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ABSTRACT

We explore sensor scheduling strategies to maximize the operational lifetime of a user-centric image sensor
network. Image sensors are deployed for gathering visual information over a monitored region. Users navigate
within this region by specifying a time-varing desired viewpoint and the network responds with the requested
visual data. By modeling the user’s desired viewpoint in a probabilistic framework, we develop a stochastic
formulation of the network lifetime and investigate the camera scheduling strategy that maximizes the expected
value of network lifetime. By suitably abstracting the problem, we present a closed-form solution for the simplistic
case when the monitored region is divided into two parts. Using asymptotic analysis, we then present a simple
camera scheduling strategy for the general case that we conjecture to be optimal. Simulation results demonstrate
a clear advantage of the proposed camera scheduling approach over previously considered alternatives.

1. INTRODUCTION

Image sensor networks have recently evoked intense research interest due to the increasing demand for applications
such as security surveillance and disaster monitoring [1–3]. These sensor networks consist of portable wireless
sensors with sensing and communication capabilities. Because the sensors are usually battery powered, power
consumption imposes a critical constraint on the usability of these sensor networks along with other limiting
factors such as memory and computational capabilities. We consider a user-centric application scenario as
illustrated in Fig. 1, where image sensors are deployed to provide visual coverage over a monitored region. The
network allows the user to navigate around the monitored region by specifying a desired viewpoint (position and
direction) that varies over time. The user’s viewpoint determines the part of the scene that should be captured
and transmitted to the user. The desired view at the viewpoint is synthesized at a central processor (CP) by
combining parts of the image sent from selected cameras. In a densely deployed sensor network, the desired
view overlaps with the fields of view (FoVs) of a number of cameras and one may select between the cameras
providing coverage for a given region. We investigate camera selection strategies with a view to maximizing the
lifetime of the network. Although described in the context of this specific application scenario, our analysis is
general and adaptable to a broader class of sensor scheduling and general resource allocation problems.

User-centric sensor networks, such as the application scenario we consider, only collect and transmit data
requested by users thus prolong the operational lifetime of the network. However, due to the stochastic nature
of the user’s request, an optimal strategy for resource allocation problems such as power allocation, sensor
deployment and sensor scheduling in the network impose extra challenge compared to most of previous work
that consider sensor networks deployed for deterministic tasks, e.g. sensor networks that collect complete data
over a monitored area [4]. In related work [5], the authors address the problem of optimal assignment of cameras
to monitor sub-regions of a monitored area in order to maximize the lifetime of the camera network, which
provides full coverage of this monitored area. However, user interaction is not considered in the formulation. To
account for user interactions, [6,7] propose a heuristic approach by defining a coverage cost associated with each
camera depending on the remaining energy of the camera and the coverage geometry. In this work, we provide
a stochastic formulation for the sensor scheduling problem based on a probabilistic modeling of users’ requests,
and develop an optimal strategy to maximize the expected network lifetime.
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Figure 1. The target plane R is monitored by an image sensor network consists of cameras {C}N
i=1. Ci covers a sub-

region Vi of the target plane. A central processor (CP) keeps record of the energy distribution, coverage geometry of the
network, and receives the user’s request. The CP selects a subset of cameras {C}N

i=1 to provide data and use received
data to synthesize the user’s desired view U . Cameras are not allowed to communication with each other. The intensity
of sub-regions indicates coverage information: regions that covered by more cameras appear darker.

In Section 2, we model users’ requests as a random variable (r.v.) with a distribution that is either known
as a priori or estimated from the record of prior requests, and formulate the network lifetime as a r.v. that
depends on the current energy distribution in the network and the distribution of users’ request. The optimal
sensor (camera) scheduling strategy is defined as the one that maximizes the expected value of remaining network
lifetime. In Section 3, we provide an abstraction of the sensor scheduling problem that allows us to analytically
formulate the sensor lifetime in a more mathematically tractable fashion. We present exact, closed-form results
for a simplistic scenario where the monitored area is divided into two parts and approximate results for general
scenarios. The asymptotic analysis for this abstracted problem lead to a simple camera selection strategy. We
describe detailed implementation of the application scenario we consider in Section 4 and present simulation
setup and results in Section 5. Concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

In this section, we formulate the camera selection problem and define the optimal strategy to maximize network
lifetime.

