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Color Control Functions for Multiprimary Displays II:
Variational Robustness Optimization

Carlos Eduardo Rodrı́guez-Pardo and Gaurav Sharma, Fellow, IEEE

Abstract—In a companion Part I paper, we presented a
framework for analyzing robustness of color control functions
(CCFs) for multiprimary displays against primary and observer
variations and proposed a variational minimization for obtaining
robust CCFs. The objective function proposed in the Part I paper
combines two nonnegative terms that serve as useful figures
of merit for quantitatively characterizing CCFs. The first term
measures lack of smoothness of the CCFs and characterizes
how well transitions in perceptual color space are preserved
in the presence of the primary/observer variations. The second
term measures deviation of the CCF, in the vicinity of the gray
axis, from a specific axially linear CCF that provides perceptual
invariance to the variations along the gray axis. In this paper,
using calculus of variations, we develop an algorithm for numer-
ically computing optimal CCFs under the proposed variational
formulation. Using the proposed algorithm, we determine optimal
CCFs for a several multiprimary display designs and assess
and compare their performance against alternative approaches.
The variationally optimal CCFs obtained using the proposed
approach offer improvements over the alternatives, as assessed
visually and via quantitative metrics measuring smoothness and
invariance in the presence of primary variations. The relative
improvements provided by the proposed CCF increase with
increasing number of primaries.

Index Terms—robust color control function, control values, de-
vice variation, observer variation, multiprimary displays, display
color management, variational optimization.

I. INTRODUCTION

Color management for a display typically uses a color
control function (CCF) that assigns, to each color in the
display’s gamut, control values that are used to drive the
display and reproduce the color. Multiprimary displays allow
for alternative CCFs because control values for reproducing
colors in the interior of the gamut are not uniquely determined.
In a companion Part I paper [2], we presented a mathematical
framework for analyzing the robustness of alternative CCFs for
multiprimary display against variations in the displays primary
spectral power distributions and the observers’ color matching
functions, variations that we refer to here as primary varia-
tions. In particular, we identified linearity and smoothness as
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key attributes of CCFs that determine the robustness of CCFs
in the presence of primary variations. We showed that, thanks
to the adaptation mechanisms in human color perception, a
CCF that is linear in tristimulus values along the gray axis
has the advantageous property that gray axis is perceptually
invariant to primary variations. We also show that smoothness
of the CCF helps preserve perceptual transitions in color. We
incorporated both components of robustness, invariance along
the gray axis and preservation of color transitions, into a single
variational formulation for optimizing CCFs.

In this paper, we develop an algorithmic approach based
on the calculus of variations for numerically computing op-
timal CCFs under the proposed variational formulation for
robust CCFs. We present optimal robust CCFs computed
using the proposed approach for several multiprimary designs
and highlight the advantages of the proposed approach by
comparing against alternative CCFs. Our approach is shown
to offer smoother transitions in the interior of the display
gamut when compared to other alternatives and to exhibit
enhanced robustness in the presence of colorimetric variations
in the primaries, with the relative advantage increasing with
increasing number of primaries. The variational formulation
and solution developed in the companion Part I paper [2] and
the present paper, represent an entirely new approach to the of
the problem of determining CCFs for multiprimary displays.
In addition to the optimization methodology developed here,
the variational formulation also offers new figures of merit
for quantitatively characterizing different CCFs. In our assess-
ments, the quantitative metric based on the figures of merit is
found to correlate well with visual evaluation.

The manuscript is organized as follows: Section II provides
a brief overview of the problem of determining a CCF for a
multiprimary display; primarily with the objective of summa-
rizing the notation and terminology from Part I. In Section III
we present the variational formulation for optimizing CCFs for
robustness against primary variations and introduce an iterative
scheme for numerically computing optimal CCFs. An algorith-
mic statement and details for the numerical computation of
the optimal CCFs are presented in Section IV. In Section V
we summarize the settings used for the experiments and
the evaluation metrics used for comparing alternative CCFs.
Results for CCFs obtained using the proposed framework and
comparisons with alternative CCFs for several multiprimary
designs with 4, 5 and 6 primaries are presented in VI. The
trends observed in the results are discussed in Section VII.
Section VIII concludes the main body of the paper with a
summary of the main findings of this work. Appendices A–
C provide details for various steps involved in the proposed
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approach.

II. OVERVIEW: CCFS FOR MULTIPRIMARY DISPLAYS

To provide relevant context, we briefly summarize the
problem of determining CCFs for multiprimary displays from
the Part I companion paper [2]. We rely on notation, ter-
minology, and acronyms introduced in the Part I companion
paper [2], which is coherent with the broader vector systems
notation used in the signal processing community [3]–[5] for
the discussion of color representation, processing, and color
imaging systems.

Figure 1 illustrates the problem setting. A display sys-
tem is characterized by its (3×K) matrix of primaries
P = [p1,p2, . . . ,pK ], where pk is the 3 × 1 vector of
CIE XYZ tristimulus values for the kth primary. Variations in
the display primaries and observer color matching functions
are modeled by setting P = P̄ + ∆P where P̄ is the
primary specification for the nominal display and ∆P is the
matrix of primary variations. The (tristimulus) gamut of the
display G =

{
t|t = P̄ν,ν ∈ [0, 1]K

}
defines the range of

(tristimulus) colors that the (nominal) display can reproduce. A
color control function (CCF) α : G → [0, 1]K for the display,
determines, for each (in-gamut) tristimulus t0, a feasible
control vector α(t0) such that P̄α(t0) = t0. The metameric
control set (MCS) Ω(t0) for an in-gamut tristimulus t0 is
defined as the set of all feasible control vectors that reproduce
the tristimulus t0 [6]. For K ≥ 4, Ω(t0) contains an infinite
number of feasible control values for a color t0 in the interior
of the gamut and therefore an infinite number of alternative
CCFs can be obtained.

The objective of the companion Part I paper [2] and this
paper is to develop a framework and algorithm to determine
optimal CCFs that are perceptually robust against the primary
variations ∆P. Perceptual changes are best expressed in a
perceptual color space, which we represent as a one-to-
one nonlinear transformation Fw(·) of the tristimulus space,
where w (w̄) denotes the (nominal) display white tristimulus,
obtained when all control values are set to one. We denote by
τ = Fw(t) the perceptual color representation corresponding
to a tristimulus t and by GF and αF (·) the gamut and
the CCF representation, respectively, in the perceptual color
space. We assume that perceptual color representation uses a
standard three-dimensional lightness-chroma coordinate sys-
tem τ = [τL, τ c1 , τ c2 ]T , where τL represents the lightness and
τ c1 and τ c2 represent the two opponent chroma coordinates,
with Cτ =

√
τ2
c1 + τ2

c2 denoting the corresponding chroma.
We denote by C = {L, c1, c2} the indices for perceptual color
coordinates. For visualizing CCFs, we use the methodology
introduced in [6] and summarized in the companion Part I
paper [2]; the K × 1 control vector α(t0) is visualized
using the corresponding (K − 3)-dimensional control black
space (CBS) component β(t0). Table I in the companion
Part I paper [2] provides a list of symbols and acronyms
that can also serve as a useful reference for readers of this
paper. Additionally, to better convey intuition and to improve
accessibility of the mathematical development, we highlight
key points and findings by italicizing these.

