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ABSTRACT Multiprimary displays reproduce colors by using combinations of four or more lights that
are referred to as primaries. A display control vector defines the relative intensities of the primaries
and determines the rendered color. For multiprimary displays, a color may be reproduced using multiple
alternative control vectors. We provide a complete characterization of the Metameric Control Set (MCS),
i.e., the set of control vectors that reproduce a given color on the display. Specifically, we show that
MCS is a convex polytope whose vertices are control vectors obtained from (parallelepiped) tilings of
the gamut, i.e., the range of colors that the display can produce. The mathematical framework that we
develop: (a) characterizes gamut tilings in terms of fundamental building blocks called facet spans that we
identify and define, (b) establishes that the vertices of the MCS are fully characterized by the tilings of the
gamut, and (c) introduces a methodology for the efficient enumeration of gamut tilings. The framework
reveals the fundamental inter-relations between the geometry of the MCS and the geometry of the gamut
developed in a companion Part I paper, and provides insight into alternative strategies for color control.
Our characterization of tilings and the strategy for their enumeration also advance knowledge in geometry,
providing new approaches and computational results for the enumeration of tilings for a broad class of
zonotopes in R3.

INDEX TERMS Multiprimary displays, metameric control sets, color gamut, color control, color control
function, zonotope tiling, polar zonohedra.

I. INTRODUCTION
Additive displays systems reproduce color by combining
light emitted by a set of sources known as primaries.
A control vector, which represents the relative intensity of
the primaries, determines the color reproduced by the display.
The set of all colors reproducible on the display through the
use of alternative control vectors constitutes the gamut of the
display. Displays with four or more primaries are known as
multiprimary displays, and a key attribute of multiprimary
displays is their flexibility for color control, as colors in
the gamut may be produced by multiple different primary
combinations. Characterizations of the gamut and the color
control flexibility are important and useful because of their
fundamental roles in the color management and in the design
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of multiprimary displays. In a companion Part I paper [1],
we provided a complete geometrical representation for the
gamut of multiprimary displays; including a tiling of the
gamut with parallelepipeds generated by 3-tuples of pri-
maries. In this Part II paper, we introduce and characterize
the set of control vectors that reproduce a color in the gamut;
a set that we refer to as the Metameric Control Set (MCS).
Our characterization relates the geometry of the MCS with
the gamut tilings obtained in the companion Part I paper
and highlights the fact that the methodology introduced there
provides only an incomplete set of tilings, therefore, only
an incomplete characterization of the MCS. In this paper,
we completely characterize the tilings of the gamut and estab-
lish that these characterize the MCS for each color in the
gamut.

This manuscript is organized as follows. After Section II
introduces notation and the context for the paper,
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Section III establishes the MCS as a convex polytope that can
be characterized by its vertices and formulates an orthogonal
decomposition of the MCS that can be used for the visualiza-
tion of the MCS. Section IV introduces the concept of a facet
span, which is then used to characterize the full set of tilings
of the gamut and to establish, for each tristimulus, the equiva-
lence between the vertices of theMCS and the control vectors
associated with the tilings. Finally, Section V develops an
efficient methodology and algorithm for enumerating all the
gamut tilings. The paper concludes with a discussion in
Section VI and a summary of key results in Section VII.
Appendices A–E include proofs of the mathematical results,
specifications of the multiprimary systems used as examples
in the paper, and supplementary detail for the algorithm
presented in Section V. Supplementary Materials included
with this paper provide additional visualizations of MCSs,
facet spans, complete sets, and tilings and summarize the
computational time requirements for the tiling enumeration
results presented in this paper.

II. BACKGROUND AND PROBLEM FRAMEWORK
We refer the reader to Section II of the companion Part I
paper [1] for a summary of the common notational con-
ventions and background that are also used in this paper.
We introduce the few additional conventions and definitions
that we require in this section and also quickly describe the
problem framework and recapitulate the most relevant con-
cepts and results from the companion Part I paper. Table 1 lists
the notational conventions and acronyms. For a non-empty
sequence of integer indices I, we denote the mirror sequence
by Ĩ, where Ĩ[l] = I[N (I)− l+1], for all l ∈ 〈N (I)〉, where
I[l] denotes the l th index in I andN (I) denotes the cardinality
of the set I. A polytope in RN obtained as an affine map of
[0, 1]M , M ≥ 0, into RN is called a zonotope [2, Ch. 7]. For
a 3×M matrix A = [a1, a2, . . . , aM ], and a 3× 1 vector v,
we denote by S(v,A) ≡

{
Aα + v|α ∈ [0, 1]M

}
the region of

tristimulus space spanned by A and located at the offset v,
also referred to as the origin of S(v,A). For a 3× 3 matrix A
and a 3× 2 matrix B, both with linearly independent column
vectors, and 3 × 1 vectors v and c 6= 0, the sets P(v,A) ≡
S(v,A), F(v,B) ≡ S(v,B), and E(v, c) ≡ S(v, c) denote,
respectively, a parallelepiped, a parallelogram, and a line
segment, each having origin v; each of these is a zonotope
in R3.

A. PROBLEM FRAMEWORK
A display system is characterized by its (3× K ) matrix of
primaries P = [p1,p2, . . . ,pK ], where pk is the 3× 1 vector
of CIE XYZ tristimulus values for the k th primary. A color is
produced by an additive combination of the primaries that is
described by a color control vector α = [α1, α2, . . . , αK ]T ,
where αk ∈ [0, 1] is the control value that indicates the
relative intensity of primary pk . The reproduced color, as a
function of α, is represented by the 3 × 1 tristimulus t(α) =
Pα+ t0 = [tX , tY , tZ ]T , where t0

def
= t(0) is the display black

TABLE 1. List of symbols/acronyms.

and t1
def
= t(1) is the display white, which are the tristimuli

obtained when all primaries are turned completely off and on,
respectively. Throughout the paper, we assume that any three
columns of P are linearly independent. Noting that [0, 1]K

defines the domain of all possible primary combinations,
the (tristimulus) gamut of the display G def

= t
(
[0, 1]K

)
={

t(ν)|ν ∈ [0, 1]K
}
defines the range of (tristimulus) colors

that the display can reproduce. Because G is an affine map
of RK into R3, G is a zonotope whose geometry we charac-
terized in the companion Part I paper [1]. A color control
function (CCF) is a function C : G → [0, 1]K that assigns
to every t ∈ G a control vector C (t). A tiling T of the
gamut G is a collection of parallelepipeds spanned by sets of
three primaries and covering the gamut, i.e., G =

⋃
P∈T P ,

such that any two different parallelepipeds P,P ′ ∈ T are
spanned by different sets of primaries and their intersection
P∩P ′ is a face of bothP andP ′. The companion Part I paper
offers a methodology for obtaining gamut tilings by building
the collection of parallelepipeds in a progression dictated by
the order of the primaries. A gamut tiling obtained from this

VOLUME 9, 2021 96913



C. E. Rodríguez-Pardo, G. Sharma: Geometry of Multiprimary Display Colors II

methodology is referred to as a progressive tiling. The pro-
gressive tiling is composed of parallelepipeds P

(
cP,P[P]

)
,

one for each P ∈ C3 (〈K 〉), where the origin cP = PαP + t0
has a (binary) control vector αP ∈ {0, 1}K , whose entries
corresponding to the indices in P are zero. The companion
Part I paper also introduces the progressive tiling CCF, for
which, the control vector for each t ∈ P

(
cP,P[P]

)
, P ∈

C3 (〈K 〉), is given by C (t) = αP + IK [P]P−1[P]
(
t− cP

)
.

III. METAMERIC CONTROL SETS
For t ∈ G, the metameric control set (MCS) �(t) def

={
ν ∈ [0, 1]K

∣∣ t = Pν + t0
}
is the set of all control vectors

that reproduce the tristimulus t. Note that for K = 3, P is an
nonsingular 3×3 primary matrix, so theMCS is the singleton
�(t) =

{
P−1 (t− t0)

}
. For K ≥ 4, the primary matrix P

represents an under-determined linear system of equations,
so �(t) may contain multiple control vectors. From its defi-
nition, the MCS �(t) is the intersection of the feasibility set
[0, 1]K delimiting the region in RK corresponding to physi-
cally meaningful control vectors available to drive the display
and the affine subspace 3(t) =

{
ν ∈ RK

∣∣Pν = (t− t0)
}
.

Because [0, 1]K and 3(t) are polyhedral sets and the former
is bounded, the MCS �(t) = [0, 1]K ∩ 3(t) is a bounded
polyhedral set. Because every bounded polyhedral set is a
polytope [3, pp. 119-120], it follows that the MCS �(t) is a
convex polytope with alternative representation as the convex
hull of its vertices V�(t), i.e., �(t) = conv{ω ∈ V�(t)}.
The vertices of �(t) are characterized algebraically in the
following theorem, whose proof is presented in Appendix A.
Theorem 1: For a tristimulus t ∈ G, a control vector ω ∈

�(t) is a vertex of the MCS, i.e. ω ∈ V�(t) if and only if (iff)
ω has at most three vector components in (0, 1).
Note that the previously introduced progressive tiling con-

trol vectors satisfy the property that only three vectors com-
ponents of ν can have values in (0, 1). As a direct corollary
of Theorem 1, progressive-tiling control vectors are vertices
of the MCS.

To facilitate representations of the MCS in a lower
dimensional subspace that can be readily visualized, next,
we develop a convenient subspace decomposition that was
introduced in [4].

A. ORTHOGONAL DECOMPOSITION AND VISUALIZATION
OF THE MCS
Observing that 3(t0) is the null space of P, we have the
standard subspace decomposition [5, pp. 405],

RK
= R(PT )+3(t0), (1)

where R(PT ) is the range of the K × 3 matrix PT . Because
P is a matrix of rank 3, R(PT ) and 3(t0) are subspaces
of dimensionality 3 and (K − 3), respectively. We refer to
R(PT ) as the control visual subspace (CVS) and to3(t0) as
the control black subspace (CBS) drawing upon the analogy
with the human visual subspace and the metameric black
subspace [6], [7].

Now consider a tristimulus t ∈ G. For a pair of control vec-
tors α1,α2 ∈ �(t), we have P (α1 − α1) = 0, whereby the
difference (α1 − α2) ∈ 3(t0). Therefore, variations within
the MCS �(t) are fully contained in the CBS and can be
visualized for K ≤ 6, as we show next. Let (the columns of)
B be an orthonormal basis for 3(t0). Then, from (1),
we express α ∈ �(t) as

α = PT
(
PPT

)−1
(t− t0)+ Bβ, (2)

def
= αϒ + α8 (3)

where αϒ = PT
(
PPT

)−1
(t− t0) = PT

(
PPT

)−1 Pα is
the projection of α onto the CVS, α8 = Bβ = BBTα
is the projection of α onto the CBS, and the (K − 3) × 1
vector β = BTα is the coordinate representation of the CBS
component of α in the basisB. Fig. 1 schematically illustrates
the afore-mentioned decomposition, where for convenient
visualization, one-dimensional representations are used for
CBS and CVS with a two-dimensional representation for the
space of control vectors. Observing that the CVS component
of α is uniquely determined by t, we obtain a similar decom-
position for the MCS �(t),

�(t) = PT
(
PPT

)−1
(t− t0)+ B4(t), (4)

FIGURE 1. Decomposition of MCS into CVS and CBS components. On the
right, the CIEXYZ gamut G (solid-gray) for a 3× K primary matrix P with
display black t0 (black vector), and a tristimulus t ∈ G (blue vector). On
the left, the MCS �(t) represented by the solid-blue line that results from
the intersection of the feasibility set [0,1]K (delimited by the solid-black
square) and the affine subspace 3(t) (dashed-purple line). The control
vectors ααα,ωωω1,ωωω2 ∈ �(t) and the latter two are vertices of �(t) that are
plotted as blue dots. The CVS and the CBS are represented by the
orthogonal red lines, and the CVS and CBS components of ααα,ωωω1,ωωω2 and
�(t) are plotted on the corresponding subspaces. The green line shows
the mapping from the control vector ααα to its corresponding
tristimulus t(ααα).

where 4(t) =
{
BT ν

∣∣ ν ∈ �(t)} is the representation of the
CBS component of �(t) in the basis B. Because �(t) is a
convex polytope, 4(t) is also a convex polytope with a set of
vertices V4(t) =

{
BTω | ω ∈ V�(t)

}
. We visualize α ∈ �(t)

and �(t) using their (K − 3) dimensional CBS coordinate
representations β = BTα and 4(t), respectively.