The target plane R is monitored by N Cameras {Ci}N
i=1. Each camera Ci is batteried with energy wi and

covers a sub-region of R denoted by Vi. We uniformly divide R into Mr blocks {Rj , j ∈ [Mr]}, where [a]
represent the set {1, 2, . . . , a}. We represent the coverage geometry of the cameras in terms of this discretized
representation, and define Br ∈ R

N×Mr , where

Br
i,j

def= I(Rj ⊆ Vi), (1)

where subscripts i, j respectively denotes the row and column index of the matrix and a ⊆ b indicates region(set)
a lies within region(set) b, we also use I(A) to represent the indicator function:

I(A) =
{

1, if A is true
0. otherwise

and denote the subset of cameras that cover block Rj by

λr(j) def= {i|Br
i,j = 1, i ∈ [N ]}. (2)
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The user specifies a desired viewpoint and the desired view U is also uniformly divided into Mu blocks
{Uj, j ∈ [Mu]}. The coverage geometry of U is similarly defined as (1) by Bu ∈ R

N×Mu , and

Bu
i,j

def= I(Uj ⊆ Vi) (3)

and the set of cameras that cover Uj is denoted by

λu(j) def= {i|Bu
i,j = 1, i ∈ [N ]}. (4)

The discretization of R,U yields sub-optimality, finer discretization results in better performance at the ex-
pense of higher computational load. Also note that we consider uniform discretization for ease of description.
Alternatively, R,U can be divided according to different levels of intersections between U and {Vi,Ri}N

i=1. In
this section, we assume the coverage geometry represented by Br,Bu is known. Section 4 describes a practical
approach to determine Br,Bu in the image sensor network we consider.

The network provides user the desired view in a block-by-block manner. For each block Uj, j ∈ [Mu] in the
desired view U , the network selects a camera Cs satisfying the coverage requirement that Bu

s,j = 1 to transmit
relevant data to the CP where an synthesized view of Uj is generated. We assume the energy required to transmit
each block Rj is equal for all j ∈ [Mr]. The methods to extract relevant data and synthesize the desired view
are described in Section 4.3.

We assume each block on the monitored plane is requested by the user independently throughout the operation
of the network and the the probability that block Rj is requested is given by pj , where

∑Mr

j=1(pj) = 1. Let wt
j

denote the energy of camera Cj at time t. The remaining lifetime L of the network at time t is a r.v. with a
probability mass function (p.m.f) determined by {p,wt,Br} (note we consider L as a discrete r.v. in this paper),
where

p = [p1 p2 . . . pMr ]T

represents the distribution of users’ requests and

wt = [wt
1 wt

2 . . . wt
Mr

]T

stands for the energy distribution in the network at time t. We denote by E[L(p,wt,Br)] the expectation of L,
where E[·] denotes the expectation operator. At time t, if camera Cs is selected to record and transmit data, wt

will be updated as wt+1
s . The optimal camera selection strategy is defined as the strategy that maximizes the

expected remaining lifetime of the network with respect to the updated energy, i.e. E[L(p,wt+1
s ,Br)].