α(t0)

P(3×K)

(Tristimulus)
Control
Values

t0 t̂0

(Tristimulus)
Reproduced ColorDesired Color

α(·)
CCF

Primaries

Display

Fig. 1: Reproduction of a in-gamut color using a CCF α(·).
To reproduce a desired color with tristimulus t0 ∈ G, the
display is driven with the control values α(t0) and produces
the tristimulus t̂0 = Pα(t0).

In the companion Part I paper [2], we analytically con-
structed a specific CCF, the axially linear CCF αF

A (·) that
has the advantageous property that the gray axis is invariant
to primary variations, but suffers from the limitation that
its first order derivatives are discontinuous, which can be
manifested as artifacts in renderings of smooth color trajecto-
ries. Therefore, motivated by the objective of preserving color
transitions, we formulated alternative metrics for optimization
and evaluation of CCF robustness, whose definitions and
optimization are the focus of the next section.

III. VARIATIONAL OPTIMIZATION FOR COMPUTING
ROBUST CCFS

In the companion Part I paper [2], we motivated and
formulated two alternative variational optimization formula-
tions (Equations (25) and (27) in [2]) for determining CCFs
robust to primary variations. The second of these, allows
representation of both formulations in a common framework
as

min Γ(αF ),

s.t. αF (τ ) ∈ Ω(t), for all τ ∈ GF , (1)

where t = F−1
w̄ (τ ) and the objective function

Γ(αF ) =

∫
GF

M(τ ,αF )dτ , (2)

with

M
(
τ ,αF

)
=MΘ

(
τ ,αF

)
+γI(τ , σ)

∥∥αF(τ )−αF
A (τ )

∥∥2
, (3)

MΘ

(
τ ,αF

)
=

K∑
k=1

∥∥∇αF
k(τ )

∥∥2
, (4)

integrates two desirable attributes for a CCF αF (·) that
improve robustness against primary variations: smoothness
and linearity along the gray axis1. Smoothness is encouraged
by penalizing CCFs with high-valued derivatives as indicated
by MΘ

(
τ ,αF

)
. Linearity along the gray axis is promoted

by penalizing the deviation of αF (·) from the axially linear
CCF αF

A (·) around the gray axis, weighted according to
the function γ I(τ , σ), where the parameter γ determines the

1Note that M(·) and Γ(·) also depend on the first order derivatives of
the CCF ∇αF

1 , . . . ,∇αF
K . We leave this dependency implicit for notational

simplicity.
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weighting of the penalty term along the gray axis, and I(τ , σ)
is a continuous and differentiable function chosen to localize
the penalty in deviation from the CCF αF

A (·) to an appropriate
local vicinity of the gray axis. Optimizing the two attributes of
smoothness and linearity along the gray axis leads to CCFs
that offer perceptually invariant renderings of the gray axis
and preserve color transitions in renderings in the presence
of display primary variations.

Based on the calculus of variations [7], we propose an
iterative projected gradient descent algorithm for numerically
computing the optimal CCF in (1), which exploits the convex-
ity of the MCS Ω(t) [6]. Starting from an initial CCF αF

0 (·),
the projected gradient descent algorithm [8], [9] computes
successive CCF iterates as

αF
n+1(τ ) = PΩ(t)

(
αF
n (τ )− η∇αF Γ(αF

n (τ ))
)

(5)

where n is the iteration number,

PA(α) = arg min
ω∈A

‖ω −α‖ (6)

represents the projection of a vector α onto the set A, η is
the step size of the descent, and ∇αF Γ is a K × 1 vector
whose kth component corresponds to δΓ/δαF

k , the variational
derivative of Γ with respect αF

k (τ ), which is defined as [7]

δΓ

δαF
k

=
∂

∂αF
k

(
M(τ ,αF )

)
−
∑
j∈C

∂

∂τ j

∂

∂αF ′
k,τ j

(
M(τ ,αF )

)
, (7)

where αF ′

k,τ j = ∂αF
k (τ )/∂τ j , and δΓ/δαF

k = 0 is the
kth Euler-Lagrange equation for the functional Γ(αF ). In
Appendix A we show that (7) can be expressed as

δΓ

δαF
k

= 2γI(τ , σ)
(
αF
k (τ )− αF

A,k(τ )
)
− 2∇2αF

k (τ ). (8)

where ∇2αF
k (τ ) =

∑
j∈C ∂2αF

k (τ )/∂τ2
j is the Laplacian of

αF
k (τ ).
Note that for each τ ∈ GF , the feasibility constraint

on the control values in (1) is the convex MCS set Ω(t),
and, for reasonable choices of γ and I(·), the functional
Γ(αF ) is strictly convex, as shown in Appendix A. In this
strictly convex setting, the functional Γ(αF ) has only one
local minimum coincident with its global minimum, and the
projected gradient descent algorithm converges to the globally
optimal solution [9], [10].

We refer to the CCF αF
Γ (·) that optimizes Γ(αF ) as the

optimal transition preserving CCF with gray axis invariance.
We note that when γ = 0, the only the first term corresponding
to the attribute of smoothness of the CCF is optimized, and
the objective function Γ(αF ) coincides with the alternative
function

Θ(αF ) =

∫
GF

MΘ

(
τ ,αF

)
dτ , (9)

defined in the Part I companion paper [2]. We refer to the
CCF αF

Θ (·) that minimizes Θ(αF ) as the optimal transition
preserving CCF.

IV. NUMERICAL COMPUTATION OF CCF αF
Γ (·)

The optimal CCF αF
Γ (·) is obtained numerically by solving

the Euler-Lagrange equation in (5) via an iterative algorithm.
For the numerical computations, the perceptual color space
is discretized using a rectilinear 3-dimensional grid of points
{τ i}ε that covers the display gamut GF with an internode
spacing of ε perceptual units along each dimension. Via this
discretization, the CCF αF

Γ (·) is represented as a three-
dimensional look-up-table (LUT) and values at points between
the LUT nodes are determined via trilinear interpolation [11,
Chap. 5]. The overall procedure for numerical computation of
αF

Γ (·) over the grid points is summarized in Algorithm 1. All
functions and operators are computed for each node of the
grid. In particular, the functional Γ(αF ) is approximated by

Γ(αF ) ≈
∑

τ∈{τ i}ε∩GF

ε3M(τ ,αF ), (10)

which improves in accuracy with decreasing ε. For the discrete
approximation of the variational derivative (8), the Laplacian
is computed using the 27 point stencil approximation proposed
in [12], which improves rotational symmetry over the standard
7 point stencil approximation, reducing directional dependence
of the errors on the grid’s rectilinear orientation. Required
gradients of the functionals are computed using the 19 point
stencil approximation from [12] that conforms with the chosen
Laplacian approximation. Appendix C details both these nu-
merical computations. The gradient projection step (Eqn. (5),
equivalently, Step 10 in Algorithm 1) requires the projection
of control vectors onto the MCS Ω(t), Appendix B outlines
the computation of this projection via a recursive algorithm
that relies on the fact that Ω(t) is a convex polytope.

Although {τ i}ε is a regular grid, the actual support for the
CCF is defined by the gamut GF , which is an irregular solid
that can also have concave surfaces. This implies that LUT
node values for points outside the gamut are considered when
computing the Laplacian and the gradients for nodes adjacent
to the surface of the gamut. Inaccuracies can be avoided by
noting that control vectors for colors on the gamut surface
are unique [13], thus, they represent boundary conditions for
the optimization problem. Control values for LUT nodes that
are outside the gamut but neighbors of in-gamut points are,
therefore, set such that interpolation yields the correct CCF
values on the gamut surface.