Figures 2 (a) and (b) illustrate two examples of the (CBS
coordinate representation of the) MCS polytope 4(t) for
K = 5 and K = 6 primary systems, respectively,
as (K − 3) dimensional polytopes. The vertices of the
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FIGURE 2. Example MCS polytopes 4(t) in the (K − 3)-dimensional CBS
coordinate representations for the K = 5,6 primary systems P(5)

w ,P(6)
V .

See appendices C and D for the specifications of the primary matrices and
the CBS bases used in this and subsequent figures.

MCS polytopes colored red in these figures correspond to
the progressive-tiling control vectors, whereas the clear/white
vertices do not correspond to any progressive-tiling control
vector. The examples illustrate that the progressive tiling
control vectors obtained via the methodology described in the
companion Part I paper, do not define the full set of vertices
of the MCS. This motivates the obvious question as to how
the full set of vertices of theMCS can be characterized, which
we answer next.

IV. FACET SPANS, GAMUT TILINGS, MCS VERTICES
Wenow introduce the concept of a facet span to build a frame-
work for characterizing gamut tilings, which we subsequently
use to characterize the vertices of MCS as tiling control
vectors. Proofs of the lemmas and the theorem occurring in
this section are presented in Appendix B.

A. FACET SPANS
Recall from the companion Part I paper [1], that for each
pair of indices J ∈ C2(〈K 〉), the gamut boundary includes
the pair of congruent parallelogram facets F

(
dJ−,P[J]

)
and

F
(
dJ+,P[J]

)
, spanned by the two primaries P[J], where

dJ− = t0+PχJ− and dJ+ = t0+PχJ+ are the facet origins,

with control vectors χJ−
=

[
χ−
(
uTJ p1

)
, . . . , χ−

(
uTJ pK

)]T
and χJ+

=

[
χ+
(
uTJ p1

)
, . . . , χ+

(
uTJ pK

)]T
, respectively,

with uJ denoting the normalized cross-product1 pJ[1] ⊗
pJ[2]/

∥∥pJ[1] ⊗ pJ[2]
∥∥. The complete gamut boundary BG is

the essentially disjoint union of these
(K
2

)
congruent pairs

of facets. For a given J ∈ C2(〈K 〉), via simple arithmetic
manipulation, the facet origin dJ+ can be represented in terms
of the facet origin dJ− as

dJ+ = dJ− + P
(
χJ+
− χJ−

)
(5)

= dJ− +
∑

j∈〈K 〉\J
sgn

(
uTJ pj

)
pj. (6)

1To render our definition unambiguous, we assume throughout that a
pair of indices J used in a cross-product definition are always ordered in
increasing order.

Thus dJ+ is obtained from dJ− through a series of signed
displacements by all the other (K − 2) primaries, with the
sign determined as indicated in (6). The commutativity of
addition implies that the (K − 2) terms being added in the
summation in (6) can be ordered in any sequence. We con-
sider the sequence of points obtained by choosing a specific
ordering. In particular, for any permutation I ∈ P (〈K 〉 \ J)
of the (K − 2) indices in 〈K 〉 \ J, consider the sequence

of tristimuli, dJ+0 (I) ,dJ+1 (I) , . . .dJ+K−2(I), obtained by using
the corresponding order for the signed primary displacements
in (6), viz., dJ+0 (I) = dJ− and for l = 1, 2, . . . (K − 2),

dJ+l (I) = dJ− +
l∑
j=1

sgn
(
uTJ pI[j]

)
pI[j]. (7)

Then, the same signed primary displacements, applied
to the facet F

(
dJ−,P[J]

)
in the same sequence, delimit a

region of the gamut that constitutes a fundamental building
block of gamut tilings. More precisely, let Z(J,I) denote the

sequence of (K−2) parallelepipeds P(J,I)1 , . . . ,P(J,I)K−2, where

P(J,I)l
def
= P

(
c(J,I)l ,P[J I[l]]

)
is the parallelepiped spanned

by P[J I[l]] with origin c(J,I)l = dJ+l (I) − χ+
(
uTJ pI[l]

)
pI[l]

(note that c(J,I)l ∈ {dJ+l ,dJ+l−1}). We refer to Z(J,I) as the
(gamut traversing) facet span corresponding to the gamut
facets spanned by primaries indexed by J in the order I for
the remaining (K − 2) primaries. We also use Z(J,I) to refer
to the region formed by the union of the parallelepipeds, i.e.,

Z(J,I)
=

(K−2)⋃
l=1

P(J,I)l . (8)

The pair of facets of P(J,I)l spanned by the two pri-

maries indexed by J are denoted as F (J,I)
l−1 and F (J,I)

l ,

where F (J,I)
l

def
= F

(
dJ+l (I) ,P[J]

)
is the l th displace-

ment of F
(
dJ−,P[J]

)
, in the sequence defined by (7).

Thus, F (J,I)
0 , . . . ,F (J,I)

K−2 is a sequence of displaced congru-
ent parallelograms. Observing that dJ+l (I) = dJ+l−1(I) +
sgn

(
uTJ pI[l]

)
pI[l], and that uTJ

(
dJ+l (I)− dJ+l−1(I)

)
> 0,

we see that uTJ d
J+
0 (I), . . . ,uTJ d

J+
K−2(I) is a strictly increasing

sequence, so the facet span Z(J,I) is the union of (K − 2)
essentially disjoint parallelepipeds, with consecutive paral-
lelepipeds intersecting in a common facet, P(J,I)l−1 ∩ P(J,I)l =

F (J,I)
l−1 , for l > 1. We note here that this ‘‘chaining property’’

also applies to progressive tilings obtained using the method-
ology developed in the companion Part I paper [1], as stated
in Clause 9 of Theorem 1 in [1]. Fig. 3 illustrates a facet span
for a K = 5 primary system.
Note that every facet span in a gamut with K = 3 has only

one parallelepiped, the gamut itself, thus, all facet spans are
the same. For K ≥ 4 and J, J′ ∈ C2(〈K 〉), note that J 6= J′
implies that Z(J,I) 6= Z(J′,I′) for any I, I′, while for J = J′
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FIGURE 3. Example facet span Z(J,I) for the K = 5 primary display
system P(5)

e , where J= [1 5] ∈ C2 (
〈K 〉

)
and I= [2 3 4] ∈P

(
〈K 〉 \ J

)
.

different pair of sequences I, I′ correspond to different pair of
facet spans, as stated in following lemma.
Lemma 1: Let J ∈ C2(〈K 〉), I, I′ ∈ P (〈K 〉 \ J), and

K ≥ 4. Then, Z(J,I) = Z(J,I′), iff, I = I′.
The number of distinct facet spans is immediately deter-

mined by Lemma 1, which we state as the following
corollary.
Corollary 1: For each J ∈ C2(〈K 〉), there are (K − 2)!

different facet spans spanned by the primaries identified by
the indices J. For K ≥ 4, there are a total of K !/2 different
facet spans.

Figure 4 illustrates all the facet spans for a K = 4 pri-
mary configuration. Facet spans are building blocks of gamut
tilings, as we show next.

B. GAMUT TILINGS FROM SETS OF COMPATIBLE FACET
SPANS
We define compatibility for a pair of facet spans in terms
of the pairwise relations between parallelepipeds from each
facet span. Specifically, for J, J′ ∈ C2(〈K 〉), I ∈ P (〈K 〉 \ J),
and I′ ∈ P

(
〈K 〉 \ J′

)
, we say that a pair of parallelepipeds

P (J,I)
l ∈ Z (J,I) and P (J′,I′)

l′ ∈ Z (J′,I′), with l, l ′ ∈ 〈K − 2〉

are compatible if the intersection P (J,I)
l

⋂
P (J′,I′)
l′ is a face

for both parallelepipeds, and furthermore, when J ∪ I[l] =
J′ ∪ I′[l ′], i.e., P (J,I)

l and P (J′,I′)
l′ are spanned by the same

primaries, we have P (J,I)
l

⋂
P (J′,I′)
l′ = P (J,I)

l = P (J′,I′)
l′ . For

J, J′ ∈ C2(〈K 〉), I ∈ P (〈K 〉 \ J), and I′ ∈ P
(
〈K 〉 \ J′

)
,

we say that the facet spans Z (J,I) and Z (J′,I′) are compatible,
if every pair of parallelepipeds P (J,I)

l ∈ Z (J,I) and P (J′,I′)
l′ ∈

Z (J′,I′) is compatible.

We refer to the facet span Z
(
J,Ĩ
)
as the mirror symmetric

facet span for the facet span Z(J,I). A pair of facet spans is
compatible iff the corresponding pair of mirror symmetric
facet spans is compatible, a result that we state as the fol-
lowing lemma.
Lemma 2: Let J, J′ ∈ C2(〈K 〉), I ∈ P (〈K 〉 \ J), and

I′ ∈ P
(
〈K 〉 \ J′

)
. Then, Z(J,I) and Z(J′,I′) are compatible

iff Z
(
J,Ĩ
)
and Z

(
J′,Ĩ′

)
are compatible.

Now, let K be a set of pairwise compatible facet spans,
and let TK = {P(J,I)l | l ∈ 〈K − 2〉,Z(J,I) ∈ K } be the

collection of all parallelepipeds making up the facet spans
of K . Observing that every pair of parallelepipeds in TK is
compatible, we see that the number of distinct parallelepipeds
in the collection is N

(
TK
)
≤
(K
3

)
and the distinct paral-

lelepipeds are essentially disjoint. If N
(
TK
)
=
(K
3

)
, we say

that the set K ismaximal. Maximal sets produce gamut tilings
as we establish in the following Lemma.
Lemma 3: The collection of parallelepipeds TK defined by

a maximal set K is a gamut tiling.
Lemma 3 motivates the question on whether every gamut

tiling can be obtained from a maximal set, which we answer
next.

C. GAMUT TILINGS AS MAXIMAL SETS
A maximal set is called a complete set, if K includes a
facet span for every primary pair, i.e., it has

(K
2

)
facet spans,

Figure 5 illustrates examples of maximal and complete sets
for the K = 4 primary system P(4)

e .
Lemma 4: Maximal sets satisfy the following properties:
1) The mapping h : K 7→ TK defines a bijection

from complete sets to gamut tilings, i.e., there is a
one-to-one correspondence between complete sets and
gamut tilings.

2) Every maximal set is a subset of one and only one
complete set.

3) Every facet span belongs to some complete set.
4) A set K of facet spans is maximal iff the set K̃ =

{Z (J,Ĩ)
| Z(J,I) ∈ K } is maximal.