To this end, we first map the energies of cameras onto the monitored region and define the coverage energy
of a block Rj as the sum of the energies of all the cameras that cover Rj . We further define

mt+1
s = Brwt+1

s , (5)

thus mt+1
s ∈ R

Mr and the jth entry mt+1
j,s represents the coverage energy of Rj at time (t + 1). Specifically, the

energy of Rj becomes zero when for some block j, we have wt
i = 0 for all cameras {Ci, i ∈ λr(j)}. We refer to

the coverage energy of a block as the energy of the block for short.
In order to obtain a useful and tractable formulation of our problem, we approximate the remaining lifetime

as a function of {mt+1
s ,p} . Note that in this process, we have collapsed the dependency of L on the two

parameters i.e. the updated camera energies wt+1 at time t + 1 and the coverage matrix Br into the single
parameter mt+1

s . In this process, we are neglecting the fact that the change in the energy of the selected camera
Cs will in fact change the energy distribution not only over the block being requested, which we shall account
for, but also over the other blocks for which Cs provides coverage. Since the parameters mt+1

s are updated afresh
at each time step by utilizing (5), scheduling based on this approximation does not cause a serious compromise
in optimality. Now if block Uj is requested at time t, the optimal camera selection strategy is to select a camera
from λu(j) so that the network has maximum expected lifetime with updated energy:

st = argmax
i∈λu(j)

E[L(mt+1
i ,p)] (6)

So far, we have formulated the problem of optimal camera selection to maximize network lifetime based on the
independence assumption of {Rj}Mr

j=1 being selected and transmitted. In Section 3, we address the optimization
problem in (6) and present corresponding camera selection strategy.
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Figure 2. An abstraction of the sensor scheduling problem. M boxes Bi(i ∈ [M ]) contains mi balls respectively. At each
request, a ball is taken from Bi with probability pi. After L requests, one of these boxes first become empty. We are
concerned with E[L].

3. CAMERA SELECTION FOR LIFETIME MAXIMIZATION
3.1. Abstraction of Sensor Scheduling
Figure 2 illustrates an abstraction of the sensor scheduling problem: Consider M boxes B1,B2, . . . ,BM respec-
tively containing m1, m2, . . . , mM balls. At each (discrete) time instant, a ball is requested from one of these
boxes where the probability of the request from Bi is pi for some 0 < pi < 1 and

∑M
i=1 pi = 1. We are con-

cerned with the number of requests L after which one of these boxes first becomes empty. This abstraction
models our scheduling problem of (6) where M corresponds to the number of blocks in the monitored region,
m = [m1 m2 . . . mM ]T represents the updated block-wise coverage energy mt+1

s when camera Cs is selected,
p = [p1 p2 . . . pM ]T represents the probabilities with which the blocks are requested (as before) and L denotes
the remaining lifetime. For notational simplicity, we drop the superscript t, s in our discussion.

We first address a simplistic scenario where M = 2, for which an analytical solution of E[L(m,p)] is obtained.
In the general case that M > 2, we present a recursive approach to evaluate E[L(m,p)]. The computational
load of this recursive approach is prohibitive, motivating us to further examine efficient approximations and the
asymptotic behavior of E[L(m,p)]. Based on the asymptotic analysis of E[L(m,p)], we develop a simple camera
selection strategy which maximizes the expected network lifetime.

In the case M = 2, we assume m1 ≤ m2 without loss of generality and present the following result,
Proposition 1: When M = 2, the distribution of L can be written as:

Pr(L = l) = I(m1 ≤ l ≤ (m1 + m2 − 1))α(l − m1; m1, p)
+I(m2 ≤ l ≤ (m1 + m2 − 1))α(l − m2; m2, 1 − p) (7)

where α(τ, b) represents the negative binomial distribution [8], and the p.m.f at k is

α(k; τ, b) =
(

k + τ − 1
k

)
bτ (1 − b)k (8)

Let Fα(k; τ, b) def=
∑k

i=0 α(k; τ, b), the expectation of L can be obtained as

E[L] = β(l − m1, m1, p) + β(l − m2, m2, 1 − p) (9)

where

β(k, τ, b) def=
k∑

i=0

iα(i; τ, b) + τFα(k; τ, b) (10)

=
nFα(k; τ, b) − (k + 1)α(k + 1; τ, b)

b
(11)
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Proof: When M = 2, we can write