Most of the operations for the gradient descent scheme in
Algorithm 1, including the computation of the Laplacian, can
be reduced to additions and subtractions that can be efficiently
implemented as filter operators in the three dimensional color
space. The number of operations depends on the size of
the grid, which in turn depends on the size of the gamut
and the parameter ε. For each node, there are a total of
61 ×K operations for the gradient descent, disregarding the
projection. The projection on the MCS, on the other hand, is
an optimization problem in RK whose complexity is heavily
dependent on K and the chosen solution strategy. We note,
however, that computational complexity is usually not of
strong concern for this problem, because the computation of
the CCF is typically performed off-line and only once for a
given display design.
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Algorithm 1: Computation of Optimal CCF αF
Γ

Input : {τ i}ε: Rectangular grid covering GF , with
nodes τ i every ε perceptual units.
σ, γ: Weighting Function Parameters,{
αF

0 (τ i)
}
ε
: Initial CCF (over grid){

αF
A (τ i)

}
ε
: Axially Linear CCF (over grid)

η: Gradient descent step-size
ρ : Convergence tolerance

Output: {αΓ(τ i)}ε: Optimal CCF for each node on
grid.

1 n← 0 ; // Initialize iteration counter
2 repeat
3 forall τ ∈ {τ i}ε do

/* Variational gradient of Γ at
αF
n (τ ) = [αF

n,1(τ ), . . . , αF
n,K(τ )] */

4 for k ← 1 to K do

5
δΓ/δαF

n,k←− 2∇2αF
n,k(τ )+

2γI(τ , σ)
(
αF
n,k(τ )− αF

A,k(τ )
)

;
6 end
7 ∇αΓ←

[
δΓ/δαF

n,1, . . . , δΓ/δα
F
n,K

]T
;

8 if τ ∈ GF then
// Projected Gradient Descent
// See Algo. 2 for projection

9 t← F−1(τ );
10 αF

n+1(τ )← PΩ(t)

(
αF
n (τ )− η∇αΓ

)
;

11 end
12 end
13 n← (n+ 1);
14 until maxi

∥∥αF
n (τ i)−αF

n−1(τ i)
∥∥ < ρ;

15 αF
Γ ← αF

n ; /* Assign output */

The optimal transition preserving CCF αF
Θ (·) that mini-

mizes Θ(αF ) can also be computed numerically by using
Algorithm 1 with γ = 0 (with the same discretized LUT
representation).

V. EXPERIMENTAL SETTINGS AND EVALUATION
METHODOLOGY

Before presenting results of CCFs designed with the pro-
posed methodology, we first summarize the experimental
settings and the evaluation methodology. First, we define
the primary systems we use in our experiments. Then, we
describe the alternative CCFs used in the comparisons and
define the metrics and the visualization approach we use for
comparisons. Finally, we specify the algorithmic parameters
used in Algorithm 1 for obtaining the CCFs with the proposed
framework.

A. Primary Systems for Evaluation

To validate proposed strategy we compute the optimal CCF
for a set of primary configurations with different character-
istics. We consider systems with K = 4, 5 and 6 primaries,
which are obtained from a variety of primary design strategies,
and whose CIE x − y chromaticity gamuts are presented in

Fig. 2. The tristimulus values corresponding to the primaries
are tabulated in Section S.III of the Supplementary material
accompanying this paper.

In particular, we denote by P
(4)
R the primary matrix for

the four-primary display design proposed in [14], where the
relative luminance of the primaries were chosen to maximize
the display white luminance. The primary matrices for the
display systems with four and five primaries P

(4)
M and P

(5)
M ,

respectively, are obtained from the multi-objective optimiza-
tion strategy described in [15] that optimizes chromaticity
gamut coverage and observer metamerism2. Finally, the pri-
mary matrices P

(4)
U , P

(5)
U and P

(6)
U are obtained from [16] as

the primary configurations with K = 4, 5 and 6, primaries
respectively, optimized with the design objective of having
the maximum luminance for each in-gamut chromaticity in
uniform proportion to the luminance of the optimal surface
color of the same chromaticity [17]. The primary systems
enumerated here are useful examples, we note, however,
that our proposed methodology is general and appicable for
arbitrary multiprimary designs. To emphasize this aspect, in
Section S.VI of the Supplementary Materials we define and
present results for two additional primary systems that are of
potential interest in practice.

0 .6

0

.8

(a)

0 .6

0

.8

(b)

0 .6

0

.8

(c)

Fig. 2: CIE x − y chromaticity gamut of the multiprimary
displays used for the evaluation of the proposed CCF, with
(a) K = 4, (b) K = 5, and (c) K = 6 primaries.

B. Benchmarked CCFs

We compare the optimal transition-preserving CCF αΓ(·)
and the axially linear CCF αA(·), with CCFs obtained from
alternative strategies.

Besides the random CCF α∼(·), we include in our analysis
αµ(·), the CCF defined for each color t as the center of mass
of the MCS Ω(t), a strategy proposed in [18] for a six primary
display. For K = 4, this strategy matches the average of the
vertices of the Ω(t), a strategy proposed in [6].

We also consider αp−(·), the CCF that yields minimal
optical power usage3, when used on emissive displays, like
OLEDs. This strategy was initially proposed in [19] and
characterized in [6], [20]. In particular, the minimal power

2These primary designs cover 65% of the CIE u′v′ chromaticity space
and correspond to the Pareto-optimal configurations for chromaticity gamut
coverage and observer metamerism, with the multi-observer tristimulus ap-
proximation (MOTA) strategy used for computation of control values.

3Optical power cannot be uniquely estimated using only the specification of
the primary tristimuli. We model the spectral distribution of the primaries as
Gaussian functions constrained to match the corresponding primary tristimuli,
which allows ready computation of the optical power [6].
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can be expressed as a linear programing optimization problem
over the MCS, hence, optimal control value corresponds to
one of the vertices of the MCS. For reference, we also include
αp+(·), the CCF that maximizes optical power [6], and at each
color corresponds to another vertex of the MCS.

C. Evaluation: Metrics and Visualization

To evaluate and compare CCFs computed using the pro-
posed approach against alternatives, we use a set of metrics
that quantify the desired attributes of CCF smoothness and
invariance along the gray axis.