Fig. 6 shows the collection of (all) complete sets for the for
theK = 4 primary system P(4)

e . Each of the two complete sets
is comprised of six facet spans. The facet spans in Figure 6
are organized to highlight the symmetric relationship between
the two complete sets: for the complete set K in the top half,
the mirror symmetric complete set K̃ = {Z (J,Ĩ)

| Z(J,I) ∈ K }
is shown in the bottom half. In particular, for the facet span
Z(J,I) ∈ K , the mirror symmetric facet span Z (J,Ĩ)

∈ K̃ is
located below it. From Lemma (4), every facet span belongs
to a complete set. In Fig. 6, the symmetry of the complete
sets K , K̃ implies that K

⋂
K̃ = φ and the union K

⋃
K̃

contains all the facet spans for P(4)
e . Therefore, Figure 6 also

shows each of the facet spans for P(4)
e without repetition,

which can be seen by comparing against Fig. 4. A richer set
of examples illustrating all facet spans, all complete sets of
compatible facet spans and associated tilings are provided in
Section S.I of the Supplementary Materials for five-primary
systems that illustrate several aspects that cannot be seen in
the four primary case.

As a consequence of Lemma 4, every gamut tiling can
be obtained from some maximal set and is uniquely associ-
ated with one complete set. We note here that Clause 9 of
Theorem 1 in the companion Part I Paper [1] identifies
the complete set associated with the corresponding progres-
sive tilings obtained using the methodology developed there.
Complete sets provide the link between tilings and the MCS,
as we show next.
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FIGURE 4. All K !/2=12 facet spans for the K =4 primary display system P(4)
e shown in the context of the display gamut

(light-gray dashed-lines). Example pairs of compatible/incompatible facet spans include
(
Z([1 2],[3 4]),Z([1 3],[4 2])

)
/(

Z([1 4],[2 3]),Z([3 4],[1 2])
)

and the corresponding mirror symmetric pairs
(
Z([1 2],[4 3]),Z([1 3],[2 4])

)
/
(
Z([1 4],[3 2]),Z([3 4],[2 1])

)
.

FIGURE 5. Examples of complete and maximal sets of compatible facet
spans for the K =4 primary display system P(4)

e . The sets of compatible
facet spans K a (top), K b (bottom left) and K c (bottom right) are all
maximal sets because the N

(
TK a

)
=N

(
TK b

)
=N

(
TK c

)
=

(K
3
)
= 4; the

associated collections of parallelepipeds are therefore gamut tilings. The
set K a is complete because it includes a facet span for each pair (J) of
primaries. For this example, K b,K c ⊂ K a, thus, TK a = TK b = TK c .

D. GAMUT TILINGS AND THE VERTICES OF THE MCS
A tiling T of the gamut G includes a parallelepiped
P
(
cP,P[P]

)
∈ T for each P ∈ C3 (〈K 〉), where cP denotes

the origin of the parallelepiped. Now, for any P ∈ C3 (〈K 〉),
it can be seen that for each J ∈ C2 (〈K 〉) , J ⊂ P, the facet
span Z(J,I) in the complete set associated with the tiling T ,
induces the same control vector αP such that cP = PαP +
t0 where αP ∈ {0, 1}K and αPl = 0, for all l ∈ P.
We obtain the tiling CCF CT associated with the tiling T by
defining CT (t) = αP + IK [P]P−1[P]

(
t− cP

)
, for every P ∈

C3 (〈K 〉) and every t ∈ P
(
cP,P[P]

)
. The tiling CCF CT is

continuous over G and is (piece-wise) linear over each of the
parallelepipeds in the tiling T and uniquely associates t with
the tiling control vector CT (t). The properties of maximal
sets allows us to establish the relationship between gamut
tilings, the tiling control vectors and the vertices of the MCS
as follows.
Theorem 2: For a tristimulus t ∈ G, ω is a vertex of the

MCS �(t) if an only if ω is a tiling control vector.
One of the examples included in Section S.I of the Supple-

mentary Materials provides all tilings (and associated com-
plete sets) for the K = 5 primary system P(5)

w that was
used in Fig. 2(a). As required by Lemma 2, the clear vertex
in Fig. 2(a), which did not have an associated progressive
tiling control vector does have an associated tiling control
vector among the full set of tilings, which is also identified
in Section S.I of the Supplementary Materials.

Theorem 2 characterizes the vertices of theMCS as control
vectors obtained from gamut tilings, linking the geometry of
MCS with the geometry of gamut representations. To com-
plete this characterization, we highlight how the tilings can
be enumerated efficiently.

V. EFFICIENT ENUMERATION OF GAMUT TILINGS
Weoutline amethodology for efficient enumeration of gamut
tilings by exploiting the inter-relations between gamut tilings,
complete sets, andmaximal sets, and the symmetry properties
of facet spans.
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FIGURE 6. The collection of complete sets for the four-primary system P(4)
e is comprised of two complete sets delimited by the two boxes. Note that for

the complete set K shown in the top row, the mirror symmetric complete set K̃ is shown in the bottom row.

A. MAXIMAL SET CONSTRUCTION FOR ENUMERATION
OF TILINGS
From Lemma 4, it can be readily seen that facet spans
within a complete set satisfy additional constraints, which we
characterize as strong compatibility (s-compatibility). We say
that a pair of compatible facet spans Z (J,I) and Z (J′,I′) are
s-compatible if, whenever l, l ′ ∈ 〈K − 2〉 are such that
(J ∪ I[l])

⋂(
J′ ∪ I′[l ′]

)
= J̄ ∈ C2(〈K 〉), i.e., the pair of

parallelepipeds P (J,I)
l ∈ Z (J,I) and P (J′,I′)

l′ ∈ Z (J′,I′), are
spanned by two common primaries indexed by J̄, then, both
P (J,I)
l andP (J′,I′)

l′ are parallelepipeds in a facet spanZ (J̄,Ī), for
some Ī ∈ P(〈K 〉 \ J̄). The following corollary is a then direct
consequence of the relation between maximal and complete
sets stated in Lemma 4.
Corollary 2: A pair of facets spans in a maximal set are

s-compatible.
We evaluate s-compatibility between pairs of facet spans

to efficiently construct maximal sets, which we use, in turn,
for efficiently enumerating the collection of complete sets,
using a methodology that we construct in the remainder of
this section.

Let K be the collection of all complete sets, and let
J1, J2, . . . , J(K2) be a sequence of all pairs in C2(〈K 〉). For

j ∈ 〈
(K
2

)
〉, let

Aj=

{
{Z(J1,I1), . . . ,Z(Jj,Ij)}

∣∣∣Ii∈P(〈K 〉\ Ji), for all i ≤ j,

and Z(J1,I1), . . . ,Z(Jj,Ij) are s-compatible
}

(9)

be the collection of all sets of j s-compatible facet spans that
includes a facet span for each of the index pairs J1, J2, . . . , Jj.
Thus, K ∈ Aj has cardinality N (K ) = j, every K ∈ A(K2)

is
a complete set, and A(K2)

= K.
Observing that A1 is the set of all facet spans indexed by

the index pair J1, the setAj+1 can be constructed from the set
Aj by identifying for each K ∈ Aj, enlargements that add a
facet spanZ(Jj+1,I) for I ∈ P(〈K 〉\Jj+1) that is s-compatible

with the facet spans already included in K ,

Aj+1=
⋃

K∈Aj

{
K ∪ Z(Jj+1,I)

∣∣∣I ∈ P(〈K 〉 \ Jj+1) and

Z(Jj,I) is s-compatible with all Z ∈K
}
. (10)

Thus, we obtain K after
(K
2

)
recursions2 of (10). We use the

property of maximality to reduce the number of recursions
needed to enumerate K as follows.

1) MAXIMAL SETS FOR ENUMERATION OF TILINGS
Let j ∈ 〈

(K
2

)
〉. Because any two K ,K ′ ∈ Aj have facet spans

for the common index pairs, J1, . . . , Jj, the parallelepipeds
in the associated parallelepiped collections TK and TK ′ are
exactly the ones that are spanned by the primary combinations
P = Ji ∪ k for 1 ≤ i ≤ j and k ∈ 〈K 〉 \ Ji and we can
see that N

(
TK ′

)
= N

(
TK
)
. It follows that if one element

of Aj is maximal, all elements are maximal. The recursive
construction of the sets further ensures that if elements of
Aj are maximal then all elements of Am are also maximal
for m ≥ j.
Given the sequence J1, J2, . . . , J(K2) of index pairs, let M

be the smallest integer j such that the collection of index
triples

⋃j
i=1{Ji ∪ k | k ∈ 〈K 〉 \ Ji} = C3(〈K 〉). Then,

it can be seen that M is the smallest integer j such that
Aj is a collection of maximal sets. Note thatM is determined
by the specific choice of ordering of the index pairs in the
sequence J1, J2, . . . , J(K2), so we refer to M as the maxi-
mality threshold of J1, J2, . . . , J(K2). Also note that, the def-
inition of M also readily allows us to order the sequence
of indices J1, J2, . . . , J(K2) to ensure the smallest possible
value for themaximality thresholdM . Example orderings that

2However, note that the number of operations can vary significantly

among the recursions, as N
(
A
(J1,I)
j

)
varies with j.
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TABLE 2. Example index orderings J1, . . . , JM that minimize the maximality threshold M for K = 3,4, . . .9.

minimize the maximality thresholdM are provided in Table 2
for K = 3, 4, . . . 9.

Let AM (·) : K → AM be the function defined
for every complete set K ∈ K as AM (K ) ={
Z(Jj,Ij) | Z(Jj,Ij) ∈ K , j ∈ 〈M〉

}
, i.e., the set of theM facet

spans of K corresponding to J1, J2, . . . JM . Recalling from
Lemma 4 that a maximal set is a subset of one and only one
complete set, we see that for K ,K ′ ∈ K, AM (K ) = AM

(
K ′
)

implies K = K ′, and that every element of AM is a set of the
first M facet spans of one complete set, therefore, AM (·) is
one-to-one and onto, thus, a bijection between AM and K, so
N (AM ) = N (K), therefore, enumerating K is equivalent to
enumeratingAM , which we obtain withM recursions of (10).
Next, we introduce a partition of AM into disjoint collec-

tions of maximal sets that allows us to exploit the properties
of symmetry of facet spans to reduce by half the number
of operations for the construction of AM and subsequent
enumeration of gamut tilings.

2) PARTITIONING OF COMPLETE/MAXIMAL SETS
Let I1, . . . , I(K−2)! be an enumeration of the elements of
P(〈K 〉 \ J1) such that Ii+(K−2)!/2 = Ĩi. Because every facet
span indexed by J1 belongs to a complete set, and every
complete set includes only one facet span indexed by the
index pair J1, the collection of complete sets K is a disjoint
union, K =

⋃(K−2)!
i=1 K(J1,Ii), where K(J1,Ii) is the set of all

complete sets containing the facet span Z(J1,Ii). Recalling
that AM (·) is a bijection between AM and K, we express
AM = AM (K) =

⋃(K−2)!
i=1 AM

(
K(J1,Ii)

)
=
⋃(K−2)!

i=1 A
(J1,Ii)
M ,

where A(J1,I)j = {K ∈ Aj | Z(J1,I) ∈ K } is the collection of
all sets of j s-compatible facet spans that include Z(J1,I) and
a facet span for each of the index pairs J2, . . . , Jj.