Pr(L = l) = Pr(L = l, s−1 = 1) + Pr(L = l, s−1 = 2) (12)

where s−1 represents the index of box from which the last ball is selected. We note α(k; τ, b), the p.m.f of
the negative binomial distribution (8), represents the probability that in (k + τ) Bernoulli trials with a success
probability b, k are failures and τ , including the last trial, are successful. (12) can then be interpreted as follows:
α(l − m1; m1, p) represents the probability that B1 becomes empty at the lth request, prior to which (m1 − 1)
balls have been taken from B1 and (l − m1) taken from B2. α(l − m2; m2, 1 − p) can be similarly interpreted.
The last ball must be taken from B1 for m1 ≤ l < m2, and can be from either B1 or B2 for m2 ≤ l < (m1 + m2).

Equation (9) is easily obtained by substituting (10) into the definition E[L] =
∑m1+m2−1

l=m1
lPr(L = l). We

next show the equality between (10) and (11). Let qk
def= α(k; τ, b) for short, the equality qk+1

qk
= τ+k

k+1 (1 − b) can
be obtained by expanding qk according to (8), we can further write

(k + 1)qk+1 = kqk(1 − b) + qk(1 − b)τ. (13)

Replacing k by i for i ∈ [k], we obtain k equations which can be stacked together to obtain
∑k

i=1 iqi and
eventually (11). �

Note Fα(k; τ, b) represents the cumulative distribution function (c.d.f) of the negative binomial distribution,
which is characterized as a regularized incomplete beta function [9] and can be efficiently evaluated as a standard
scientific routine. (9) and (11) allow exact evaluation of E[L]. We next consider the case when M > 2 and
assume m1 ≤ m2 ≤ . . . ≤ mM without loss of generality. Consider another experiment that uses the first
k(2 ≤ k ≤ M), boxes in our abstraction, each ball is requested from box Bi(i ∈ [k]), with the normalized
probability pi

k
def= piPk

i=1 pi
. In this experiment, let Lk denote the number of requests after which one of the boxes

{Bi}k
i=1 becomes empty. We present the following method to recursively calculate the p.m.f of Lk from Lk−1.

Proposition 2: The p.m.f of Lk(2 ≤ k ≤ M) can be recursively calculated from the p.m.f of Lk−1,

Pr(Lk = l) = I(m1 ≤ l ≤ π(k))
mk−1∑
j=0

(
l − 1

j

)
pj

k(1 − pk)l−jPr(Lk−1 = l − j)

+I(mk ≤ l ≤ π(k))
(

l − 1
l − mk

)
pmk

k (1 − pk)l−mkPr(Lk−1 > (l − mk)) (14)

where

π(k) def= (
k∑

j=1

mj − k + 1). (15)

represents the maximum possible value of L.

Proof: We first rewrite

Pr(Lk = l) = Pr(Lk = l, s−1 ∈ [k − 1]) + Pr(Lk = l, s−1 = k), (16)

the first term of (16) can be written as

Pr(Lk = l, s−1 ∈ [k − 1]) =
mk−1∑
j=0

Pr(nl
k = j,

k−1∑
i=1

nl
i = l − j, Lk−1 = l − j)

=
mk−1∑
j=0

Pr(nl
k = j,

k−1∑
i=1

nl
i = l − j)Pr(Lk−1 = l − j) (17)
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where nl
k denotes the number of balls taken from Bk out of l requests. Equation (17) utilizes the Bayesian

theorem and relies on the independence between the two terms therein. We observe each term of the summation
in (17) corresponds to that in (14). The second term in (16) can be similarly interpreted. �

We note (7) is a special case of (14) by observing

Pr(L1 = j) = I(j = m).