As a global (i.e., average over the entire gamut GF ) metric
of relative lack of smoothness of a CCF, we use

Θ* def
=

Θ(αF )−Θ(αF
Θ )

Θ(αF
Θ )

. (11)

Since αF
Θ (·) minimizes Θ, the Θ* metric is nonnegative

for all CCFs and smaller values indicate smoother (better)
CCFs. For many of the CCFs, the lack of smoothness is
localized in specific regions of the gamut. For instance, in the
companion Part I paper [2], we showed that the axially linear
CCF αF

A (·) is continuous with continuous derivatives (hence
smooth) in the interior of quadrangle pyramids partitioning the
gamut but has discontinuities in the Jacobian (and therefore
directional derivatives) at the intersections of adjacent quad-
rangle pyramids. Therefore, judgments of smoothness are more
appropriately made locally, so we use (see (4))

M*
Θ(τ )

def
=
MΘ(τ ,αF )−MΘ(τ ,αF

Θ )

MΘ(τ ,αF
Θ )

(12)

as a local metric of relative lack smoothness of a CCF.
A perceptual assessment of the impact of primary varia-

tions is obtained by computing the difference between the
display renderings of a color τ , produced by the nominal
display primaries, and τ̂ , produced when variations are in-
troduced in the primaries. To consider the differences in the
conditions of adaptation of both scenarios, we obtain this
assessment by computing the Euclidean distance between τ
and τ̂ ′ = Fw̄

(
Cw̄

wPαF (τ )
)
, the perceptual representa-

tion for τ̂ when considering changes in the visual system’s
adaptation from the display to the nominal white, which
is modeled via the 3 × 3 chromatic adaptation transform
Cw̄

w
def
= Ψ−1D(Ψw̄)D

−1

(Ψw)
Ψ in tristimulus space, where

Da denotes a square diagonal matrix with the vector a as its
diagonal and Ψ is transformation from the tristimulus space
to the cone response space

Thus, we follow the steps shown in Fig. 3 to compute the
perceptual difference

∆E
(
τ , τ̂ ′

)
=
√

(τL−τ̂ ′L)2+(τ c1−τ̂
′
c1)2+(τ c2−τ̂

′
c2)2. (13)

We compute ∆E(·) for colors on the gray axis to assess the
invariance provided by CCFs. Since such differences depends
on the particular variation of the primaries, to obtain a better
idea of the ability of the CCF to offer gray axis invariance, we
perform a Monte Carlo experiment, where the tristimulus of

the variations for each primary are randomly generated (on a
sphere with radius equaling 10% of the norm of the primary).

As smoothness and invariance are better judged through
localized evaluation, we provide visualizations for renderings
of different color trajectories obtained by the CCFs on the
display systems with primary variations. The visualizations
are restricted to the sRGB gamut to allow viewers to see these
on common displays. Figure 4 summarizes the visualization
strategy.

D. Algorithm and Implementation Parameters

We use the Gaussian function I(τ , σ) = e−
1
2 (Cτ /σ)2

, as
weighing function for the functional Γ(αF ). We use Algo-
rithm 1 to compute the CCF αF

Γ (·), with parameter settings
γ = 20, σ = 5, on a rectangular grid of points {τ i}ε,
covering the entire display gamut GF with a regular spacing
of ε = 2 perceptual units, over the perceptually uniform
space CIELUV [22]. We also make sure the grid includes
samples along the gray axis, given its importance for color
reproduction. In Algorithm 1, we use the axially linear CCF
αF
A (·) as initialization for the projected gradient scheme. We

obtain the CCF αF
Θ (·) by setting γ = 0 in Algorithm 1 and

by setting the remaining parameters to the values described
above. The computation of the global and local lack of
smoothness metrics Θ* and M*

Θ(τ ) is also performed on the
same sampling grid used for the numerical evaluation of the
CCF. The computations of ∆E(·) color differences in (13)
used 50 uniformly spaced samples on the L* axis and 1000
Monte Carlo iterations.

VI. RESULTS

We report results from the quantitative evaluation of the
CCFs obtained with the proposed methodology, as well as
visual assessments of their performance when reproducing
color trajectories on display systems with primary variations.
We compare them with the evaluations obtained for the
alternative CCFs specified in Section V-B. Given the number
of display systems evaluated here, we present visual results
that highlight the key points, and defer additional results to
the Supplementary material accompanying this paper.

A. Quantitative Metrics

Results for the quantitative evaluation of CCFs for the
multiprimary display systems with four, five, and six primaries,
are summarized, respectively, in Tables I, II, and III. The tables
indicate for each CCF the global metric for relative smoothness
Θ*, the maximum local metric of smoothness M*

Θ over the
display gamut, as well as the average and maximum values
of the perceptual difference ∆E(·) obtained from the Monte
Carlo experiment designed to evaluate gray axis invariance.
Corresponding color difference values computed using alter-
native color difference formulae are included in Section S.IV
in the supplementary materials. For reference and comparisons
across different displays, the tables also show for each primary
configuration the perceptual gamut volume VF =

∫
GF

dτ and

the normalized functional ΘVF (αF )
def
= Θ(αF )/VF .
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P = P̄+∆PP̄

αF (τ 0)

w̄ =
∑K

k=1 p̄kw̄,w

(Tristimulus)
Control
Values (Tristimulus)

Target Color
(Perceptual)

αF (·)

Reproduced Color

τ 0 t̂0
Fw̄(·) ∆E(·)

Difference
Color

t̂′0 τ̂ ′
0

Rep.Color Adapted Rep.Color Adapted
(Perceptual)

∆E(τ 0, τ̂
′
0)Display Cw̄

w

Fig. 3: Method used for evaluating perceptual color differences between the a target color τ 0 and the display reproduction
τ̂ 0 using a CCF αF (·). For the target color τ 0, the CCF αF (·) provides the control values αF (τ 0) that drive the display
with primaries P, producing a color with tristimulus t̂0. For perceptual comparisons, the tristimulus t′0 = Cw̄

wt̂0 expresses the
chromatic adaptation of t̂0 from the display white w to the nominal white w̄ and τ̂ ′0 is obtained as perceptual representation
for the adapted tristimulus t′0. The Euclidean distance ∆E(τ 0, τ

′
0)

def
=
∥∥τ 0 − τ̂ ′0

∥∥ represents the perceptual color difference
between the target color τ 0 and the reproduced color τ̂ ′0.

w =
∑K

k=1 pk

αsRGB(t
′
0)

w

τ 0

(Perceptual) (Tristimulus)
Color

CD65
w

t0

(Tristimulus)
Color Adapted Color

Values
sRGB

t′0F−1
w (·) αsRGB(·)

Fig. 4: Pipeline for visualizing colors produced by the multi-
primary display with primaries P using a three primary display
specified by the sRGB standard primaries [21]. A displayed
color τ 0 is mapped to a corresponding tristimulus value t0

using the display white w. The tristimulus t′0 = CD65
w t0

expresses the chromatic adaptation of t0 from the display
white w to the sRGB white, specified by illuminant D65.
Chromatic adaptation is a process represented by the 3×3 ma-
trix DD65

w that guarantees the right visualization of white. The
sRGB values for t′0 are computed using the standard sRGB
transformation, denoted by αsRGB(·), which corresponds to
the control value function for a sRGB display.

The tabulated results show that, among the evaluated CCFs,
the transition preserving CCF αF

Θ (·) achieves the minimum
values for the global smoothness metric Θ* (as expected)
and for the local smoothness metric M*

Θ. The values of
Θ* for αF

Γ (·) are very small across the different display
systems, indicating that overall the gamut, the CCFs obtained
by the proposed methodology are similarly smooth. However,
when examining the values of M*

Θ for αF
Γ (·), results show

an evident loss in relative smoothness, although within 11%
for the evaluated primary systems. The values of Θ* for
the axially linear CCF αF

A (·) are the lowest after αF
Θ (·)

and αF
Γ (·), explained by the linearity of αF

A (·) within the
gamut-partitioning quadrangular pyramids described in the
companion Part I paper [2]. The localized discontinuities
of the first order derivatives of αF

A (·) are reflected in the
considerably higher values ofM*

Θ showing that the maximum
relative loss in smoothness is higher than 100% for the
evaluated primary systems. Relative to αF

A (·), both metrics
for lack of smoothness are higher (worse) for the center of
mass CCF αF

µ (·) and for the optimal power CCFs αF
p−(·)

and αF
p+(·), with the latter being pronouncedly worse.