From Lemma 4, we see that A(J1,Ii+(K−2)!/2) = A

(
J1,Ĩi

)
and

N

(
A

(
J1,Ĩi

))
= N

(
A(J1,Ii)

)
, therefore,

AM =

(K−2)!/2⋃
i=1

A
(J1,Ii)
M ∪ A

(
J1,Ĩi

)
M , (11)

and

N (K) = N (AM ) = 2
(K−2)!/2∑
i=1

N
(
A
(J1,Ii)
M

)
. (12)

And analogous to Aj, for I ∈ P(〈K 〉 \ J1), the collection
A
(J1,Ii)
j for j = 1, 2, . . .M can be recursively constructed as

A
(J1,Ii)
1 = {Z(J1,Ii)}, and

A
(J1,Ii)
j+1 =

⋃
K∈A(

J1,Ii)
j

{
K ∪ Z(Jj+1,I)

∣∣∣I ∈ P(〈K 〉 \ Jj+1), and

Z(Jj+1,I) is s-compatible with all Z ∈K
}
. (13)

The algorithmic description for building the collections
of maximal sets using the recursion in (13) is described
next.

3) ALGORITHMIC ENUMERATION OF GAMUT TILINGS
Let J1, J2, . . . , J(K2) ∈ C2(〈K 〉) be a sequence index pairs
with the smallest maximality thresholdM , let I1, . . . , I(K−2)!
be a sequence of all the permutations in P(〈K 〉 \ J1) such
that Ii+(K−2)!/2 = Ĩi. Taking as inputs J1, J2, . . . , JM ,
and Ii, with i ∈ 〈(K − 2)!/2〉, and via a depth-first
search methodology described in Algorithm 1, we obtain
mi = N

(
A
(J1,Ii)
M

)
and a sequence of maximal sets

M (J1,Ii)
1 , . . . ,M (J1,Ii)

mi enumerating A(J1,Ii)M .
The depth-first search strategy is implemented with a stack

of s-compatible facet spans K 1, . . . ,K n, n ≥ 0, where the
stack is initialized with K 1 = {Z(J1,Ii)}. In the depth-first
search, the set K = K n is retrieved from the stack; K ∈
A
(J1,Ii)
j where j = N (K ); and we search and push into

the stack, all the s-compatible sets resulting from enlarg-
ing K by a facet span indexed by Jj+1. The process is
repeated until the extensions become maximal and elements
of A(J1,Ii)M , and thus, part of the sequence of maximal sets
M (J1,Ii)

1 , . . . ,M (J1,Ii)
mi .

We execute Algorithm 1 for all i ∈ 〈(K − 2)!/2〉, thus
enumeratingA(J1,Ii)M , and by the properties of symmetry, enu-

merating A

(
J1,Ĩi

)
M , which allows us to enumerate the collec-

tion of complete sets K and all gamut tilings, and from (12),

to conclude that N (K) = 2
∑(K−2)!/2

i mi.
The time efficiency of the enumeration process can be

further improved by observing that: (a) the proposed method-
ology is suitable for parallelization because the computa-
tion of A(J1,Ii)M is independent for every i ∈ 〈(K − 2)!/2〉,
(b) checking whether a pair of parallelepipeds intersect each
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other, a fundamental and time-demanding step in the eval-
uation of s-compatibility in Algorithm 2, can be efficiently
implemented using a methodology that exploits the gamut
representation introduced in the companion Part I paper [1],
as detailed in Appendix E, and (c) a significant reduction
of repetitive operations is achieved by pre-computing the
s-compatibility between the pairs of facet spans, which
in-turn, benefits from pre-computing the s-compatibility
between all possible parallelepiped pairs. The gains in time
are at the cost of increased memory requirements. Because,
at any iteration of Algorithm 2, there are at most (K − 2)!
enlargements of K = K n by one facet span, and K admits at
most (M−2) additional facet spans to produce a s-compatible
set that is not maximal, the depth-search methodology
guarantees that the stack has at most (M − 2)(K − 2)!
elements.

B. TILING ENUMERATIONS FOR SOME PRIMARY
CONFIGURATIONS
We use our methodology to enumerate the gamut tilings
for some primary configurations. We first enumerate gamut
tilings for families of primary configurations where each
primary enlarges the chromaticity gamut [8, pp. 137]. For
this situation, the chromaticity of each primary is a vertex
of the chromaticity gamut and, for a given K , all primary
configurations satisfying the stated requirement have the
same number of gamut tilings, which we present for K =
3, 4, 5, . . . 9 in Table 3. The number of tilings for the pri-
mary configurations under consideration match the number
of tilings for polar zonohedra [9]. The enumerations of polar
zonohedra tilings in [10], provides validation of our results
for K = 4, 5, 6, and 7, and, vice versa, our results expand
the enumeration of tilings for the polar zonohedra for the
cases of K = 8 and 9. In Section S.II of the Supplemen-
tary Materials, we detail the computation time required for
obtaining these enumerations and also highlight the speed-up
resulting from the efficient enumeration approach developed
in Section V. We note that the computational requirements
for enumerating the tilings grow rapidly with increasing K
and obtaining the number of tilings for K > 9 is therefore
challenging.

Although a full discussion is beyond the scope of the
present paper, we note that three-dimensional zonotopes
have been categorized into classes based on the intercon-
nection structure of their vertices represented in projective
diagrams [11], where the zonotopes in a given class are
known to have the same number of gamut tilings [10]. Our
methodology for enumerating the tilings can also be used
to enumerate the number of tilings for each of these classes
under the constraint that the zonotope is obtained as the linear
(or affine) mapping of [0, 1]K by a 3 × K matrix A such
that any three columns of A are linearly independent. Table 4
enumerates the number of tilings for alternative classes of for
K = 3, 4, 5, 6, 7, where the polar configuration results can
be seen as one of the specific subclasses.

Algorithm 1: Enumeration of the set A
(J1,I)
M used to

determine the number of distinct gamut tilings.
given : Primary matrix P and maximality thresholdM
input : Sequences of: (a) distinct index pairs

J1, J2 . . . , JM and (b) I ∈ P (〈K 〉 \ J1)
output: m = N

(
A
(JM ,I)
M

)
and sequence

M (J1,I)
1 , . . . ,M (J1,I)

m of maximal sets
enumerating A(J1,I)M

1 begin
/* Initialization */

/* Obtain all facet spans using (8) */

2 Obtain Z
(
J̄,Ī
)
, for all J̄∈C2(〈K 〉), Ī∈P

(
〈K 〉\J̄

)
/* Initialize stack that stores strongly-compatible facet span sets

for which maximal extensions are yet to be tested */

3 n← 1
4 K n←{Z(J1,I)} // K 1 = {Z(J1,I)}, so, A

(J1,I)
1 = {K 1}

5 m← 0 // The sequence M (J1,I)
1 , . . . ,M (J1,I)

m is initially empty

6 while n > 0 do // Enumeration

7 K←K n // Pop K n from stack

8 n← n− 1
9 j← N (K )

/* Find all enlargements K ∪Z(Jj+1,I′) ∈ A
(J1,I)
j+1 */

10 foreach I′ ∈ P
(
〈K 〉 \ Jj+1

)
do

11 Using Algorithm. 2, compute compatibility
indicator κ

(
(Jl, Il), (Jj+1, I′)

)
for each

Z(Jl ,Il ) ∈ K
12 ζ ←

∏
Z(Jl ,Il )∈K

κ
(
(Jl, Il), (Jj+1, I′)

)
13 if ζ = 1 then // K ∪Z(Jj+1,I′) ∈ A

(J1,Ii)
j+1

14 if j+ 1 < M then // K ∪Z(Jj+1,I′) /∈ A
(J1,I)
M

/* Push K ∪Z(Jj+1,I′) onto stack */

15 n← n+ 1
16 K n←K ∪ Z (Jj+1,I′)

17 else // K ∪Z(Jj+1,I′) ∈ A
(J1,I)
M

/* Add to output maximal set sequence */

18 m← m+ 1
19 M (J1,I)

m ← K ∪ Z (Jj+1,I′)

VI. DISCUSSION
As result of the characterization of the vertices of the MCS
as tiling control vectors in Theorem 2, different properties
of the gamut and control vectors emerge naturally from
our framework with a geometric interpretation. For instance,
the uniqueness of control vectors for points on the gamut
boundary, which is stated and proved in the companion Part I
paper [1] and in [12], can also be seen as the consequence
of the fact that all complete sets share the same bound-
ary representation, therefore, all tiling CCFs match on the
boundary and the MCS is a singleton set for all tristimuli on
the boundary.
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Algorithm 2: Strong-Compatibility Check for Facet
Spans
given : Primary matrix P
input : Ordered pairs (J, I), (J, I′), with J, J′∈ C2 (〈K 〉)

and I ∈ P (〈K 〉 \ J), I′ ∈ P
(
〈K 〉 \ J′

)
output: Binary variable κ((J, I),

(
J′, I′

)
) = κ , which

takes a value of 1 if Z(J,I) and Z(J′,I′) are
s-compatible and 0 otherwise

1 begin
/* Initialization */

/* Obtain all facet spans using (8) */

2 Obtain Z
(
J̄,Ī
)
, for all J̄∈C2(〈K 〉), Ī∈P

(
〈K 〉\J̄

)
/* Compute parameters of parallelepipeds in each Z(J̄,Ī) */

3 c(J̄,Ī)m ,P(J̄,Ī)
m ←origin, primary index of P (J̄,Ī)

m in Z (J̄,Ī)

4 V (J̄,Ī)
m ←set of vertices of P (J,I)

m // Lemma 1 in Part I [1]

5 κ ← 1 // Initialize as s-compatible

6 foreach P(J,I)l ∈ Z(J,I) do // s-compatibility violation tests

7 foreach P (J′,I′)
l′ ∈ Z (J′,I′) do

8 if P(J,I)
l = P(J′,I′)

l′ and c(J,I)l 6= c(J
′,I′)

l′ then
// Parallelepipeds share all primaries, not the origin

9 κ ← 0

10 else if P(J,I)
l ∩P(J′,I′)

l′ = J̄∈C2(〈K 〉) and no

Z (J̄,Ī) contains both P (J,I)
l , P (J′,I′)

l′ then
// Parallelepipeds share J̄-primaries but are not

together in any J̄-facet-span
11 κ ← 0

12 else // Parallelepipeds share at most one primary

13 if Int(P (J,I)
l ) ∩ Int(P (J′,I′)

l′ ) 6= φ then
// P(J,I)

l , P(J′,I′)
l′ not essentially disjoint.

14 κ ← 0

15 else if P (J,I)
l ∩ P (J′,I′)

l′ 6=φ then
// Intersection has dimensionality 0 or 1

// At this point, P(J,I)
l ∩P(J′,I′)

l′ is a mutual

face only if there are shared vertices

16 if V (J,I)
l ∩ V (J′,I′)

l′ = φ then
// Intersection is not a face.

17 κ ← 0

The enumeration of all tiling CCFs follows immediately
from the enumeration of the gamut tilings presented in
Section V. Because of the convexity of the MCS, we see
that every CCF C can be express at t ∈ G as a convex
combination of the tiling control vectors of t, i.e., C (t) =∑

K∈K ζK (t)CTK (t), with
∑

K∈K ζK (t) = 1, where ζK : G →
[0, 1] is a weighting function associated to the tiling TK . This
representation characterization can potentially be helpful for
CCF analysis and design.

Our framework can also support, complement, and provide
additional insight into existing approaches for color control

TABLE 3. Number of tilings (N (K)) for gamuts with primaries that
individually enlarge the chromaticity gamut (≡ polar configuration).