Given (14), we can use E[Lk] =
∑π(k)

l=m1
lPr(Lk = l) to directly evaluate the exact value of expected network

lifetime, however, the computational load becomes prohibitive as k increases. We next present an alternative
representation of E[Lk] which enables efficient approximation. We first denote the multinomial distribution by
ωδ(k,b), where δ represents number of different possible results of a trail, k is the total number of trails and
b = [b1 b2 . . . bδ] represents probabilities of each possible result. The p.m.f of the multinomial distribution at
n is ωδ(n; k,b) = k!

n1!n2!...nδ!b
n1
1 bn2

2 · · · bnδ

δ for non-negative integer-valued n which satisfies
∑δ

i=1 ni = k, where
ni denotes the total number of the ith result out of k trials. The c.d.f of ωδ(k,b) at τ can be written as
Ωδ(τ ; k,b) def= Pr(n1 ≤ τ1, n2 ≤ τ2, . . . , nδ ≤ τδ).

Proposition 3: The expectation of L can be represented as

E[L] =
π(M)∑
l=m1

ΩM (m − 1; l − 1,p) + (m1 − 1)ΩM (m − 1; m1 − 1,p) (18)

where π(·) is defined in (15) and 1 denotes an M × 1 vector, each of whose entries is unity.

Proof: We first observe the following property for a r.v. X that takes on non-negative integer values in the
closed interval [a, b]:

E(X) =
b∑

i=a

Pr(X ≥ i) + (a − 1)Pr(X ≥ a) (19)

Equation (19) can be obtained by simply expanding Pr(X ≥ i) =
∑b

j=i Pr(X = j) for each i then summing up
the resulting equalities for i = a, a + 1, . . . , b, and then reorganizing resulting terms on the right hand side.

Equation (19) applies to L since L takes positive integer values in the closed interval [m1, π(M)]. We next
note Pr(L ≥ l) can be alternatively represented as Pr(nl−1

i ≤ mi − 1, i ∈ [M ]), indicating that after (l − 1)
requests, there is at least one ball left in each box. We can write

Pr(L ≥ l) = Ω(m − 1; l − 1,p). (20)

Substituting (20) into (19), and reorganizing resulting terms, we obtain (18). �
Equation (18) represents E(L) in terms of the c.d.f of a multinomial distribution, the latter can be efficiently

approximated with high accuracy [10]. We thus obtain an approximation of E[L] as

Ẽ(L) =
π(M)∑
l=m1

Ω̃M (m − 1; l − 1,p) + (m1 − 1)Ω̃M (m − 1; m1 − 1,p), (21)

where Ω̃(·) denotes approximation of Ω(·). (21) enables accurate approximation of E[L] by (π(M) − m1 + 2)
calls of the function Ω̃(·), which achieves substantial acceleration compared to direct evaluation of E[L] based on
(13).

We experimentally study the accuracy of this approximation and illustrate the result in Table 1. We observe
from Table 1 that highly accurate approximation of E(L) can be achieved by using the proposed representation
(18) and approximation of the c.d.f of a multinomial distribution [10]. However, (18) doesn’t immediately leads
to any intuition for a camera selection strategy. To this end, we proceed to investigate the asymptotic behavior
of E[L] when m is sufficiently large.
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Exact Approx Simulation
m = 5 13.55 13.59 13.33
m = 10 30.65 30.54 30.42
m = 20 66.59 66.29 66.86
m = 30 103.47 103.04 102.91

Table 1. An experimental evaluation of the approximation for (18) using [10]. Three boxes contain (m,m, 2m) balls
respectively. The probabilities that a ball being requested from one of these boxes are correspondingly (0.25, 0.25, 0.5).
Exact: the exact lifetime calculated by exhaustively calculating the c.d.f of the multinomial distribution in (18). Approx:
approximate lifetime using (21). Simulation: The average lifetime resulting from 200 Monte Carlo simulations.

