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ABSTRACT Displays that render colors using combinations of more than three lights are referred to
as multiprimary displays. For multiprimary displays, the gamut, i.e., the range of colors that can be
rendered using additive combinations of an arbitrary number of light sources (primaries) with modulated
intensities, is known to be a zonotope, which is a specific type of convex polytope. We develop a complete,
cohesive, and directly usable mathematical characterization of the geometry of the multiprimary gamut
zonotope. Our characterization immediately identifies the surface facets, edges, and vertices and provides a
parallelepiped tiling of the gamut. We relate the parallelepiped tilings of the gamut, that arise naturally in
our characterization, to the flexibility in color control afforded by displays with more than four primaries,
a relation that is further analyzed and completed in a Part II companion paper. We demonstrate several
applications of the geometric representations we develop and highlight how the paper advances theory
required for multiprimary display modeling, design, and color management and provides an integrated view
of past work on on these topics. Additionally, by demonstrating that the mathematical results we develop
and present also apply more broadly to a large class of three dimensional zonotopes, we highlight how our
work on gamut representations connects with and furthers the study of zonotopes in geometry.

INDEX TERMS Multiprimary displays, color gamut, gamut surface, color control, zonotope, gamut tiling.

I. INTRODUCTION
The CIE system [1] provides the foundation for the mathe-
matical representation of color, which in turn serves as the
basis for frameworks for a signal processing systems ori-
ented approach to modeling and control for color devices
and systems [2]–[5]. At the root of the CIE system are
tristimulus, i.e. 3-tuple, representations of color that are a
linear function of the spectral power distributions of light
seen by the observer. For additive display systems, where
the spectral power distribution produced by the display can
be modeled as a linear combination of primaries, i.e., light
sources whose intensities are varied, the end result is a rela-
tively simple devicemodel that can be represented as channel-
wise nonlinearities coupled with a linear transformation [6].
For traditional three primary displays, this model can also
be readily inverted and it is the basis for color management
for most display devices. Compared to traditional three pri-
mary displays, multiprimary displays that use more than the
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three primaries, offer a key advantage that they can enlarge
the gamut, i.e., the range of colors that the display can
produce. The gamut is of fundamental interest in display
design and color management. For traditional three primary
displays, the control values required to reproduce a given
color are uniquely determined, whereas this is not the case
for multiprimary displays. Therefore a characterization of the
flexibility available in color control and alternative strategies
for color control are also of key interest for multiprimary
displays.

Our work in this paper traces its roots back to geomet-
rical representations of multiprimary display and surface
color gamuts developed and introduced independently and
near concurrently in [7], [8], and [9]. Specifically, for the
efficient computation of gamut volumes in perceptual color
spaces, we utilized parallelepiped tilings of multiprimary
gamuts in [7]. Centore [8] noted that the tristimulus gamut
of surface colors that are formed by (spectrally variable)
reflection of incident light corresponds to (the limit of a)
zonotope [10, Chap. 7], which is a specific type of convex
polytope. Once the connection between the gamut of surface
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colors and zonotopeswas established, it also became apparent
that the gamut of a multiprimary display also corresponds to a
zonotope and that the parallelepiped tilings in [7] correspond
to tilings of the gamut zonotope. Centore and Brill [9] utilized
the zonotope representation for color control in multiprimary
displays. Using the zonotope representation, Centore [11]
also demonstrated that color control values are unique for
colors on the gamut surface. While these prior works focused
on individual aspects of the mathematical representation and
geometrical characterization of multiprimary display color,
in this and a companion Part II paper [12], we aim to provide
a complete, cohesive, relatively self-contained, and readily
usable characterization of the gamut and color control for
multiprimary displays. The formal notation and terminology
that we adopt also allows for more precise and clear, albeit
intricate, presentation than has been previously attempted.
Finally, we note that our work also advances known results in
geometry, specifically, in the representation of zonotopes and
their tilings within the specific three-dimensional context that
is relevant for color representation and under the physically
meaningful constraint of nonnegative components for the
vectors representing the primaries. We defer a detailed dis-
cussion of this last point to Section VI because the framework
we develop also provides clearer context for the discussion.