TABLE 4. Number of tilings N (K) for all possible three dimensional
zonotope classes generated by a 3× K matrix A such that any three
columns are linearly independent for K = 3,4, . . .7.

selection and CCF design. The vertices of the MCS obtained
using our proposed approach can be used to compute and
visualize the centroid of the MCS, which has been proposed
as a method for selecting control values for driving multi-
primary displays [13]. The characterization of the MCS also
facilitates the design of CCFs to optimize a variety of objec-
tive functions modeling display performance using the pro-
jected gradient descent algorithm [14], [15]. This approach
was introduced in [16], where it was used to obtain an optimal
CCF that is perceptually robust to primary variations. When
the objective function is linear, the optimal control vectors,
are solutions to linear-programming problems over the MCS
polytope. From the theory of linear programming [17], it
is known that the optimal control vectors in this situation
correspond to vertices of the MCS, which are characterized
algebraically by Theorem 1 and geometrically by Theorem 2
as tiling control vectors. An important subcase of practi-
cal interest is the design of power consumption minimizing
CCFs for display technologies, such as organic light emitting
diodes (OLEDs), where the power can be modeled as a linear
function of the control vectors [18]. The characterization
for control vectors for optimal power in terms of gamut
tilings was introduced independently and near concurrently
in [4], [19].

The orthogonal decomposition and visualization strategy
presented in Section III-A can be used as a tool for supporting
the selection of control vectors, showing the flexibility for
color control through visualizations of the MCS. It can also
be used to visualize and compare alternative CCFs along
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specific regions of the gamut, as used in [16] for visualizing
the smoothness of CCFs, a criteria that has motivated several
methodologies for CCF design [13], [20]–[22], and is an
important feature of robustness to primary variations [23].

The concept of a facet span is the fundamental build-
ing block of the framework introduced for characterizing
gamut tilings, and builds upon the infrastructure presented
in the companion Part I paper [1] for characterizing the
gamut. Because the characterization of the gamut boundary
(Clause 3, Theorem 1 in Part I) is applicable for any three
dimensional zonotope, where P is a 3 × K matrix for which
any three columns are linearly independent, the definition of
facet span, and by extension, our characterization of tilings
are also applicable to the aforementioned broader class of
zonotopes. Characterizations of zonotopal tilings have been
previously proposed [2, Ch. 7], and the tilings for particular
classes of zonotopes have been studied [24]–[27], however,
enumerations of zonotopal tilings remains an open problem.
The computational enumeration results for K ≤ 9 presented
in Table 3 extend those obtained for polar zonotopes for
K ≤ 7 in [10]. The results in Table 4 also enumerate the
possible number of tilings for all three dimensional zonotopes
with K ≤ 8 where any three columns of the matrix P are
linearly independent.

VII. CONCLUSION
The mathematical results we develop and present provide
a complete characterization of MCS for multiprimary dis-
plays by relating the MCS to (parallelepiped) gamut tilings
of the gamut. Specifically, we show that the vertices of
the MCS polytope correspond exactly to the control vectors
obtained from CCFs associated with (parallelepiped) tilings
of the gamut. Our results provide, not only a theoretical
framework interlinking the geometry of the tristimulus gamut
with the geometry of the MCS, but also connect to applica-
tions in color reproduction, providing insight into alternative
strategies that have been proposed for multiprimary display
color control. Additionally, the characterizations of tilings
and the efficient enumeration methodology that we provide
also applies broadly to zonotopes in R3 whose generating
line segments satisfy the mild constraint that any subset of
three is linearly independent. Computational results obtained
using the proposed approach also extend known results on
enumeration of tilings for zonotopes in R3. This paper and
the companion Part I paper offer a unified and comprehensive
framework for the characterization of the gamut and color
control for multiprimary display design, modeling, and color
management.

APPENDIX A PROOF OF THEOREM 1
Let t ∈ G, ω = [ω1, . . . , ωK ]T ∈ �(t). For K = 3
the theorem holds trivially. Assume K ≥ 4, let m, with
0 ≤ m ≤ K , be the number of vector components of ω
with values in (0, 1), and assume without loss of generality
that said vector components correspond to the first m entries

of ω (otherwise, simply re-order the primaries in P). We
shall prove the contrapositive statement: m > 3 iff ω is
not a vertex of �(t). Assume first that m > 3. Because
p1, . . . ,pm are linearly dependent, there exist ν1, . . . , νm ∈
R, not all zero, such that

∑m
k=1 νkpk = 0. So let ν =

[ν1, ν2, . . . , νm, νm+1, . . . , νK ]T , with νk = 0 for k > m,
and let δ = min{ωk , 1 − ωk | k ∈ 〈m〉}. Then δ > 0 and
(ωk + δ), (ωk − δ) ∈ [0, 1], for all k ∈ 〈m〉. Observing that
ν 6= 0 and δ > 0, we see that the vectors ω− = ω − δν/‖ν‖
and ω+ = ω + δν/‖ν‖, are different from each other,
different from ω, and are inside [0, 1]K . Because Pν = 0,
we see that Pω− = Pω+ = Pω, therefore, ω−,ω+ ∈ �(t).
Observing that ω = (1/2)

(
ω− + ω+

)
, we conclude that ω

is the convex combination of two different vectors in �(t),
therefore ω is not a vertex of �(t).

To show the converse, assume now that ω is not a vertex
of �(t), so ω is the convex combination of two different
control vectors α, γ ∈ �(t), so ω = ζα + (1 − ζ )γ , for
some ζ ∈ (0, 1). Let ν = α − γ . Recalling that αk , γk ∈
[0, 1], we see for k > m that αk = γk = ωk ∈ {0, 1},
so νk = 0, and because α 6= γ , there is some k ≤ m
such that νk 6= 0. Observing that

∑m
k=1 νkpk = Pν = 0,

we see that p1, . . . ,pm are linearly dependent, and because
every set of three (or fewer) primaries is linearly independent,
we conclude that m > 3.

APPENDIX B PROOFS FOR SECTION IV LEMMAS AND
THEOREM
A. PROOF OF LEMMA 1
Obviously, I = I′ impliesZ(J,I) = Z(J,I′). We prove the con-
verse by showing its contrapositive statement: I 6= I′ implies
Z(J,I) 6= Z(J,I′). Assume I 6= I′, and let l be the smallest
integer such that I[l] 6= I′[l] (note, l ≥ 1). We see from (7)
that dJ+l−1(I) = dJ+l−1(I

′) indicating that F (J,I)
l−1 = F(J,I

′)
l−1

is a common facet for P(J,I)l and P(J,I
′)

l . Assume, without
loss of generality, that uTJ d

J+
l (I) ≤ uTJ d

J+
l (I′) (otherwise

simply swap I and I′). Consider the vertices v1 = dJ+l (I) =
dJ+l−1(I

′) + sgn
(
uTJ pI[l]

)
pI[l] and v2 = v1 + pJ[1] + pJ[2]

of the facet F (J,I)
l . We show that at least one of v1 or v2

is not contained in P(J,I
′)

l and Z(J,I′), a situation that is
illustrated in Fig. 7. Because P[J I′[l]] is full rank, there
exists a unique ν ∈ R3 such that v1 = c(

J,I′)
l + P[J I′[l]]ν,

whereby v2 = v1 + pJ[1] + pJ[2] = c(
J,I′)
l + P[J I′[l]]ν′

where ν′ = ν + [1, 1, 0]T . Through algebraic manipula-
tion we see that c(

J,I′)
l + P[J I′[l]]ν = v1 = dJ+l−1(I

′) +

sgn
(
uTJ pI[l]

)
pI[l] is equivalent to sgn

(
uTJ pI[l]

)
pI[l] =(

χ−
(
uTJ pI′[l]

)
+ ν3

)
pI′[l]+ ν1pJ[1]+ ν2pJ[2]. From the lin-

ear independence of any set of three primaries, the preceding
expression implies that both ν1, ν2 6= 0. Now if v1 ∈ P(J,I

′)
l ,

then 1 > ν1, ν2 > 0 which implies ν′1, ν
′

2 > 1 and v2 /∈

P(J,I
′)

l . Conversely, if v2 ∈ P(J,I
′)

l , then 0 < ν′1, ν
′

2 < 1
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and ν1, ν2 < 0 and v1 /∈ P(J,I
′)

l . Now choose t ∈ {v1, v2}

such that t /∈ P(J,I
′)

l . Then uTJ d
J+
l−1(I) < uTJ t = uTJ d

J+
l (I) ≤

uTJ d
J+
l (I′) < uTJ d

J+
l+1(I

′) < uTJ d
J+
l+2(I

′) < · · · < uTJ d
J+
K−2(I

′),

where we have used the fact that the sequences {uTJ d
J+
m (I)}

and {uTJ d
J+
m (I′)} are strictly increasing with m. Thus we can

conclude that t /∈ P(J,I
′)

i ,∀i ∈ 〈K − 2〉. It follows that

t /∈
⋃K−2

i=1 P(J,I
′)

i = Z(J,I′), therefore, Z(J,I) 6= Z(J,I′).

B. PROOF OF LEMMA 2

We start by establishing a relation between corresponding

tristimuli in Z(J,I) and Z
(
J,Ĩ
)
; specifically, we show that, for

any l ∈ 〈K − 2〉, t ∈ P(J,I)l , iff the tristimulus t̃ = t1 −

(t− t0) ∈ P
(
J,Ĩ
)

K−1−l . Using the fact that Ĩ[K−1−l] = I[l], we
denote by P(J,I)

l = J∪I[l] = J∪ Ĩ[K−1−l] the indices of the

three primaries spanning both P(J,I)l and P
(
J,Ĩ
)

K−1−l . Through
algebraic manipulation, we can see that respective origins of

P(J,I)l and P
(
J,Ĩ
)

K−1−l are

c(J,I)l = t0+
l−1∑
m=1

χ+
(
uTJpI[m]

)
pI[m]+

K−2∑
m=l+1

χ−
(
uTJpI[m]

)
pI[m],

c

(
J,Ĩ
)

K−1−l= t0+
l−1∑
m=1

χ−
(
uTJpI[m]

)
pI[m]+

K−2∑
m=l+1

χ+
(
uTJpI[m]

)
pI[m].