0 500 1000 1500 2000
Number of balls in each box

10
1

10
1

10
12

10
10

10

10

10

10
2

10
0

R
e
la
ti
v
e
e
rr
o
r
in

E
[L
]

p=0.25

p=0.4

p=0.45

p=0.5

(a)

0 500 1000 1500 2000
Number of balls in each box

10

10

10
5

10

10

10
2

10
1

10
0

R
e
la
ti
v
e
e
rr
o
r
in

E
[L
]

p=0.5

(b)

Figure 3. An experimental evaluation of the approximation for E[L] using (22). Two boxes B1,B2 contain the same
number of balls m1 = m2, each experiment takes a ball from B1,B2 with probability p and (1− p), respectively. Abscissa
represents the value of m1, m2, ordinate represents the relative error. (a): simple approximation using min( m1

p
, m2

1−p
). (b):

refined approximation for the case m1
p

= m2
1−p

using the the bottom of (22).

Proposition 4: When M = 2 and m1, m2 are sufficiently large,

E[L] ≈
{

min(m1
p , m2

1−p ) if m1
p �= m2

1−p

m1
p +

√
m1(1−p)

2πp2 +
√

m2p
2π(1−p)2 if m1

p = m2
1−p

(22)

Due to length considerations, we skip the proof in this paper. Instead, we experimentally evaluate the accuracy
of (22) and illustrate the results in Fig. 3. We observe that (22) achieves satisfactory accuracy and the relative
error which is defined as E(L)−Ẽ(L)

E(L) where Ẽ(L) is the approximation using (22), converge to 0 at an exponential
rate as the number of balls increases. We also observe in the case m1

p = m2
1−p , even the simple approximation

min(m1
p , m2

1−p ) ( the curve labeled by p = 0.5 in Fig. 3(a)) actually achieves satisfactory accuracy (1% relative
error) for many practical applications. This observation leads us to the following approximation for the general
cases where M > 2,

E[L(m,p)] ≈ min(
m1

p1
,
m2

p2
, . . . ,

mM

pM
) (23)

This approximation is close provided the energy in each camera is large as compared to the energy for each access
and provided the difference between the two smallest values in {mi

pi
}N

i=1 is not negligible. In this paper, we skip
further analysis and refinement of (23) and proceed to propose and experimentally evaluate camera selection
strategies based on this conjecture.

SPIE-IS&T/ Vol. 7257  72570H-7



3.2. Camera Selection Strategy

Given the optimal criteria for camera selection defined in (6) and the approximation of expected network lifetime
(23), we can write the optimal camera selection strategy when block Uj is requested by the user:

s = argmax
i∈λu(j)

{min(
mi,1

p1
,
mi,2

p2
, . . . ,

mi,Mr

pMr

)} (24)

where we dropped the superscript t. An interpretation of (24) is to maximize the energy of the hot-spot block
in the monitored plane. The hot-spot block refers to the block, the energy of which divided by the probability
that this block is requested, has the minimum value in the (subregion of) monitored area.

In cases where the hot-spot block doesn’t belong to any of the cameras that cover Uj , the optimal strategy
is as follows:

s = argmax
i∈λu(j)

{min(
mi,k

pk
, k ∈ κr(i))} (25)

where κr(i) denotes the set of blocks in the monitored region R covered by camera Ci, i.e. κr(i) def= {k|Br
i,k(i) =

1}. Equation (25) indicates that when block Uj is requested, we maximize the energy of the hot-spot block in
the sub-region covered by the set of cameras that covers Uj . We refer to the camera selection strategy described
above as OptCOV.

OptCOV present several advantages: 1) OptCOV represent an optimized strategy based on a stochastic
formulation of the network lifetime, thus we expect a longer lifetime by scheduling sensors using OptCOV. 2)
(25) only requires an ordering operation which minimize the load on the CP and enables real-time applications.
3) User interactions are explicitly addressed in the model, thus the network can acquire or dynamically estimate
information about users’ requests and schedule sensors accordingly.