This manuscript is organized as follows. Section II
introduces notational conventions and the mathematical
context for the paper. Section III introduces the physi-
cal/mathematical model for color displays that we use in our
work, formally defines the gamut and color control func-
tions, and points out the connections and differences with
the general theory of zonotopes. Section IV develops and
presents our main mathematical results as a representation
theorem for the gamut of multiprimary displays and an asso-
ciated algorithm for obtaining the representation. Section V
relates theory we develop to applications, outlining how the
mathematical representations we develop in Section IV can
be used in the analysis and design of multiprimary displays
and color control strategies. The paper concludes with a sum-
mary and discussion in Section VI. Appendices A–G provide
proofs for the mathematical results, specifications of primary
systems used in the examples, additional sample results, and
visualizations.

II. NOTATIONAL CONVENTIONS AND PRELIMINARIES
To streamline the subsequent presentation, this section intro-
duces notational conventions for describing index sets,
their subsets, and combinations; basic functions; topological
notions of interior, exterior, and boundary; and background
results from the geometry of polytopes [10], [13] that we use.
For easy reference, Table 1 lists the symbols and notational
conventions used in the paper.

A. SETS, VECTORS, COMBINATIONS, INDICATOR
FUNCTIONS
We denote the empty set by φ. For a positive integer n and a
nonnegative integer k , k ≤ n, the standard notation

(n
k

)
is

TABLE 1. List of symbols/notation.

used to denote the number n!/ (k!(n− k)!) of possible
combinations with k elements that can be selected from
n distinct objects. For any positive integer M , we denote
by 〈M〉 the set {1, 2, 3, . . . ,M} of integers from 1 throughM .
We use a singleton integer set and its integer element inter-
changeably. Also, when not explicitly defined as a sequence,
if required, we equivalently consider a set of integers as
a sequence with the elements arranged in increasing order.
Given a set of integer indices I, we denote the set of all
possible permutations of elements of I by P(I), and for any
integer m, 0 ≤ m ≤ N (I), we denote the set of all possible
combinations of m elements chosen from I by Cm(I), where
N (I) denotes the cardinality of the set I. It follows imme-
diately that N (Cm(I)) =

(N(I)
m

)
and N (P(I)) = N (I)!.

Given two sets I and J of indices, we denote by I \ J the
set of indices in I not contained in J, also referred to as the
difference between the sets (in that order).

Standard notation is used for matrices and vectors, with
boldface upper-case letters representing matrices and bold-
face lower-case letters representing vectors. Transposes for
vectors andmatrices are denoted by the superscript T . The set
of real numbers is denoted by R and the `2-norm of a vector
x ∈ RN is denoted by ‖x‖ =

√
xT x. For any N ×M matrixA

and a sequence (set) of indices I ⊂ 〈M〉 we denote by A[I]
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the submatrix of A formed by the selection of the columns
indexed by I in that sequence. We denote theM ×M identity
matrix by IM =

[
eM1 , e

M
2 , . . . e

M
N

]
, where eMi denotes the

ith column of IM . Then using our afore-mentioned convention
for indexing columns IM [[i, j, k]] denotes the M × 3 matrix
that has a 1 in the ith, jth, and k th rows in the first, second, and
third columns, respectively, and other entries as zeros. For an
ordered basis b1,b2, . . . ,bN for RN , the orientation is said
to be positive or negative based on whether the determinant
of the matrix B = [b1,b2, . . . ,bN ] is positive or negative,
respectively.1 Specifically, in R3 the right-hand rule applies
to an ordered basis with a positive orientation. For a N × 2
matrix B = [b1,b2], with b1 and b2 denoting the columns,
we define ⊗B ≡ b1 ⊗ b2, where ⊗ denotes the vec-
tor cross-product following the right-hand-rule convention.
If x, y, z ∈ R3, we have det ([x, y, z]) = (x⊗y)T z = (y⊗z)T

x = (z⊗ x)T y = −(x⊗ z)T y.
We define the positivity indicator function χ+: R→ {0, 1}

as χ+(x) = 1, for x > 0, and χ+(x) = 0, otherwise. The
negativity indicator function is then defined by χ−(x) =
χ+(−x) and we use sgn(x) = χ+(x) − χ−(x) to denote the
sign of x. For x, y ∈ R with x < y we denote by [x, y]
and (x, y), respectively, the closed and open intervals of real
numbers between x and y.