Results also show that the relative smoothness advantage of

αF
Θ over the other CCFs increases with the increasing number

of primaries (K), as both Θ* and M*
Θ increase for the other

CCFs across the different primary designs. This is particular
evident when considering the results for the P

(4)
U , P

(5)
U , and

P
(6)
U , primary configurations that were obtained using the same

primary-design methodology.
The statistics for the perceptual difference ∆E(·) confirm

that αF
A (·) produces renderings of the gray axis that are

invariant to primary variations, as both, average and mean
∆E(·) are exactly zero. After αF

A (·), the transition preserving
CCFs αF

Γ (·) and αF
Θ (·) offer the lowest perceptual color

differences. However, while ∆E(·) increases for αF
Θ (·) with

increasing numbers of primaries, it remains very close to zero
for αF

Γ (·) for every primary system. This highlights that the
introduction of the gray axis invariance term in the formulation
for αF

Γ (·) practically provides this CCF invariance along the
gray axis at the cost of a rather minor decrease in smoothness.
The values of ∆E(·) for αF

µ (·) are higher, though similar, to
the ones obtained by αF

Θ (·). The optimal power CCFs αF
p−(·)

and αF
p+(·) have much larger errors and therefore lack the

desirable property of gray axis invariance in the presence
of primary variations. Unlike the results for smoothness, the
overall results for gray axis invariance seem to be insensitive
to the number of primaries, except for αF

Θ (·).

B. Visual Assessment Along Color Trajectories
Figure 5 shows the rendering of the gray axis of the

five primary display system P
(5)
U . Below the legend labels

identifying the alternative CCFs considered, the first two plots
at the top of Fig. 5 show for each CCF the corresponding
CBS components β1 and β2 as function of the lightness τL.
Below these plots, there are a series of stripes representing the
display’s renderings of the gray axis. The first one represents
the rendering obtained by any CCF driving the display in the
absence of primary variations, i.e., with the nominal primaries,
while the remaining stripes show the results obtained when
each of the evaluated CCFs is used to drive the display in
the presence of primary variations. In this case, each primary
underwent a variation equivalent to 5% of the primary’s norm4.

4The specific primaries used to generate the figures are tabulated in
Table S.I in the Supplementary Material, where visualizations of color
trajectories are also included for other primary systems.
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P
(4)
R P

(4)
U P

(4)
M

Θ* M*
Θ ∆E Θ* M*

Θ ∆E Θ* M*
Θ ∆E

CCF max av. max max av. max max av. max
αF
∼ 0.8445 8.0353 0.78 8.19 1.0886 19.3772 0.79 8.41 0.7451 7.8825 1.02 12.19

αF
Γ 0.0002 0.3834 0.00 0.01 0.0002 0.4558 0.00 0.01 0.0003 0.2608 0.01 0.03

αF
Θ 0.0000 0.0000 0.00 0.04 0.0000 0.0000 0.02 0.07 0.0000 0.0000 0.02 0.13

αF
A 0.0438 2.7844 0.00 0.00 0.0710 10.2262 0.00 0.00 0.0261 3.7845 0.00 0.00

αF
µ 0.1625 2.7747 0.37 2.58 0.2685 13.5641 0.57 3.69 0.1220 3.7679 0.74 5.43

αF
p− 0.3188 5.5702 1.59 10.44 0.3945 28.1628 1.46 8.78 0.2159 5.3102 1.85 12.64

αF
p+ 0.4098 5.2443 2.06 13.56 0.4892 26.0728 2.22 13.52 0.3461 3.8031 2.85 19.54

ΘVF (αF
Θ ) 0.0278 0.0279 0.0272

VF 2243406 2569121 1847127

TABLE I: Quantitative metrics for alternative CCFs for the K = 4 primary display systems. The CCFs obtained with the
proposed variational approaches are identified (in this and subsequent tables) by yellow highlighting of the corresponding rows.

P
(5)
U P

(5)
M

Θ* M*
Θ ∆E Θ* M*

Θ ∆E

CCF max av. max max av. max
αF
∼ 0.3084 4.0686 2.32 20.10 0.2382 4.3696 2.73 23.50

αF
Γ 0.0001 0.1011 0.09 0.29 0.0001 0.0729 0.08 0.28

αF
Θ 0.0000 0.0000 0.68 3.69 0.0000 0.0000 0.52 3.50

αF
A 0.0760 3.5930 0.00 0.00 0.0580 4.1590 0.00 0.00

αF
µ 0.1939 3.0005 1.06 7.20 0.1378 2.9818 0.87 5.76

αF
p− 0.4508 8.7881 2.00 12.63 0.3496 8.4079 3.77 24.26

αF
p+ 0.5490 7.7572 3.57 22.53 0.5268 8.2090 4.19 27.32

ΘVF (αF
Θ ) 0.0319 0.0318

VF 2656404 2443413

TABLE II: Quantitative metrics for alternative CCFs for the
K = 5 primary display systems.

P
(6)
U

Θ* M*
Θ ∆E

CCF max av. max
αF
∼ 0.3434 3.5626 2.07 15.96

αF
Γ 0.0012 0.0741 0.09 0.29

αF
Θ 0.0000 0.0000 0.97 5.41

αF
A 0.1035 3.6316 0.00 0.00

αF
µ 0.2062 3.0361 1.02 6.07

αF
p− 0.5819 7.6178 3.02 19.48

αF
p+ 0.7306 8.7871 3.54 20.47

ΘVF (αF
Θ ) 0.0365

VF 2477917

TABLE III: Quantitative metrics for alternative CCFs for the
K = 6 primary display systems.

The graph below the stripes shows, as a function of the
lightness τL, the perceptual difference ∆E(·) between the
gray axis renderings with and without primary variations (from
their nominal values). Finally, below this graph there are two
plots in the τL−τ c1 and τL−τ c2 planes depicting the desired
values on the gray axis (shown by the black line) and the
renderings obtained with the alternative CCFs in the presence
of the primary variations.

From Fig. 5, we see that the CBS components of αF
Γ (·)

along the gray axis match very closely the CBS components
of αF

A (·). Given the properties of (tristimulus) linearity of

αF
A (·), the renderings of the gray axis produced by αF

Γ (·)
are practically perceptually invariant. This can be appreciated
when comparing the stripes illustrating the renderings offered
by αF

Γ (·) for the nominal display and the display with
primary variations. The visual assessment agrees with the
corresponding plot of perceptual difference ∆E(·), which is
practically zero for every value of lightness. The transition
preserving CCF αF

Θ (·) has CBS components that are similar,
but not identical, to CBS components of αF

Γ (·). Although
small, the differences are enough to introduce, under the
primary variations, a green hue in the renderings of the
gray axis, especially for the darkest grays. This effect is
more pronounced for the center of mass CCF αF

µ (·), whose
CBS components exhibit stronger changes along lightness,
producing a gray axis with green hue for the darker grays,
and red hue in the lighter ones. The CBS plots for the optimal
power CCFs αF

p−(·) and αF
p+(·) exhibit rapid changes in

opposite directions. The corresponding gray axis renderings
with primary variations are ramps with clear green and red
hues, respectively. As a consequence, the corresponding plots
of the perceptual differences exhibit some of the highest values
among the evaluated CCFs.