Noting that

t1 = t0 +
K∑
k=1

pk = t0 +
K∑
m=1
m6=l

χ+
(
uTJ pI[m]

)
pI[m]

+

K∑
m=1
m6=l

χ−
(
uTJ pI[m]

)
pI[m] + P[P(J,I)

l ]1, (14)

we can relate the origins of the parallelepipeds P(J,I)l and

P
(
J,Ĩ
)

K−1−l as,

c

(
J,Ĩ
)

K−1−l = t1 − c(J,I)l − P[P(J,I)
l ]1+ t0. (15)

Now, t ∈ P(J,I)l iff t = c(J,I)l + P
[
P(J,I)
l

]
ν, with

ν ∈ [0, 1]3, iff t̃ = t0 +
(
t1 − c(

J,IJ)
l − P

[
P(J,IJ)
l

]
ν
)
=

t0 +
(
t1 − c(

J,IJ)
l − P

[
P(J,IJ)
l

]
(1− ν̃)

)
, and from (15), iff

t̃ = c

(
J,Ĩ
)

K−1−l+P
[
P(J,I)
l

]
ν̃, iff t̃ ∈ P

(
J,Ĩ
)

K−1−l , where ν̃ = 1−ν ∈

[0, 1]3. Moreover, t is in a proper face of P(J,I)l iff ν has at
least one vector component in {0, 1}, iff ν̃ has at least one

vector component in {0, 1}, iff t̃ is in a proper face ofP
(
J,Ĩ
)

K−1−l .
Analogous statements follow for the relationship between the

FIGURE 7. For the facet spans Z(J,I),Z
(
J,I′

)
with I 6= I′ , the figure shows

the first pair of parallelepipeds P(J,I)
l (green) and P

(
J,I′

)
l (magenta), for

which I[l ] 6= I′[l ]. Note that F (J,I)
l−1 = F

(
J,I′

)
l−1 (blue) is a common facet for

P(J,I)
l and P

(
J,I′

)
l and of the two vertices v1 and v2 for the facet F (J,I)

l ,

v1 ∈ P
(
J,I′

)
l and v2 /∈ P

(
J,I′

)
l , whereby v2 /∈ Z

(
J,I′

)
.

tristimuli of the parallelepipeds P(J
′,I′)

l and P
(
J′,Ĩ′

)
K−1−l of the

facet spans Z(J′,I′) and Z
(
J′,Ĩ′

)
. Therefore, for every l, l ′ ∈

〈K − 2〉, P(J,I)l ∩ P(J
′,I′)

l′ is a common d-face of P(J,I)l and

P(J
′,I′)

l′ iff P
(
J,Ĩ
)

K−1−l ∩P
(
J′,Ĩ′

)
K−1−l′ is a common d-face of P

(
J,Ĩ
)

K−1−l

and P
(
J′,Ĩ′

)
K−1−l′ , where 0 ≤ d ≤ 3 denotes the dimensionality

of the face. It follows that Z(J,I) and Z(J′,I′) are compatible

iff Z
(
J,Ĩ
)
and Z

(
J′,Ĩ′

)
are compatible.

C. PROOF OF LEMMA 3
Let K be a maximal set. We shall establish that TK is
a gamut tiling by showing that the set A =

⋃
P∈TK

P
is the gamut G. Because every P ∈ TK is a subset of
a facet span, we see that P ⊆ G, therefore, A ⊆ G.
Now, let T ′ be a progressive tiling of the gamut. Observing
that both TK and T ′, are collections of essentially disjoint
parallelepipeds having exactly one parallelepiped spanned
by primaries indexed by every P ∈ C3 (〈K 〉), we see that
every P ∈ TK is a displacement of some P ′ ∈ T ′. Fur-
thermore, because TK and T ′ are collections of essentially
disjoint parallelepipeds, we have V (A) =

∑
P∈TK

V (P) =∑
P ′∈T ′K

V
(
P ′
)
= V (G). NowA and G are both closed sets

with identical volume with A ⊆ G and G is convex, whereby
we can conclude that A = G, therefore, TK is a gamut
tiling.

D. PROOF OF LEMMA 4
We start by showing the one-to-one correspondence between
the complete sets and the gamut tilings. For K = 3 the
result is direct, so assume K ≥ 4. Because for a complete
set K , the collection TK of all parallelepipeds making up
the facet spans of K is a gamut tiling, the mapping h :
K 7→ TK is a function from complete sets to gamut tilings.
We first prove that h is one-to-one. Let K and K ′ be two
different complete sets. Because K and K ′ are sets with a
facet span for every pair of primaries, there is J ∈ C2 (〈K 〉)
for which the corresponding facet spans Z (J,I)

∈ K and
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Z (J,I′)
∈ K ′ are different, where I, I′ ∈ P (〈K 〉 \ J). And

because Z (J,I)
6= Z (J,I′), we conclude from Lemma 1 that

I 6= I′. The situation is illustrated in Fig. 8. Let l be the
smallest integer such that I[l] 6= I′[l]. We see from (7)
that dJ+l−1(I) = dJ+l−1(I

′) indicating that F (J,I)
l−1 = F(J,I

′)
l−1

is a common facet for P(J,I)l and P(J,I
′)

l . Assume, without
loss of generality, that uTJ d

J+
l (I) ≤ uTJ d

J+
l (I′) (otherwise

simply swap I and I′), and let l < l ′ ≤ (K − 2) be the
index such that I′[l ′] = I[l]. Note that l ′ is well defined
because I, I′ ∈ P (〈K 〉 \ J). Then, the parallelepipeds P(J,I)l

and P(J,I
′)

l′ are both spanned by the primaries indexed by
P = J ∪ I[l] = J ∪ I′[l ′]. Using I[l] = I′[l ′], we see that

the difference between the origins of P(J,I)l and P(J,I
′)

l′ is the

vector c(
J,I′)
l′ − c(J,I)l = dJ+l′

(
I′
)
− dJ+l (I). Because l < l ′,

we have uTJ d
J+
l (I) ≤ uTJ d

J+
l (I′) < uTJ d

J+
l′ (I

′), where we

have used the fact that the sequence {uTJ d
J+
m (I′)} is strictly

increasingwithm. It follows that uTJ
(
dJ+l′ (I

′)− dJ+l (I)
)
6= 0,

thus, dJ+l′
(
I′
)
− dJ+l (I) 6= 0, so c(

J,I′)
l′ 6= c(J,I)l , there-

fore, P(J,I
′)

l′ 6= P(J,I)l . Because P(J,I)l and P(J,I
′)

l′ are the
only parallelepipeds that are spanned by P in the collec-
tions TK and TK ′ , respectively, we see that P(J,I)l /∈ TK ′ ,

P(J,I
′)

l′ /∈ TK , therefore, TK 6= TK ′ , so h maps different
complete sets to different gamut tilings, establishing that h is
one-to-one.
Next we show that h is onto. Let T be a gamut tiling.

We construct a complete set K such that TK = T as follows.
Let J ∈ C2 (〈K 〉), let TJ be the subset of parallelepipeds
from T with facets spanned by the pair of primaries P[J].
Because T is a gamut tiling, it includes one parallelepiped
for each P ∈ C3 (〈K 〉), and we see that TJ has (K − 2) paral-
lelepipeds, one per index triple J∪ i, for all i ∈ 〈K 〉 \ J. Next,
consider the following recursive procedure for arranging the
parallelepipeds in TJ in a sequence P1, . . . ,PK−2 and for
creating an associated sequence of indices I ∈ P (〈K 〉 \ J).
Let F0 = F

(
dJ−,P[J]

)
and let v0 = dJ− denote the origin

of F0. Because T is a gamut tiling, it follows that there is
a parallelepiped P1 ∈ T for which F0 is one of its facets,
whereby P1 ∈ TJ. Let F1 be the companion facet of F0 in
P1, i.e., the facet that is also spanned by P[J] and congruent
with F0. Now denote by P1 the index triple for the primaries
spanning P1, and set I[1] = P1 \J (note I[l] ∈ 〈K 〉\J). Then
v1 = v0+sgn

(
uTJ pI[1]

)
pI[1] is the origin ofF1 and uTJ d

J−
=

uTJ v0 < uTJ v1 < uTJ d
J+. For 2 ≤ l ≤ K − 2 select Pl ∈

TJ \{P1, . . . ,Pl−1} and set I[l] as follows. Let t ∈ Int(Fl−1).
Because uTJ d

J− < uTJ vl−1 < uTJ d
J+, we see that Fl−1 is not

a gamut facet, so t ∈ Int(G). Observing that uTJ v0 < uTJ v1 <
· · · < uTJ vl−1 = uTJ t and because T is a gamut tiling, there
existsPl ∈ T \{P1, . . . ,Pl−1} such that t ∈ Pl∩Pl−1, where
Pl ∩Pl−1 is a face of Pl and Pl−1. Because Fl−1 is the only
face of Pl−1 containing t, we see that Pl ∩ Pl−1 = Fl−1, so
Fl−1 is also a facet of Pl , therefore, Pl ∈ TJ. Let Pl the index
triple for the primaries spanning Pl , and set I[l] = Pl \ J

FIGURE 8. For the facet spans Z(J,I),Z
(
J,I′

)
with I 6= I′ ,

the figure shows the first pair of parallelepipeds P(J,I)
l (green) and

P
(
J,I′

)
l (magenta), for which I[l ] 6= I′[l ], which share the facet

F (J,I)
l−1 = F

(
J,I′

)
l−1 (blue). The parallelepiped P

(
J,I′

)
l ′ (magenta), which is

spanned by the same primaries as P(J,I)
l is also shown. It can be seen

that (see text) P(J,I)
l and P

(
J,I′

)
l ′ cannot be part of the same tiling.

(note I[l] ∈ 〈K 〉 \ J is distinct from I[0], I[1], . . . I[l − 1]).
Let Fl be the companion facet of Fl−1 in Pl and then vl =
vl−1 + sgn

(
uTJ pI[l]

)
pI[l] is the origin of Fl , and for l <

(K − 2), uTJ vl−1 < uTJ vl < uTJ d
J+, which establishes that

the recursive procedure can continue until l = (K − 2) at
which point vK−2 = v0+

∑K−2
j=1 sgn

(
uTJ pI[j]

)
pI[j] = dJ−+∑

j∈〈K 〉\J sgn
(
uTJ pj

)
pj = dJ+, and FK−2 = F

(
dJ+,P[J]

)
.

Because the process selects (K − 2) distinct parallelepipeds
from the set TJ with (K − 2) distinct elements, the choice
at each stage of the recursion is unique. It follows that I ∈
P (〈K 〉 \ J), and the set

⋃
P∈TJ P =

⋃K−2
l=1 Pl constitutes

the facet span Z (J,IT ), where IT = I with the subscript added
to indicate the dependence in subsequent discussion.

Repeating the preceding process for each J ∈ C2 (〈K 〉),
we obtain the set of facet spans K = {Z (J,IT ) =

⋃
P∈TJ P |

J ∈ C2 (〈K 〉)}. Because T is a gamut tiling, the facet spans in
K are compatible, making K a complete set, with TK = T .
Therefore, h is onto, and a bijection between complete sets
and gamut tilings.

We now show that every maximal set is a subset of one
and only one complete set. Let K be a maximal set with
TK denoting the associated tiling as per our notational con-
vention. Now from our preceding result, K ′ = h−1

(
TK
)
is

the unique complete set associated with the tiling TK and
TK ′ = h

(
K ′
)
= TK . Now, via the recursive construction

procedure used in the preceding part, the parallelepipeds in
the gamut tiling TK = TK ′ yield a unique facet span for
each J ∈ C2 (〈K 〉), it follows that every facet span in K is
a facet span of K ′ and therefore, K ⊆ K ′. And because h is
one-to-one, K ′ is the only complete set such that TK ′ = TK ,
therefore, the only complete set containing K .

We now establish that every facet span belongs to a com-
plete set using induction on the number of primaries K . The
result follows immediately for K = 3. Next, let M ≥ 4.
We assume that the result holds for all systems with K ≤
(M − 1) primaries and show that it holds for K = M . For the
M primary system, denote by P the 3 × M primary matrix,
t0 ∈ R3 the display black, and G the gamut. Let Z(J0,I0) be
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a facet span, with J0 ∈ C2(〈M〉) and I0 ∈ P (〈M〉 \ J0), and
assume without loss of generality, that M is the last index of
I0, that is, I0[M−2] = M (otherwise, permute the columns in
P accordingly). We will show that Z(J0,I0) belongs to a com-
plete set. Let P̌ = P[〈M−1〉] and ť0 = t0+χ−

(
uTJ0pM

)
pM ,

which together define a (M−1)-primary display system with
gamut Ǧ =

{
P̌α̌ + ť0 | α̌ ∈ [0, 1](M−1)

}
. To simplify the

ensuing discussion, we extend the convention implicit in our
preceding definitions and denote by x̌ and x corresponding
variables associated with the (M−1) andM primary systems,
respectively. Now, let Ǐ0 = I0[1, 2, . . . , (M − 3)]. Then
observing that dJ0− = t0+PχJ0− = t0+χ−

(
uTJ0pM

)
pM +

P̌χ̌J0− = ť0 + P̌χ̌J0− = ďJ0−, we see that Ž
(
J0,Ǐ0

)
=⋃M−3

l=1 P̌
(
J0,Ǐ0

)
l is a facet span for the (M−1) primary system,

where P̌
(
J0,Ǐ0

)
l = P(J0,I0)l , l = 1, 2, . . . (M − 3).