B. AFFINE SUBSPACES, INTERIOR, EXTERIOR, BOUNDARY
For any M < N linearly independent vectors b1,b2, . . . ,
bM ∈ RN and any vector v ∈ RN , the set U = U (v,B) =
{Bx+v | x ∈ RM

} defines anM -dimensional affine subspace
of RN , where B = [b1,b2, . . . ,bM ] and conversely such a
representation exists for any M dimensional affine subspace
of RN . We denote the open ball in U centered at x with
radius r byDU (x, r) = {t ∈ U | ‖t− x‖ < r}, or byD (x, r)
when U is RN .

For any set A ⊂ RN , let UA be the affine subspace of
minimum dimensionality, d , that contains A. Then we say
that A has dimension d and that a point x is in the interior2

of a set A if there exists a δ > 0 such that DUA (x, δ) ⊂ A.
Conversely, we say a point x is exterior to the set A if there
exists a δ > 0 such that DUA (x, δ) ⊂ Ac, where Ac

=

UA \ A denotes the complement of A in UA. We denote by
Int (A) the set of all points in the interior of the set A. The
boundary BA of a setA is defined as the set of points that are
neither in the interior of nor the exterior of the set. One can
readily see that any point t∈UA lies in the boundary BA ofA
if and only if (iff) DUA(t, δ)

⋂
A 6=φ and DUA(t, δ)

⋂
Ac
6=φ

for all δ>0. For a closed set, it is relatively straightforward to

1Our definition for orientation of a basis corresponds with notion of
orientation of a vector space [14], [15]. Specifically, a basis with positive
orientationmaintains the same vector space orientation as the ordered natural
basis, which is represented by the matrix IN .

2Technically, our definitions of interior and exterior correspond, respec-
tively, to relative-interior and relative-exterior with respect to the minimum
dimensionality affine subspace UA that contains the set A. The minimum
dimensionality affine subspace containing a set will be implicit based on the
context and we omit the ‘‘relative’’ qualifier for brevity.

see that the boundary lies within the set, whereas for an open
set, the boundary is outside the set. For three dimensional sets
with a finite nonzero volume, we refer to the boundary inter-
changeably as the surface. We say two sets X ,Y contained
in a common minimum dimensionality affine subspace U are
essentially-disjoint if their interiors have a null intersection,3

i.e., Int (X )
⋂

Int (Y) = φ.

C. CONVEXITY AND POLYTOPES
Given m points x1, x2, . . . xm ∈ RN , a linear combination of
the form

∑m
i=1 ξixi, where ξi ∈ [0, 1], i = 1, 2, . . .m and∑m

i=1 ξi = 1, is referred to as a convex combination of the
points x1, x2, . . . xm. A polytope in RN is the convex hull,
i.e., the set of all convex combinations, of a finite set of points
in RN . The extremal points in a convex set are the points in
the set that cannot be expressed as convex linear combinations
of other points in the set. The extremal points in a polytope
are referred to as the vertices of the polytope. A polytope
is identical to the convex hull of its vertices, which is the
unique minimal representation for the polytope in the sense
that any other representation as a convex hull uses a superset
of the vertices. The set H̄ (w, υ) =

{
x | wT x = υ

}
denotes

a hyperplane, where w is a unit normal to the plane and υ is
the (signed) distance of the plane to the origin along the unit
normal. Corresponding to the hyperplane, two closed half-
spaces on its either side are H− (w, υ) =

{
x | wT x ≤ υ

}
and H+ (w, υ) =

{
x | wT x ≥ υ

}
. The intersection Q =

⋂
i

H∗ (wi, υi) of a finite number of closed half-spaces is
referred to as a polyhedral set, where H∗ (wi, υi) is either
H− (wi, υi) or H+ (wi, υi). A polytope is a bounded poly-
hedral set and every bounded polyhedral set is a polytope
[16, pp. 119-120]. For a convex set A ⊂ RN , a hyperplane
H̄ (w, υ) is said to be a supporting hyperplane if there exists
a point x ∈ A