We introduce two other camera selection strategies for the purpose of comparison:

1. View Angle Cost (MinANG): The camera that has the most similar viewing directions with user’s viewpoint
at each block is selected. This approximately select the camera that achieves the highest quality provided
that all the cameras are at (almost) same distance from the target plane so that image quality is affected
primarily by viewing direction.

2. Coverage Cost (CovCOST): As in [7], we define a coverage cost ξi for camera Ci as the sum of contributions
from all blocks covered by Ci, and the contribution of each individual block is defined as the inverse of its
energy:

ξi =
∑

j∈λr(i)

1
mj

(26)

Given this definition of coverage cost, those cameras that have large overlapping FoVs with other cameras
have small cost and therefore are selected more frequently than those cameras that solely cover a part of
the monitored scene. Thus selection of cameras with minimal coverage cost results in a longer network
lifetime.

The performance of all these strategies will be compared in Section 5.

4. SYSTEM SCENARIO

We describe the implementation of the overall system scenario as illustrated in Fig. 4. In the initialization stage,
parameters of cameras are estimated. Based on these estimated parameters, the coverage information can be
obtained. For each of desired viewpoints requested by users during the operation, the network synthesizes the
desired view using data from a selected subset of the cameras.
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Figure 4. The operation of the network.

4.1. Initialization

Camera Calibration: Using a homogeneous representation, the image coordinate x = [x1 x2 x3]T of a 3D point
X = [X1 X2 X3 1]T is given by x = PX, where P ∈ R

3×4 denotes the camera projection matrix [11] which is
determined by intrinsic parameters (such as focal length) and extrinsic parameters (orientation and location) of
the camera. The pixel coordinates of x can be obtained as [x1

x3

x2
x3

]T . Plane-Based camera calibration techniques
such as [12] can be used to estimate the parameters of cameras. Although the original algorithm in [12] is
designed to calibrate a single camera, it can be extended to calibrate multiple cameras with varying intrinsic
parameters [13].

Coverage Estimation: The coverage of each camera’s view on a target plane can be obtained from the camera
geometry. A world point is covered by a camera if the image coordinate of this point lies within the FoV of the
camera. An example of coverage estimation can be found in Fig. 1. By considering the center of each block
in the monitored plane R and desired view U , we can respectively estimate the coverage matrix Br,Bu, which
serve as inputs to our camera scheduling strategy as described in Section 3.

4.2. Camera Scheduling

As described before, the desired view U is discretized into Mu blocks {U}Mu

i=1 and processed in sequence. For
each block Ui, we select camera Cs according to one of the three camera selection strategies (OptCOV, MinANG,
CovCOST) in order to capture and transmit relevant data.

4.3. Image Mosaicing

Once the raw data for all the blocks in the desired view are transmitted from selected cameras and received by
the CP, they must be transformed and mosaiced together to synthesize the desired view. General mosaicing of
3D scenes needs 3D geometric information which is hard to obtain. However, the mosaicing can be described by
a homography [11] for the texture image of a planar surface (our case) or images captured by a rotating camera.

Without loss of generality, we assume X3 = 0 for all world points X on the monitored plane and let Xh =
[X1 X2 1]T where we neglect X3 = 0, represents a world point on this plane. The image coordinate x can
be written as: x ∼ HXh, where ∼ indicates equality up to a scale factor and H ∈ R

3×3 is a matrix denoting
the homography between the camera plane and the target plane. H can be calculated from the parameters
of calibrated cameras. As illustrated in Fig. 5, two projections x1,x2 of world point Xh are connected as
H−1

1 x1 = Xh = H−1
2 x2, thus x2 can be obtained from x1 as x1 = H1H−1

2 x2. This relation allows the view at
user’s desired viewpoint to be rendered from corresponding regions in the selected camera.