Figure 6 shows the renderings for the trajectory defined by
the radial line in CIELUV at constant lightness, τL = 75,
and opposing CIELUV hues corresponding to hτ = 86◦ and
hτ = 266◦ for the four primary system P

(4)
R and the five

primary system P
(5)
M . Since this trajectory corresponds to a

line segment varying along chroma for two complementary
hues, results in Fig. 6 are shown as functions of chroma
Cτ . To distinguish between the two hues, we add a negative
sign to the chroma values for the points with hτ = 266◦,
leaving a positive sign for the points with hτ = 86◦. In the
plots for the CBS visualization and perceptual error, we also
indicate with a gray shadowed box the color regions that fall
outside the sRGB gamut. For visual assessment, the stripes
representing the renderings are obtained by uniformly scaling
the chroma of the renderings to fit inside the sRGB gamut.
As this operation is performed in a perceptually uniform
space, relative comparisons between scaled colors are still
perceptually meaningful.

From Fig. 6, it can be seen that the CBS components of
the transition preserving CCFs αF

Θ (·) and αF
Γ (·) match each
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Fig. 5: Rendered gray axis for the five primary system P
(5)
U .

The CCFs are evaluated on 50 uniformly spaced samples along
the ramp. From top to bottom: (1) legend labels identifying
the alternative CCFs considered, (2) visualization of the CCFs
in the CBS as function of lightness τL, (3) rendering of the
gray ramp, (4) the perceptual color difference ∆E(·) between
the system with the nominal primary and the one with the
primary variation, and (5) τL− τ c1 -plane and τL− τ c2 -plane
plots depicting the desired ramp (in black) and the renderings
obtained with the alternative CCFs in the presence of the
primary variation. To appreciate the color differences, please
see the electronic version of the document.

other along all the trajectory, for both primary configurations,
as the requirement for gray axis invariance decays with
chroma. In both cases, αF

Θ (·) and αF
Γ (·) are the smoothest

functions among the evaluated CCFs, and so are the color
transitions of the renderings produced by these CCFs. In
contrast, for both systems, a discontinuity in the first order
derivatives of αF

A (·) appears at a color with high chroma
Cτ and hτ = 86◦. Around that point, color artifacts emerge
in the renditions produced by αF

A (·) on the displays with
primary variations. The artifacts are more pronounced for
P

(5)
M , as consequence of a strong change in the β2 component

of αF
A (·), as shown in Fig. 6(b). While αF

µ (·) is smooth
along center of the trajectory, αF

µ (·) changes rapidly at both
ends of the trajectory, which translates into perceptual artifacts.
Following the same trend as the gray axis, the optimal power
CCFs have CBS components that grow rapidly at the two
ends of the trajectory and produce renderings with the highest
values of ∆E(·).

VII. DISCUSSION

Among the evaluated CCFs, apart from the random CCF,
the optimal optical power CCFs αp−(·) and αp+(·) showed
the worst results in the quantitative evaluations of smoothness
and gray axis invariance, for both global and local metrics,
and also in the visual assessments along specific trajectories.
Moreover, the differences between αp−(·) and αp+(·) were
significant: the corresponding CBS plots along specific tra-
jectories changed in opposite directions and the visual exam-
ples exhibited distinct variations in the presence of primary
variations. These results can be understood by recalling that
the control values provided by αp−(·) and αp+(·) for each
color are different vertices of the corresponding MCS. For
K = 4 in particular, they are the two opposite endpoints
of the MCS line segments. Hence, these CCFs define the
bounding extremes when alternative CCFs are plotted along
specific color trajectories in the CBS. When variations in
the primaries occur, the differences in control values are
expressed as perceptual differences in the color renderings,
so αp−(·) and αp+(·) are the most sensitive to primary
variations. This intuition extends to K > 4 primaries: the
vertices for minimum and maximum power are usually distant
from each other and the renderings of αp−(·) and αp+(·)
exhibit significant pereceptual differences in the presence of
primary variations.

In contrast, the CCF αµ(·), which is determined as the
center of mass of MCS, offered better quantitative and visual
results, when compared to the optimal power CCFs. However,
αµ(·) also depends directly on the vertices of the MCS, which
adversely affects both gray axis invariance and smoothness,
as was shown in the results. Nevertheless, while Θ* values
for αµ(·) for every display system were higher than those
of αA(·), the ratio between both quantities decreased with
increasing number of primaries. A similar trend is found
for M*

Θ; for K ≥ 5, the values of M*
Θ for αµ(·) were

consistently better than those for αA(·). The dimensionality of
the MCS for colors in the interior of the gamut increases with
increasing number of primaries, going from one dimensional
sets for K = 4, to three dimensional sets for K = 6. For
many colors, this also increases the number of vertices for
the MCSs, reducing the dependency that the center of mass
has on individual vertices, explaining in part the improvement
of αµ(·) relative to αA(·). The dimensionality increase also
increases the flexibility for choosing control values, which
is exploited by the proposed methodology for optimization
of CCFs and the metrics for smoothness improve for the
proposed CCF αΘ(·) relative to those of alternative CCFs
with increasing number of primaries K.

Although, the proposed formulation is broadly applicable
in any perceptual color space, for gridding the color space
for numerical computation and for the illustrations, we have
chosen the CIELUV color space. We outline briefly the reason
for this choice over the more commonly used CIELAB space
or alternative newer perceptual color spaces. As noted in the
analysis in the Part I companion paper [2], the derivative
discontinuities in the axially linear CCF are encountered at
the intersection of quadrangle pyramids with a maximum
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Fig. 6: Radial line in CIELUV at constant lightness, τL = 75, and opposing CIELUV hues corresponding to hτ = 86◦ and
hτ = 266◦, for (a) the four primary system P

(4)
R and (b) the five primary system P

(5)
M . The CCFs are evaluated on 40 uniformly

spaced samples between the two extreme points on the gamut surface. For each of the subfigures (a) and (b), the following
are presented, in order, from top to bottom: (1) legend labels identifying the alternative CCFs considered, (2) visualization
of the CCFs in the CBS as function of chroma Cτ , (3) rendering of the ramp between the maximum chroma values for the
two opposing hues hτ = 86◦/266◦, (4) the perceptual color difference ∆E(·) between the system with the nominal primary
and the one with the primary variation, and (5) τ c1 − τ c2 -plane plot depicting the desired ramp (in black) and the renderings
obtained with the alternative CCFs in the presence of the primary variation. For the purpose of illustration, chroma values
along the two opposing hues hτ = 86◦/266◦ are assigned positive and negative signs, respectively. The transparent gray boxes
overlaid on the two ends identify the regions outside the sRGB gamut. To appreciate the color differences, please see the
electronic version of the document.

magnitude of the discontinuity that occurs approximately
in the lateral direction. The impact of these derivative dis-
continuities on color rendering is therefore best highlighted
along radial hue lines of constant lightness that traverse the
pyramidal boundaries in a lateral direction. To avoid the
issues with the “hue nonlinearity” [23], [24] [11, pp. 33] and
exaggeration of differences in the saturated blue region [25]
for CIELAB, we use radial lines of constant lightness in
CIELUV for the illustrations in Figs. 6, S.4, S.8, and S.9. We
also preferred CIELUV over newer perceptual color spaces,
such as CAM16 [26], because: (a) these newer spaces require
additional parameters (minimally, assumptions on the surround
and the absolute luminance for the test adapting field) that
would add complexity to the presentation without changing
the fundamental message and findings, and (b) the gray axis
in these spaces exhibit slight numerical deviations from the
CIELAB/CIELUV L* axis, which would necessitate addi-
tional, not particularly insightful, explanation for the metrics

reported for the axially linear CCF. For brevity and consistency
with the gridding and the hue sampling space, the ∆E
errors reported in Tables I– III have also been computed and
reported in CIELUV. Corresponding errors computed using
the CIELAB, CIEDE2000 [27], [28] and CAM16-UCS [26]
color difference formulae are reported in Tables S.IV– S.VI in
the Supplementary Materials. These exhibit identical trends to
the results presented in Tables I– III and reinforce the findings
already presented.