⋂
H̄ (w, υ) and either A ⊂ H− (w, υ) or

A ⊂ H+ (w, υ). If H̄ (w, υ) is a supporting-hyperplane
for a polytope Q, C = Q

⋂
H̄ (w, υ) is itself a polytope

lying on the boundary of Q, and is referred to as a l-face,
where l is the is the dimensionality of the face. In addition
to these proper faces, Q and φ are referred to as improper
faces of Q. The vertices of any face of a polytope Q are
the vertices of the polytope that lie within the face. Any
intersection of faces of a polytope is also a face. The 0-faces
of a polytope are its vertices and the 1-faces are referred to
as edges. For a d-dimensional polytope, (d − 1) faces are
referred to as its facets, which collectively form the entire
boundary of the polytope and every (d − 2)-face is contained
in precisely two facets and is the intersection of the two facets
that contain it [13, pp. 34–35]. For a polytope inR3, the facets,
edges, and vertices comprise the full set of non-empty faces.
Furthermore, if Fi, i = 1, 2, . . .Nf denote the facets for a
polytopeQ, withNf denoting their number, and H̄ (w, υi) are
the associated hyperplanes and H∗ (w, υi) are the associated
half-spaces (in the same order) such that Q ⊂ H∗ (w, υi),

3InR3, two non-zero volume sets are essentially-disjoint iff their intersec-
tion has a zero volume.
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then Q =
⋂Nf

i=1H
∗ (w, υi) and Fi = Q

⋂
H̄ (w, υi)

[16, pp. 119]. For a unit vector w ∈ R3, τ, ν ∈ R, τ < ν,
we define the set

H (w, τ, ν) ≡ H+ (w, τ )
⋂

H− (w, ν)

=

{
t ∈ R3

∣∣∣τ ≤ wT t ≤ ν
}
,

as the region in R3 lying between two parallel hyperplanes
H̄ (w, τ ) and H̄ (w, ν). We refer toH (w, τ, ν) as thew plane
slice, with extent between τ and ν. Note that the normal
w points into and out-of the plane slice H (w, τ, ν) at the
bounding planes H̄ (w, τ ) and H̄ (w, ν), respectively.

III. DISPLAY MODEL, GAMUT, AND COLOR CONTROL
FUNCTION
Consider a display system that produces colors using a set
of K light sources that are referred to as the display pri-
maries and characterized by their spectral (radiance) power
distributions pk (λ), k = 1, . . . ,K . Colors are produced by
additively combining these primaries after non-spectrally-
selective attenuation. Specifically, we assume that a K × 1
control vector α def

= [α1, α2, . . . , αK ]T ∈ [0, 1]K controls
the scaling of the individual primaries and produces a cor-
responding displayed spectral power distribution

s(α, λ) =
K∑
k=1

αkpk (λ)+ s0(λ), (1)

where s0(λ) is the display black spectral radiance, which is
the display emission when α = 0. A corresponding repre-
sentation in CIE XYZ4 tristimulus color space [1] follows
immediately from the observation that the tristimulus vector
t ∈ R3 corresponding to a spectral power distribution s(α, λ)
is defined as

t(α) =

 tXtY
tZ

 def
=

∫ x̄(λ)s(α, λ)dλ∫
ȳ(λ)s(α, λ)dλ∫
z̄(λ)s(α, λ)dλ

 , (2)

where x̄(λ), ȳ(λ), and z̄(λ) are the CIE XYZ color matching
functions [1]. Equivalently, the tristimulus corresponding to
the control vector α is given by

t(α) =
K∑
k=1

αkpk + t0 = Pα + t0, (3)

where pk denotes the tristimulus for the k th primary, P =
[p1,p2, . . .pK ] is the matrix of primary tristimulus values,
and t0 is the display black tristimulus, and t1

def
= t0 +∑K

k=1 pk , is the display white tristimulus obtained when all
primaries are turned completely on. Throughout our devel-
opment, we assume that any three columns of P are linearly
independent.5 The model in (1) and (3) provides reason-
able agreement with common color display technologies [6].

4Other additive tristimulus color spaces may equivalently be used.
5In practice, this constraint is met, except in degenerate scenarios that

are not particularly of interest because there exist infinitesimally small
perturbations that dispel the degeneracy while causing only infinitesimal
changes in any other quantities of interest.

We note that the additive model can also be readily used
in the presence of channelwise nonlinearities, often referred
to as gamma, where pre/post processing steps address the
channelwise nolinearities as is common in display color man-
agement [6].