Then, via the induction hypothesis, there is a complete set
Ǩ of facet spans in Ǧ with associated gamut tiling TǨ , such

that Ž
(
J0,Ǐ0

)
∈ Ǩ . We extend the facet spans in Ǩ to obtain a

set of compatible facet spans for the M -primary system. The
process is illustrated in Fig. 9. Specifically, for J∈C2(〈M −
1〉) if χ−

(
uTJ pM

)
= χ−

(
uTJ0pM

)
, define I = [Ǐ,M ],

otherwise define I = [M , Ǐ]. In both cases, it can be seen
that the collection of facet spans Z(J,I), J∈C2(〈M − 1〉) is a
set of compatible facet spans for GM with Z(J0,I) = Z(J0,I0).
Specifically, if χ−

(
uTJ pM

)
= χ−

(
uTJ0pM

)
, we have ďJ− =

ť0 + P̌χ̌J−
= t0 + χ−

(
uTJ0pM

)
pM + P̌χ̌J−

= t0 +

χ−
(
uTJ pM

)
pM + P̌χ̌J−

= t0 + PχJ−
= dJ−, and we

see that ďJ+l (Ǐ) = dJ+l (I) and P̌
(
J,Ǐ
)

l = P(J,I)l , for

l ∈ 〈M − 3〉, and Z(J,I) = Ž
(
J,Ǐ
)⋃

P(J,I)M−2. On the

other hand, if χ−
(
uTJ pM

)
6= χ−

(
uTJ0pM

)
, we have

χ−
(
uTJ0pM

)
= χ+

(
uTJ pM

)
, thus, ďJ− = ť0 + P̌χ̌J−

= t0 +

χ−
(
uTJ0pM

)
pM + P̌χ̌J−

= t0+χ+
(
uTJ pM

)
pM + P̌χ̌J−

=

t0 + PχJ−
+

(
χ+
(
uTJ pM

)
− χ−

(
uTJ pM

))
pM = dJ− +

sgn
(
uTJ pM

)
pM = dJ− + sgn

(
uTJ pI[1]

)
pI[1]. It follows that

ďJ+l (Ǐ) = dJ+l+1(I) and P̌
(
J,Ǐ
)

l = P(J,I)l+1 , for l ∈ 〈M − 3〉, and

Z(J,I) = P(J,I)1
⋃

Ž
(
J,Ǐ
)
.

To establish that the extensions are compatible facet spans,

for all J∈C2(〈M − 1〉), we denote by PJ
def
= Z(J,I) \ Ž

(
J,Ǐ
)

the parallelepiped added in the extension Z(J,I). Let J, J′ ∈

C2(〈M − 1〉), J 6= J′. Observing that Ž
(
J,Ǐ
)
and Ž

(
J′,Ǐ′

)
are compatible facet spans, and PJ and PJ′ are spanned by
different primaries, we shall establish that Z(J,I) and Z(J′,I′)

are compatible by checking thatPJ
⋂

PJ′ ,PJ
⋂

P̌
(
J′,Ǐ′

)
l , and

FIGURE 9. Induction step for illustrating that every facet span belongs to
a complete set. See description in text.

P̌
(
J,Ǐ
)

l
⋂

PJ′ , for all l ∈ 〈M − 3〉, are faces for both of the
parallelepipeds included in the corresponding intersections.
Let C = PJ

⋂
PJ′ . If C = φ, then C is clearly a common face

of PJ and PJ′ . Assume C 6= φ. Observing that PJ and PJ′

share with Ǧ the facets F̌J = PJ
⋂

Ǧ and F̌J′ = PJ′
⋂

Ǧ,
respectively, we see that PJ = {ť + ζ sgn

(
uTJ0pM

)
pM

| ť ∈ F̌J, ζ ∈ [0, 1]} and PJ′ = {ť+ ζ sgn
(
uTJ0pM

)
pM | ť ∈

F̌J′ , ζ ∈ [0, 1]}, therefore, C = {ť+ ζ sgn
(
uTJ0pM

)
pM | ť ∈

F̌J∩ F̌J′ , ζ ∈ [0, 1]}. Because F̌J and F̌J′ are gamut facets, it
follows that F̌J

⋂
F̌J′ is a common face for F̌J and F̌J′ , thus,

a common face forPJ andPJ′ , therefore, the intersection C is
a common face for PJ and PJ′ . Now, let l ∈ 〈M−3〉 and C =

PJ
⋂

P̌
(
J′,Ǐ′

)
l .We can see that for somem ∈ {1,M−3}, F̌J =

PJ
⋂

Ǧ = PJ
⋂

Ž(J,I) = PJ
⋂

P̌
(
J,Ǐ
)

m is a common facet for

PJ, P̌
(
J,Ǐ
)

m , and P̌
(
J,Ǐ
)

m is the only parallelepiped in the gamut

tiling TǨ for which F̌J is a facet. Because P̌
(
J,Ǐ
)

m , P̌
(
J′,Ǐ′

)
l ∈

TǨ , the intersection P̌
(
J,Ǐ
)

m ∩ P̌
(
J′,Ǐ′

)
l is a common face for

P̌
(
J,Ǐ
)

m and P̌
(
J′,Ǐ′

)
l , and because C ⊆ Ǧ, we see that C =

C ∩ Ǧ =
(
PJ ∩ Ǧ

)⋂
P̌
(
J′,Ǐ′

)
l = PJ

⋂
P̌
(
J,Ǐ
)

m
⋂

P̌
(
J′,Ǐ′

)
l =(

PJ ∩ Ǧ
)⋂(

P̌
(
J,Ǐ
)

m ∩ P̌
(
J′,Ǐ′

)
l

)
= F̌J

⋂(
P̌
(
J,Ǐ
)

m ∩P̌
(
J′,Ǐ′

)
l

)

is a common face for F̌J, P̌
(
J,Ǐ
)

m and P̌
(
J′,Ǐ′

)
l , and

therefore, a common face for PJ and P̌
(
J′,Ǐ′

)
l .

Using analogous arguments, we see that the intersection C =

P̌
(
J,Ǐ
)

l
⋂

PJ′ , is a common face for P̌
(
J,Ǐ
)

l andPJ. Therefore,

the set of extensionsA = {Ž
(
J,Ǐ
)⋃

PJ | Ž
(
J,Ǐ
)
∈ Ǩ } is a set

of compatible facet spans for theM -primary system, with one
facet span for each J∈C2(〈M−1〉), and associated collection
of parallelepipeds TA = TǨ

⋃
{PJ | J ∈ C2(〈M − 1〉)}.

Because N
(

TǨ

)
=

(M−1
3

)
and no parallelepiped PJ is

in TǨ , we see that N (TA) = N
(

TǨ

)
+
(M−1

2

)
=
(M
3

)
,

therefore, A is a maximal set, thus, there is a complete
set K containing A. Because Z(J0,I0) ∈ A, it follows that
Z(J0,I0) ∈ K .
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Finally, from Lemma 2, we see that K is a set of com-
patible facet spans iff K̃ is a set of compatible facet spans.
Observing that N

(
TK̃
)
= N

(
TK
)
we can conclude that

K is maximal iff K̃ is maximal, in which case, N
(
TK̃
)
=

N
(
TK
)
=
(K
3

)
.

E. PROOF OF THEOREM 2
Let t ∈ G and ω ∈ �(t). Assume first that ω ∈ V�(t),
then, from Theorem 1, ω has at most three components in
(0, 1), and we denote by P ∈ C3 (〈K 〉) a set of indices that
includes these components. We then have the decomposition
ω = α + IK [P]ν, where ν = [ωP[1], ωP[2], ωP[3]]T ∈ [0, 1]3,
and α ∈ {0, 1}K , with αP[1]=αP[2]=αP[3]= 0 and αk =ωk ,
for k ∈ 〈K 〉 \ P. Then, t = Pω+ t0 = P[P]ν + (Pα + t0) =
P[P]ν + v, where v = Pα + t0. Because the primaries
P[P] are linearly independent, ν = P−1[P] (t− v) and t
is in the parallelepiped P (v,P[P]) ⊆ G, which we will
show belongs to a gamut tiling. Let J ∈ C2 (〈P〉) and let
I1 = {k ∈ 〈K 〉 \ P | χ+

(
uTJ pk

)
= αk}, I2 = {k ∈

〈K 〉 \ P | χ−
(
uTJ pk

)
= αk}, I = [I1,P \ J, I2], and

l = N (I1)+1 (where the orderings within the subsequences
I1 and I2 can be chosen arbitrarily); note that 1 ≤ l ≤
K − 2. Then, through algebraic manipulation, we can see
that P (J,I)

l , the l th parallelepiped of the facet span Z(J,I),
is spanned by primaries P[P], and has the origin c(J,I)l = t0+∑l−1

i=1 χ
+

(
uTJ pI[i]

)
pI[i] +

∑K−2
i=l+1 χ

−

(
uTJ pI[i]

)
pI[i] = t0 +∑

m∈〈K 〉\P αmpm = t0+
∑K

m=1 αmpm = Pα+ t0 = v, there-
fore, P (J,I)

l = P (v,P[P]). Now, from Lemma 4, Z(J,I) ∈ K ,
for some complete set K , with an associated gamut tiling TK
and tiling CCF CTK . Because P (v,P[P]) ∈ TK , we see that
ω = α + IK [P]ν = α + IK [P] (P[P])−1 (t− v) = CTK (t),
therefore, ω is a tiling control vector. To show the converse,
assume now that ω is a tiling control vector. Then, there is
a tiling T with tiling CCF CT and a parallelepiped P ∈ T
spanned by P[P], with P ∈ C3 (〈K 〉), with origin v, such that
t ∈ P and ω = CT (t) = α + IK [P] (P[P])−1 (t− v), where
α ∈ {0, 1}K is a control vector for v, with αP[1] = αP[2] =
αP[3]= 0. Therefore, ωk =αk , for k ∈ 〈K 〉 \ P, and only the
three vector components ωP[1], ωP[2], ωP[3] may be in (0, 1),
so from Theorem 1, ω ∈ V�(t).

APPENDIX C PRIMARY SYSTEMS USED IN EXAMPLES
Table 5 lists the tristimulus values corresponding to the
columns of the primary matrices used as examples in the
paper and in the subsequent appendices. The four primary
systemP(4)

e is identical to the one used in the companion Part I
Paper [1] and the five-primary system P(5)

e is an extension
of the four primary system P(4)

e , with the fifth column as
an added primary, viz. P(5)

e = [P(4)
e |p5]. Both P(4)

e and P(5)
e

are chosen in order to generate convenient renderings of
gamuts and facet spans for the visualizations and also use
a value of t0 = [35, 35, 35]T to improve the visualizations
by distancing the axes from the gamut facets and edges. The
five-primary system P(5)

w is chosen to illustrate that not all
MCS vertices are progressive tiling control vectors and is

obtained as an extension of the four primary design from
the companion Part I Paper [1, Sec. C], which was designed
to optimize gamut volume under a total power constraint.
In particular, the fifth primary of P(5)

w is defined as p5 =
(1/4)

∑4
k=1 pk , so p5 has the chromaticity of the display

white t1 and accounts for 20% of the luminance of t1. For
aiding visualization, the multiprimary system P(5)

w is used in
conjunction with t0 = [15, 15, 15]T . The six primary system
P(6)

V is the six primary design from the companion Part I
Paper [1, Appendix C], designed to optimize gamut volume
under a total power constraint (and has an associated value of
t0 = [0, 0, 0]T ).