Variational approaches have been used in a variety of
applications in image processing [29]–[31], including in color
imaging [32]. The research effort represented in the companion
Part I paper [2] and this paper, represents the first instance
where the variational approach has been effectively introduced
for the problem of determining CCFs for multiprimary dis-
plays. In contrast to most prior applications of variational
approaches in image processing, where the color of an image
is computed (a three dimensional function with rectangular
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two dimensional support), the variational problem considered
in this paper aims to optimize K ≥ 4 dimensional functions
whose support is the display gamut, a three dimensional and
irregular solid.

Finally, we note that, in prior literature, the terms color
control vectors and CCFs have not been formally defined;
instead, a diverse set of alternative names have been used. For
instance, color control vectors have been referred to as display
drive levels [33], multiprimary color signal [34]–[36], control
sequences [13], [20], [37], device control values [18], display
signals [38], primary-color signals [19], or device control
signals [39]. Similarly, the process for computing a CCF has
been variously referred to as multiprimary color conversion
method [19], [34], [38], [39] multiprimary control value
decomposition [35]. multiprimary color decomposition [36],
primary decomposition [40], or multiprimary color calibration
functions [1]. We hope that the mathematical framework and
terminology introduced in the companion Part I paper [2]
and in this paper will also serve as a useful contribution to
the community by providing formal structure with coherent
nomenclature, which, if adopted, can help eliminate some of
the confusion caused by the varied and inconsistent terms used
previously.

VIII. CONCLUSION

This paper presented a methodology for computing color
control functions (CCFs) for multiprimary color displays that
are optimally robust against variations in display primaries.
A numerical algorithm is developed based on the calculus of
variations to optimize an objective function Γ that incorporates
two desirable robustness attributes: perceptual invariance along
the gray axis and preservation of color transitions. We present
optimal CCFs obtained using the proposed methodology for a
number of different multiprimary display designs and compare
these against previously proposed alternative CCFs using both
visual demonstrations and quantitative metrics. Results show
that the optimized CCF αF

Γ (·), offers enhanced robustness to
primary variation, when compared to alternative CCFs. The
advantage of this CCF over the alternative strategies increases
with the increment of the number of primaries.

Results also indicate that the proposed error metric Θ*

and its localized variant M*
Θ(τ ) can be used as figure of

merit for the quantitative evaluation of smoothness, hence
robustness, as evaluations of Θ* (M*

Θ(τ )) for a variety of
CCFs agree with visual assessments of renderings for dis-
plays with primary variations: the higher the Θ* (M*

Θ(τ )),
the greater the likelihood of renderings with artifacts and
with higher perceptual differences with respect to renderings
under nominal conditions. In particular, we observed that the
axially linear CCF αF

A (·), which consistently showed lower
values for Θ* across different primary configurations, showed
problematic renderings only on trajectories crossing different
pyramidal regions, and for colors further away from the gray
axis, regions with high values of the localized metricM*

Θ(τ ).
On the other hand, strategies such as minimum optical

power (applicable for emissive displays like OLEDs) result
in control values on the vertices or edges of the MCS, exhibit

particularly non-smooth behavior, resulting in higher values
of the metric Θ* (M*

Θ(τ )) and greater sensitivity to primary
variations. This highlights the fact that exploiting flexibility of
selecting the CCF in a multiprimary display to optimize other
display attributes, e.g. power, may levy a penalty in terms of
robustness to primary variations.

APPENDIX A
VARIATIONAL DERIVATIVES OF Γ(αF )

This appendix outlines the computation of variational
derivatives in ∇αF Γ(αF ) that are part of the gradient pro-
jection scheme for the numerical computation of the transition
preserving CCFs (5). A comment on the convexity of Γ(αF )
is also found ant the end this appendix.

The variational derivative of Γ(αF ) with respect to the kth

component of αF (·), denoted by δΓ/δαF
k , is defined as [7,

p. 28]

δΓ(αF )

δαF
k

=
∂

∂αF
k

M(τ ,αF )−
∑
j∈C

∂

∂τ j

∂

∂αF ′
k,τ j
M(τ ,αF ).

(14)

The condition δΓ/δαF
k = 0 then corresponds to the kth Euler-

Lagrange equation for the functional Γ(αF ). To simplify
presentation, in the rest of the appendix we drop the explicit
dependency of Γ and M on the function αF (·) and τ .

By noting that the functional M, defined in (3), can be
expressed as

M =

K∑
k=1

∑
j∈C

(
αF ′

k,τ j (τ )
)2

+ γI(τ , σ)

K∑
k=1

(
αF
k (τ )−αF

A,k(τ )
)2
,

(15)

we compute the first term on the right-hand-side of (14) as

∂

∂αF
k

M = 2γI(τ , σ)
(
αF
k (τ )− αF

A,k(τ )
)
. (16)

Similarly, for j ∈ C

∂

∂αF ′
k,τ j
M = 2αF ′

k,τ j(τ ), (17)

which leads us to
∂

∂τ j

∂

∂αF ′
k,τ j
M = 2

∂2

∂τ2
j

αF
k (τ ). (18)

Next, using (16) and (18), the variational derivative in (14)
can be expressed as

δΓ

δαF
k

= 2γI(τ , σ)
(
αF
k (τ )− αF

A,k(τ )
)
− 2∇2αF

k (τ ). (19)

The convexity of the functional Γ can be confirmed by com-
puting the Hessian matrix of M over every CCF component
αF
k (·), and the corresponding first order partial derivatives
αF ′

k,τL(·), α
F ′

k,τ c1
(·), αF ′

k,τ c2
(·), with k = 1, . . . ,K. From (16)

and (17), the second order derivatives ∂2M/∂2αF
k =

2γI(τ , σ) and ∂2M/∂2αF ′

k,τ j = 2 are positive5 for all τ in

5For reasonable choices of the indicator function the condition I(τ , σ) > 0,
and γ > 0.
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the gamut, while the mixed derivatives are all zero. Therefore,
the Hessian is a diagonal matrix with positive entries, thus the
Hessian is positive definite, demonstrating the strict convexity
of Γ [41].