The range

G =
{
t(α)|α ∈ [0, 1]K

}
=

{
Pα + t0 | α ∈ [0, 1]K

}
(4)

of tristimulus values that the display can produce is called the
gamut (in CIE XYZ space). From the preceding definition,
it is apparent that the gamut G is the image of the unit
hypercube [0, 1]K under an affine transformation. Because
the [0, 1]K is a convex compact set inRK , it therefore follows
that G is also a convex and compact set.
The forward model in (3) provides the tristimulus that the

display produces given the control vector α. When using
the display, one is typically more interested in an inverse
for the model, which, given a tristimulus t ∈ G, determines
a control vector α(t) such that the display reproduces the
tristimulus t in response to the control vector α(t). A function
that assigns a control vector to every tristimulus in the gamut
is referred to as a color control function (CCF). Formally,
a CCF is a function C : G → [0, 1]K such that for each
t ∈ G, C (t) is a control vector for the tristimulus t.

It is readily apparent that the gamut G in (4) is an affine
map of the K -dimensional unit hypercube in RK into R3,
where K ≥ 3. In general, an affine map of the K -dimensional
unit hypercube in RK into RN is called a zonotope
[10, Chap. 7], which, as we already indicated, is a specific
type of convex polytope. The gamut zonotope, however,
is further constrained to being 3 dimensional, generated by
vectors (primaries) that from physical constraints contain
only nonnegative components, and satisfy the condition that
any subset of three vectors is linearly independent. In our
development in the next section, these distinguishing char-
acteristics of the gamut zonotope allows us to provide a more
complete and readily usable mathematical characterization of
the gamut zonotope than is currently available for general
zonotopes. We also note that color control functions do not
naturally arise in the context of general polytopes but are
related to zonotopal tilings. We remark on this relation after
presenting our main results in the next section and develop
this further in the companion Part II paper [12].

IV. GAMUT REPRESENTATIONS AND COLOR CONTROL
FUNCTIONS
For our development, we introduce a series of sets that
represent generalizations of the gamut definition in (4) and
represent the span of sets of tristimulus values under the con-
trol value bounds. Specifically, for j ≥ 1, given a 3×1 vector v
and a 3 × j matrix A = [a1, a2, . . . , aj], where any subset
of three or fewer columns of A are linearly independent, we
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denote by

S(v,A) ≡


j∑

i=1

αiai + v | 0 ≤ αi ≤ 1, i = 1, 2, . . . j


≡

{
Aα + v|α ∈ [0, 1]j

}
(5)

the region of R3 spanned by A under the control vector
bounds6 at the origin v. One can immediately see that for
j ≤ 2,U (v,A) is the affine subspace of minimum dimension-
ality, j, that contains S(v,A), and for j ≥ 3, R3 is the (affine)
subspace of minimum dimensionality that contains S(v,A).
It follows that the gamut G can alternatively be written

as G = S(t0,P). Three other instances of (5) play impor-
tant roles in the geometry of gamuts and, for this reason,
we explicitly call these out here. For a 3 × 1 tristimulus
vector v and a 3 × 3 matrix A = [a1, a2, a3], where
the columns a1, a2, a3 of A are three linearly independent
tristimulus vectors, we denote by P(v,A) ≡ S(v,A) the
parallelepiped spanned byA at origin v. Similarly, for a 3×1
tristimulus vector v and a 3×2matrixB = [b1,b2], where the
columns b1,b2 of B are two linearly independent tristimulus
vectors, we denote by F(v,B) ≡ S(v,B) the parallelogram
spanned byB at origin v. Finally, for a pair of 3×1 tristimulus
vectors v and c, we denote by E(v, c) ≡ S(v, c) the line
segment spanned by c at origin v.
The parallelepiped P(v,A), in particular, is the fundamen-

tal building block for our constructions and we therefore
establish several key properties of this set in the following
lemma.
Lemma 1: Let v be a 3 × 1 vector and A = [a1, a2, a3]

be a 3× 3 matrix of linearly independent tristimulus vectors
a1, a2, a3. For each J ∈ C2 (〈3〉), let i = 〈3〉 \ J and denote7

uJ =
1

‖(⊗A[J])‖
(⊗A[J]) , (6)

dJ
−

= v+ χ−
(
uTJ ai

)
ai (7)

dJ
+

= v+ χ+
(
uTJ ai

)
ai (8)

τ J = uTJ d
J− , (9)

νJ = uTJ d
J+ . (10)

Then

1) The parallelepiped P def
= P(v,A) is a polytope that can

be represented as the intersection of plane slices, as

P =
⋂

J∈C2(〈3〉)

H
(
uJ, τ J, νJ

)
. (11)

6Throughout this paper, the term ‘‘spanned’’ will implicitly carry the
qualification of being defined by the [0, 1] control vector bounds instead of
the more traditional definition of span which is not subject to bounds.