TABLE 5. CIE XYZ tristimuli of the primaries for the multiprimary systems
used for the examples.

APPENDIX D CBS-BASED MCS VISUALIZATION:
PARAMETERS & SYMMETRY
The CBS based visualization strategy described in
Section III-A relies on the selection of an orthonormal basisB
for the CBS. For a primary matrix P, we obtain B conve-
niently from the SVD decomposition [5, pp. 411],P = USVT

of P, where S is a 3 × K diagonal matrix containing the
singular values of P, andU,V are 3×3 andK×K orthogonal
matrices. Denoting V = [v1, . . . , vK ], we note that the last
(K − 3) columns of V form an orthonormal basis for the null
space (CBS) of P [28]. Therefore, we set the basis matrix
B def
= [b1, . . . ,bK−3], with b1 = v4, . . . ,bK−3 = vK .

The bases for the primary systems we obtain for each primary
system in Section C using this procedure are listed in Table 6.

TABLE 6. Orthonormal bases of the CBS of the multiprimary systems P(5)
w

and P(6)
V .

96926 VOLUME 9, 2021



C. E. Rodríguez-Pardo, G. Sharma: Geometry of Multiprimary Display Colors II

Figure 2 described how the MCS polytope can be con-
veniently visualized using it CBS representation 4(t) and
demonstrated examples for the five and six primary systems
P(5)

w and P(6)
V . The visualizations presented in Fig. 2 for these

two systems used the bases specified in Section C and cor-
responded to the tristimulus t = [51.47, 75.35, 101.18]T

for the five primary system P(5)
w and the tristimulus

t = [89.53, 82.42, 97.20]T ; for the six primary system P(6)
V ,

in both cases, t0 = 0. We note here that MCSs also exhibit
symmetry that is induced by the symmetry of the control
space and the gamut. Specifically, the feasible control space
[0, 1]K is a polytope that is centrally symmetric [2] about the
center αc = (1/2)1, i.e., for any ν ∈ RK , αc + ν ∈ [0, 1]K

iff αc − ν ∈ [0, 1]K . Correspondingly, the control vectors α
and α̃ def

= 1 − α are referred to as the (centrally) symmetric
images of each other. Because G is an affine mapping of
[0, 1]K intoR3, G is also centrally symmetric [2], with center
tc = (1/2) (t0 + t1), and it follows that the symmetric image
of t ∈ G is t̃ def

= t1 − (t− t0). Now, observing that for
t ∈ G, α ∈ �(t) iff t = t0 + Pα and α ∈ [0, 1]K , iff
t̃ = t0 + P (1− α) = t0 + Pα̃ ∈ G, iff α̃ ∈ �(t̃), where
α̃

def
= 1− α is the symmetric image of α. It follows that

�(t̃) = {α̃ | α ∈ �(t)} is the symmetric image of �(t).
Similarly, we see that the coordinate representation of [0, 1]K

in terms of the CBS orthonormal basis B is the zonotope
A = {BTα | α ∈ [0, 1]K } in RK−3, which is centrally
symmetric with center BTαc, so the symmetric image of β ∈
A is β̃ = BT 1− β. Therefore, the coordinate representation
of �(t̃) with respect the CBS basis B is 4(t̃) = {BT α̃ |
α ∈ �(t)} = {BT (1− α) | α ∈ �(t)} = {BT 1 − BTα |
α ∈ �(t)} {BT 1 − β | β ∈ 4(t)}, which is the symmetric
image of 4(t). Figure 10 illustrates the MCS for the sym-
metric tristimuli t̃ corresponding to the tristimuli t shown
in Fig. 2, where it can be appreciated that the each of the
symmetric images 4(t̃) can be obtained by flipping the cor-
responding4(t) about the coordinate axes and translating the
resulting polytope, as indicated by the preceding mathemati-
cal relation.

APPENDIX E PARALLELEPIPED INTERSECTION CHECK
The strong-compatibility check introduced in Algorithm 2
relies on checking whether or not two parallelepipeds from
two different facet spans intersect each other. In this section,
we describe a method for efficiently performing this check
by exploiting the characterization of parallelepipeds in
Lemma 1 of the companion Part I Paper [1]. We refer the
reader to Lemma 1 and to Section II of the Part I paper,
for the results and notation that we use in the rest of this
section.

For the parallelepiped P = P (v,A) spanned by a 3 × 3
nonsingular matrix A and origin v ∈ R3, we denote by WP
the set of edges of P . Each edge of P is a line segment
E = E(w, a), where the vector a ∈ R3 is a column of A and
w ∈ R3 is a vertex of P . Then, the following lemma follows
immediately.

FIGURE 10. MCS polytopes 4(t̃) for the symmetric tristimuli
corresponding to the MCS polytopes shown in Fig. 2 for the K = 5,6
primary systems P(5)

w ,P(6)
V . The MCS polytopes are shown using

(K − 3)-dimensional CBS coordinate representations developed in
Section III-A.

Lemma 5: For a pair of parallelepipeds P and P ′ with sets
of edgesWP andWP ′ , respectively, the following properties
hold:

1) P ∩P ′=φ, iff, P ∩E ′ = P ′∩E=φ, for every E ∈WP
and every E ′∈WP ′ .

2) Int(P) ∩ Int
(
P ′
)
= φ, iff, Int(P) ∩ Int

(
E ′
)
=

Int
(
P ′
)
∩ Int(E) = φ, for every E ∈ WP and every

E ′∈WP ′ .

Because a parallelepiped has 12 edges, Lemma 5
allows one to perform the parallelepiped intersection
check as the evaluation of 24 different intersection checks
between a line segment and a parallelepiped. Thus,
the three-dimensional problem of checking the intersec-
tion of parallelepipeds is simplified to the evaluation of
one-dimensional intersections.

For a parallelepiped P , a line segment E(w,q) and t ∈ R3,
we see that t ∈ E(w,q), iff, t = w+ ζq for some ζ ∈ [0, 1],
and from Clause 1 of Lemma 1 in the Part I Paper [1], we
see that t ∈ P , iff, τ J ≤ uTJ t ≤ νJ, for all J ∈ C2(〈3〉).
Therefore, P ∩ E 6= φ iff there exists a ζ ∈ [0, 1] such that
τ J ≤ uTJw+ ζu

T
J q ≤ ν

J, for all J∈C2(〈3〉). Now, for each
index pair J∈C2(〈3〉), and for w,q ∈ R3, with uTJ q 6= 0, we
define the functions,

LJ(w,q) =
χ+
(
uTJ q

)
τ J + χ−

(
uTJ q

)
νJ − uTJw

uTJ q
,

UJ(w,q) =
χ−
(
uTJ q

)
τ J + χ+

(
uTJ q

)
νJ − uTJw

uTJ q
,

which we use to express necessary and sufficient conditions
for a non-empty intersection of a parallelepiped and a line
segment in the following lemma.
Lemma 6: For a parallelepiped P and a line segment

E(w,q), let Jq = {J ∈ C2 (〈3〉) | uTJ q = 0}. Then,

1) P ∩ E 6= φ, iff, (a) for all J ∈ Jq, τ J ≤ uTJw ≤ νJ,
and (b) for all J ∈ C2 (〈3〉) \ Jq, LJ(w,q) ≤ 1, 0 ≤
UJ(w,q) and LJ(w,q) ≤ UJ(w,q).
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Algorithm 3: Parallelepiped Intersection Check
input : Parallelepipeds P1,P2
output: Binary variable κ (P1,P2) = κ , which takes a

value of 1 if P1 ∩ P2 6= φ and 0 otherwise.
Binary variable κ◦ (P1,P2) = κ

◦, which takes a
value of 1 if Int(P1)∩ Int(P2) 6= φ and 0 otherwise.

1 begin
/* Initialization */

2 κ ← 0 // Initialize as disjoint

3 κ◦← 0 // Initialize as disjoint

4 foreach i ∈ {1, 2} do // Check intersections of Pi with edges
of P{1,2}\i

5 P ← Pi
6 P ′← P{1,2}\i

/* Compute parameters for P and P ′ using Lemma 1 in

Part I [1] */

7 Compute uJ, τ J, νJ for all J∈C2(〈K 〉)
// Parameters for P

8 Compute edge setWP ′ // Parameters for P ′

9 foreach E (w,q) ∈WP ′ do // Check conditions for

P ∩ E 6= φ and Int(P)∩ Int(E) 6= φ
10 n← 0 // Number of facet pairs J satisfying conditions

for P ∩ E 6= φ
11 n◦← 0 // Number of facet pairs J satisfying

conditions for Int(P)∩ Int(E) 6= φ
12 Jq← {J ∈ C2(〈3〉) | uTJ q = 0}
13 foreach J ∈ Jq do
14 if τ J ≤ uTJw ≤ ν

J then
15 n← n+ 1
16 if τ J < uTJw < νJ then
17 n◦← n◦ + 1

18 foreach J ∈ C2 (〈3〉) \ Jq do
19 if LJ(w,q) ≤ 1, 0 ≤ UJ(w,q) and

LJ(w,q) ≤ UJ(w,q) then
20 n← n+ 1
21 if LJ(w,q) < 1, 0 < UJ(w,q) and

LJ(w,q) < UJ(w,q) then
22 n◦← n◦ + 1

23 if n = 3 then // P ∩ E 6= φ, therefore, P ∩P ′ 6= φ
24 κ ← 1

25 if n◦ = 3 then // Int(P)∩ Int(E) 6= φ, therefore,
Int(P)∩ Int

(
P ′
)
6= φ

26 κ◦← 1

2) Int(P)∩Int(E) 6= φ, iff, (a) for all J ∈ Jq, τ J < uTJw <
νJ, and (b) for all J ∈ C2 (〈3〉) \ Jq, LJ(w,q) < 1,
0 < UJ(w,q) and LJ(w,q) < UJ(w,q).

Proof: We start by showing Clause 1. Note that P ∩
E 6= φ, iff, there is a t ∈ R3 such that t ∈ P ∩ E , iff, there

is ζ ∈ [0, 1] such that τ J ≤ uTJw + ζu
T
J q ≤ νJ, for all

J∈C2(〈3〉), iff:

• for all J ∈ Jq, τ J ≤ uTJw ≤ ν
J, and

• for all J ∈ C2 (〈3〉) \ Jq, τ J − uTJw ≤ ζuTJ q ≤ νJ −

uTJw, i.e., LJ(w,q) ≤ ζ ≤ UJ(w,q), and ζ ∈ [0, 1].
Which is possible iff, LJ(w,q) ≤ 1, 0 ≤ UJ(w,q) and
LJ(w,q) ≤ UJ(w,q).

Because Int(P) ∩ Int(E) 6= φ iff, there is t ∈ R3 such
that t ∈ P ∩ E , iff, there is ζ ∈ (0, 1) such that τ J <

uTJw+ ζu
T
J q < νJ, for all J∈C2(〈3〉), analogous arguments

establish Clause 2. �
Now, based on Lemma 5 and Lemma 6, checkingwhether two
parallelepipeds or their interiors intersect can be performed as
stated in Algorithm 3.
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