APPENDIX B
PROJECTION ONTO THE MCS Ω(t)

The MCS Ω(t) is a convex polytope contained in an affine
subspace (i.e., a translate of a subspace) of the (K − 3)
dimensional CBS. If the control vector is not already in the
MCS Ω(t), its projection onto the MCS polytope lies on a
facet of the polytope, which is itself a polytope contained in
an affine subspace of the CBS with a dimensionality between
(K − 4) and 0. This enables a recursive scheme for the
computation of the projection of a vector α ∈ RK onto the
MCS Ω(t). To simplify notation, we consider the projection
PΞ(α) of a vector α ∈ RK onto a general convex polytope
Ξ = conv (ν1, . . . ,νNΞ

), where νi ∈ RK is the ith vertex of
Ξ and NΞ is the total number of vertices. When NΞ = 1, the
projection is trivially obtained as PΞ(α) = ν1. For NΞ ≥ 2,
let S ⊆ RK be the affine subspace of minimal dimensionality
that contains Ξ, that is, Ξ ⊂ S = v0 +S0, where S0 ⊆ RK is
a subspace and v0 ∈ RK is orthogonal to S. Noting that for
any ξ ∈ Ξ ⊂ S, the vectors (ξ − PS(α)) and (PS(α)−α)
are orthogonal, we have

‖ξ −α‖2 = ‖ξ − PS(α)‖2 + ‖PS(α)−α‖2 . (20)

It follows that

PΞ(α)
def
= arg min

ξ∈Ξ
‖ξ −α‖

= min
ξ∈Ξ
‖ξ − PS(α)‖ def

= PΞ (PS(α)) (21)

Because Ξ is convex, PΞ (PS(α)) can be found by first
computing the projection of PS(α) on each of the facets of the
polytope, and then selecting the one with minimum distance
to PS(α) that is,

PΞ(α) = arg min
PΞfj

(αS)

j=1,...,MΞ

∥∥∥PΞfj
(PS(α))− PS(α)

∥∥∥ , (22)

where Ξfj is the jth facet of Ξ, and MΞ is the total number
of facets for Ξ. Since each Ξfj is itself a polytope, finding
PΞfi

(αS) follows the same steps just described, with Ξfi
and αS taking the place of Ξ and α, respectively. Thus, (22)
enables recursive computation of the projection of α onto the
polytope Ξ, which is summarized in Algorithm 2. With each
recursion in Algorithm 2, a projection is computed onto a
polytope’s face of lower dimensionality until one of the “base
cases” are reached, i.e., either the projection on the affine
subspace falls inside the polytope, or it is a projection onto a
vertex of Ξ.

When we set Ξ = Ω(t), α is projected onto the MCS. The
vertices of Ω(t), required in Algorithm 2, can be obtained by
recalling that the (K − 3) dimensional affine subspace S =
v0+S0 ⊇ Ω(t), where S0 is the CBS, is the solution set to the
constraint t = Pα. For K = 3 this implies that S = Ω(t) is
a single point ν1, the only vertex of the MCS. For K ≥ 4, the

affine subspace is unbounded so the vertices of the MCS lie on
the intersection of S with the surface of the hypercube [0, 1]K ,
the feasibility constraint (see , Eqn. (8) in the companion Part I
paper [2]). Consequently, the control vector νi corresponding
to a vertex of Ω(t) has all but three of its components
as either 0 or 1, and the remaining three components are
determined by the colorimetric requirement t = Pνi. With
this characterization, the vertices of Ω(t) can be found via
exhaustive search. Vertex candidates ν = [ν1, . . . , νK ]T are
first determined by setting (K − 3) components in the vector
equal to 0/1 and determining the remaining components to
satisfy the colorimetric constraint. If the candidate is feasible,
i.e., has all components between 0 and 1, it is a vertex of
the MCS Ω(t), otherwise it is not. The vertex candidates are
readily enumerated by considering each of the

(
K
3

)
selections

of three indices between 1 and K, and evaluating the feasibility
of the vertex candidates obtained by setting the remaining
(K − 3) components to every possible 2K−3 combination of
binary (0/1) values. Thus

(
K
3

)
× 2K−3 vertex candidates are

assessed for feasibility. Algorithm 3 summarizes the overall
procedure for computation of the vertices of the MCS Ω(t).
Because this procedure is performed only once for a given
primary system, the computational (in)efficiency of the process
is not of practical concern6.

APPENDIX C
NUMERICAL COMPUTATION OF THE LAPLACIAN

OPERATOR

The Laplacian ∇2αF
k (·) required for the computation of the

variational derivatives in (8) is numerically evaluated over the
discrete rectilinear grid {τ i}ε used for computing the CCF.
Let τ be a point in the rectangular grid {τ i}ε. Considering
the points in {τ i}ε that define the 3×3×3 cubic neighborhood
of τ in (see Fig. 7), the Laplacian for the kth component of
the CCF at τ is approximated as [12]

∇2αF
k (τ ) ≈ 3

13ε2

( ∑
τ i∈Nf

(
αF
k (τ i)− αF

k (τ )
)

+

1

2

∑
τ i∈Ne

(
αF
k (τ i)− αF

k (τ )
)

+

1

3

∑
τ i∈Nv

(
αF
k (τ i)− αF

k (τ )
))
, (23)

where Nf refers to the set of neighbors lying on center of
the facets of the neighborhood cube, Ne of those lying on the
center of the edges, and Nv refers to the vertices, as described
in Fig. 7. The numerical computations of the gradient of
the CCFs uses the 19 point stencil approximation for the
gradient from [12] that conforms with the chosen Laplacian

6As an alternative to the approach presented here, standard quadratic
programming [42] can be used to compute the MCS projection. However,
we found quadratic programming to be slower than the proposed approach
for the typical number of primaries considered here.
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Algorithm 2: Projection onto a Polytope

Input : α: vector in RK ,
Ξ: Polytope

Output: α̂ = PΞ(α): projection of α onto Ξ
/* Base Cases: */

1 ν1, . . . ,νNΞ
← vertices of Ξ;

// (a): Polytope is single point
2 if NΞ = 1 then
3 α̂← ν1;
4 return ;
5 end
// (b): Project α onto affine subspace

S = v0 + S0 ⊃ Ξ
6 B← Orthonormal Basis for

S0 = span (ν2 − ν1, . . . ,νNΞ − ν1);
7 v0 ← ν1 −BBTν1;
8 αS ← v0 + BBTα;
9 if αS ∈ Ξ then

10 α̂← αS ;
11 return;
12 end
/* Recursion: */

13 Ξf1 , . . . ,ΞfMΞ
← facets of Ξ ;

// Project αS onto each facet
14 forall 1 ≤ j ≤MΞ do
15 αΞfj

← PΞfj
(αS);

16 end
// Select projection closest to αS

17 α̂← arg min
αΞfj

1≤j≤MΞ

(∥∥∥αΞfj
−αS

∥∥∥);

approximation. Specifically, the partial derivatives of αF
k (·)

along the direction of τ j , with j ∈ C , is computed as,

∂αF
k

∂τ j
≈ 1

εh

( ∑
τ i∈Nf

(
αF
k (τ i+)− αF

k (τ i−)
)

+

1√
2

∑
τ i∈Ne

(
αF
k (τ i+)− αF

k (τ i−)
)

+

1√
3

∑
τ i∈Nv

(
αF
k (τ i+)− αF

k (τ i−)
))
, (24)

where h = 2 + 8√
2

+ 8√
3

, and τ i+ and τ i− are a pair of
opposite neighbors along the directions represented by the line
segments in Fig. 8.
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