7The entries in J are arranged in increasing order by our adopted conven-
tion, which makes the definitions unambiguous.

2) The surface of P can be expressed as the union of six
distinct facets as

BP =
⋃

J∈C2(〈3〉)

(
F
(
dJ
−

,A[J]
)
∪ F

(
dJ
+

,A[J]
))
. (12)

For each J ∈ C2 (〈3〉), F
(
dJ
−

,A[J]
)

and

F
(
dJ
+

,A[J]
)
represent a pair of congruent parallel-

ogram facets with supporting planes H̄
(
uJ, τ J

)
and

H̄
(
uJ, νJ

)
. Specifically,

F
(
dJ
−

,A[J]
)
= P

⋂
H̄
(
uJ, τ J

)
= H̄

(
uJ, τ J

)
⋂  ⋂

J′∈C2(〈3〉)\J

H
(
uJ′ , τ J

′

, νJ
′
) ,
(13)

F
(
dJ
+

,A[J]
)
= P

⋂
H̄
(
uJ, νJ

)
= H̄

(
uJ, νJ

)
⋂  ⋂

J′∈C2(〈3〉)\J

H
(
uJ′ , τ J

′

, νJ
′
) .
(14)

Each edge of a facet spanned by a vector aj is sup-
ported by a plane H̄

(
uJ, τ J

)
or H̄

(
uJ, νJ

)
for some

J ∈ C2 (〈3〉) such that j ∈ J.
3) The edges of P are distinctly enumerated as the union

WP =
⋃

J∈C2(〈3〉)

{
E
(
dJ
−

, aJ[1]
)
, E
(
dJ
−

+ aJ[1], aJ[2]
)
,

E
(
dJ
+

, aJ[2]
)
, E
(
dJ
+

+ aJ[2], aJ[1]
)}
. (15)

Thus the parallelepiped has 12 edges.
4) The vertices of the parallelepiped P are

VP =
⋃

J∈C2(〈3〉)

{
dJ
−

+ aJ[1],dJ
+

+ aJ[2]
}

⋃ {
v, v+

3∑
l=1

al

}
,

where each listed vertex is unique. Hence the paral-
lelepiped has a total of 8 vertices. For each J ∈ C2 (〈3〉),
the points dJ

−

+aJ[1] and dJ
+

+aJ[2] are vertices of the

facets F
(
dJ
−

,A[J]
)
and F

(
dJ
+

,A[J]
)
, respectively.

5) The linear, bijective (and continuous) function defined
by the mapping t 7→ A−1 (t− v) def

= β(t) for each
t ∈ R3 maps P onto [0, 1]3. Thus, for any t ∈ P , α =
A−1 (t− v) ∈ [0, 1]3 is the unique feasible control
vector such that t = Aα + v. Furthermore, for i =
1, 2, 3, βi(t) =

(
(−1)(i+1)/det(A)

)
(⊗A[J])T (t− v).

The proof of Lemma 1 is straightforward using basic linear
algebra. For completeness, it is provided as Appendix A.
Lemma 1 establishes that the surface of P(v,A) is com-

prised of three pairs of opposing congruent parallelograms
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that form the facets of P(v,A). Thus P(v,A) is in fact a
parallelepiped [16], which will be one of the fundamental
building blocks in our representations of gamuts. Figure 1
illustrates an example of the parallelepiped P(v,A) and its
key geometrical elements defined in Lemma 1 for a specific
case8 where v = [35, 35, 35]T , and

A =

 0.0259 1.7448 118.6868
20.3238 85.4870 3.6479

114.6842 58.1553 22.7756


def
= [a1, a2, a3]. (16)

FIGURE 1. Geometric elements of the parallelepiped P(v,A) identified
by Lemma 1 for an example with v = [35,35,35]T and A as defined
in (16): (a) the parallelogram facets F

(
dJ− ,A[J]

)
,F

(
dJ+ ,A[J]

)
that

form the surface (boundary) of the parallelepiped P(v,A). Pairs of
opposing parallelogram facets are labeled in text of identical color and
the edges and vertices associated with the facets are also shown in the
corresponding colors, (b) edges of the parallelepiped P(v,A), shown in
gray with the facets extended and labeled to illustrate the pairs of
parallel planes uT

J t = τJ and uT
J t = νJ that determine the plane slices

H
(

uJ, τJ, νJ
)

. Normal vectors uJ are shown for the planes.