5. SIMULATIONS

We simulate a monitored plane of size 4m × 3m (typical size of a wall). To simulate ad hoc deployment, N
cameras are placed randomly within a 4m × 3m field located 3m from the target plane, and the cameras are
pointed toward the target plane with a random rotation within ±0.1 radian along each of the three axes to
simulate practical variability in camera placement. All cameras (including the user’s viewpoints) are assumed
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Figure 5. image coordinate of Xh in the second (desired) view x2 can be obtained from x1 through the homography.

to have images of 200 × 200 (in pixel units), with a focal length f0 = 218.75 (in pixel units). For an image
sensor with size 20mm × 20mm, this would correspond to focal length of f0 = 21.875mm. The camera images
are generated by using the scene geometry (homography) with the camera model of Section 4.3 when requested.
Pixel values at non-integer locations are generated by bilinear interpolation.

The user’s viewpoints are generated in our simulations from a random walk on a 16 × 16 grid in the plane
of the cameras starting at the center (x = 2m, y = 1.5m, z = 3m). Subsequent viewpoints are chosen from the
neighboring 8 grid points and the current position with equal probability, and the user’s views are assumed to
be directed toward the target plane with random rotation within ±0.1 radian along each of the three axes. We
generate Mu = 100 user’s viewpoints in each simulation. Each desired view is divided into 100 blocks and each
block is synthesized by data transmitted from a selected camera.

We first conduct a Monte Carlo simulation in order to determine the number of cameras required in order to
provide adequate coverage of the target plane [7]. We found that using a focal length f = 218.75 (in pixel units),
a minimum of 18 cameras are necessary in order to ensure that the target plane is covered with a confidence of
99.5%.

We simulate a scenario that all cameras start with 3J of energy, which correspond to each camera being able
to transmit 3 full frames of images. At each time moment, a desired view of 200 × 200 is requested. In order
to increase coverage redundancy, we use twice the minimum number of cameras necessary for full coverage, i.e.
N = 36. All results presented represent averages over 100 simulations.

Figure 5 compares the percentage coverage on the target plane over time for the different camera selection
methods. The abscissa of Fig. 5 and Fig. 5 represent time, which is equivalent to the sequence number of the
current request. We observe that OptCOV camera selection maintains significant higher percentage of coverage
in the network. We define the network lifetime as the duration during which 95% of the monitored area is
covered. Then OptCOV prolongs the network lifetime by a factor of 1.5 compared to CovCOST and 3 compared
to MinANG. The improvement is achieved by allocating the energy consumption dynamically according to
remaining energy in the cameras and the distribution of user’s requests. We also observe the simple heuristic
approach of CovCOST prolongs network lifetime by a factor of 2 compared to MinANG which completely ignores
power considerations.

Figure 5 compares the PSNR of the mosaiced image. Initially, the image qualities are about the same while
MinANG outperforms by about 1dB since the camera with closest viewing direction is selected. However, as time
progresses MinANG loses coverage and the image quality degrades drastically and fails to meet user requirement
( say below 35dB). By preserving more camera based on anticipated coverage requirement, OptCOV provides
high image quality over a longer duration and achieves higher level of user satisfaction. The performance of
CovCOST lies in between MinANG and CovOPT. This clearly demonstrates the advantage of using OptCOV
in an energy-constrained scheduling scenario.
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Figure 6. comparison of percentage coverage.
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Figure 7. comparison of distortion in output image.

6. CONCLUSION

A stochastic model is developed for the lifetime of a battery-powered user-centric image sensor network and
based on the model, sensor scheduling strategies are developed in order to maximize the operational network
lifetime. Through a suitable abstraction of the problem, we obtain closed-form and approximate expression for the
expected value of network lifetime, which form the basis of our proposed scheduling schemes. The computational
load of the proposed sensor scheduling approach is very light, and user interactions are explicitly addressed.
Simulation results demonstrate the utility of the proposed approach, offering a significant improvement in lifetime
in comparison with alternative scheduling schemes.

Our analysis in this paper is presented in the context of the specific application scenario of a user-centric
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image sensor network. However, we believe that the underlying abstraction and analysis are also applicable in a
broader set of sensor scheduling and more general resource allocation problems.
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