sensor orientations. The
proposed in-situ calibration does not use any offline proce-
dures where the sensor’s orientation is known by any means
other than the observed readings due to gravity. Thus the in-
situ calibration can only correct the three types of errors given
in Table 1, and allows the overall orientation of the three-axis
sensor within the device to be a free parameter. Table 1 shows
that even without absolute knowledge of the device orienta-
tion, the in-situ calibration recovers nearly the same calibra-
tion parameters as the manual procedure.

The performance of the both the manual and in-situ pro-
cedures are tested using a set of acceleration data recorded on
a different day than the data used for ellipsoid fitting or man-
ual calibration. For this separately recorded data the resting
durations are extracted in the same manner as (6) and the cal-
ibration parameters calculated by both methods are applied
to validate which of these provides a better estimate of the
expected 1g acceleration due to gravity. Without calibration,
the magnitude varies between .81g and 1.30g for an root mean
square error (RMSE) of .13g. The manual calibration reduces
the variation to between .98g and 1.03g for a RMSE of .01g,
while the in-situ calibration estimate varies between .97g and
1.06g for a RMSE of .04g. These results demonstrate that the
proposed in-situ calibration approach provides comparable or
better accuracy than the offline manual calibration method.

5. CONCLUSION

This paper has proposed a method of calibrating three-axis ac-
celerometer devices without needing to perform any specific
calibration procedures or use known reference orientations.

Calibration relies on detecting when the sensor is at rest to
isolate durations when the only acceleration acting on the de-
vice is the known acceleration due to gravity. As compared
to a prior manual calibration procedure that utilized known
reference orientations, the proposed in-situ calibration pro-
vides comparable accuracy. The main advantage is the ability
to compute the calibration parameters from an arbitrary set
of recorded data without needing to access the sensor device.
The only requirement is that the recorded data include suf-
ficient durations of resting data, which is readily met in our
primary target application of body-worn health sensing.
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