For K = 3 primaries, we immediately see that G =
P(t0,P). Thus the tristimulus gamut for a three primary
system is a parallelepiped. For this commonly encountered
scenario, Lemma 1 completely characterizes the tristimulus
gamut by (a) providing two alternative gamut representations,
specifically as a parallelepiped bounded by surface parallel-
ograms and as a region of tristimulus space, defined by three
pairs of bounding planes, (b) uniquely enumerates all the
facets, edges, and vertices of the gamut, and (c) establishes

8The synthetic set of primaries is chosen purely for making geometric
illustrations clearer in this and subsequent examples.

the uniqueness of the control vector for each in-gamut color
t ∈ G and therefore of the (display) CCF C . For a multi-
primary display, the following theorem, that builds upon and
generalizes Lemma 1, provides analogous representations for
the gamut.
Theorem 1: Consider the K primary display defined in

Section III by the 3 × K matrix of (nonnegative) primaries
P = [p1,p2, . . . ,pK ] and the display black tristimulus t0
with gamut G defined in (4), where K ≥ 3 and any selection
of three columns from P is linearly independent. For each
J ∈ C2 (〈K 〉), define:

uJ =
1

‖(⊗P[J])‖
(⊗P[J]) , (17)

χJ−
=

[
χ−
(
uTJ p1

)
, χ−

(
uTJ p2

)
, . . . , χ−

(
uTJ pK

)]T
, (18)

χJ+
=

[
χ+
(
uTJ p1

)
, χ+

(
uTJ p2

)
, . . . , χ+

(
uTJ pK

)]T
, (19)

dJ
−

= t0 + PχJ−, (20)

dJ
+

= t0 + PχJ+, (21)
τ J = uTJ d

J− , (22)

νJ = uTJ d
J+ , (23)

and, additionally, for l = 1, 2, . . .K , define K × 1 vectors
χ
J+
l and χJ−

l that have the first l entries identical to χJ+ and
χJ− , respectively, and remaining entries as 0. Then,

1) The gamutG can be represented as an essentially-disjoint
union of

(K
3

)
parallelepipeds as

G =
K⋃
i=3

 ⋃
J∈C2(〈i−1〉)

P
(
cJi ,P[J, i]

),where (24)

cJi = t0 + PαJi , (25)

α
J
i = χ

+

(
uTJ pi

)
χ
J+
i−1 + χ

−

(
uTJ pi

)
χ
J−
i−1. (26)

2) The gamut is a polytope that can alternatively be repre-
sented as the intersection of plane slices

G =
⋂

J∈C2(〈K 〉)

H
(
uJ, τ J, νJ

)
. (27)

3) The surface of G can be expressed as the union of
distinct facets as

BG=
⋃

J∈C2(〈K 〉)

(
F
(
dJ
−

,P[J]
)
∪ F

(
dJ
+

,P[J]
))
, (28)

For each J∈C2 (〈K 〉),F
(
dJ
−

,P[J]
)
andF

(
dJ
+

,P[J]
)

represent a pair of congruent parallelogram facets
with supporting planes H̄

(
uJ, τ J

)
and H̄

(
uJ, νJ

)
.

Specifically,

F
(
dJ
−

,P[J]
)
= G

⋂
H̄
(
uJ, τ J

)
, (29)

F
(
dJ
+

,P[J]
)
= G

⋂
H̄
(
uJ, νJ

)
. (30)

Thus there are
(K
2

)
pairs of parallelograme facets,

i.e., K (K − 1) facets. Each edge of a facet spanned
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by a primary pj is supported by a plane H̄
(
uJ̄, τ

J̄
)
or

H̄
(
uJ̄, ν

J̄
)
for some J̄ ∈ C2 (〈K 〉) such that j ∈ J̄.

4) The edges of the gamut G are given by

WG =
⋃

J∈C2(〈K 〉)

{
E
(
dJ
−

,pJ[1]
)
, E

(
dJ
−

+ pJ[1],pJ[2]
)
,

E
(
dJ
+

,pJ[2]
)
, E

(
dJ
+

+ pJ[2],pJ[1]
)}
, (31)

where each listed edge is distinct. Thus the gamut has
2K (K − 1) edges.

5) The vertices of the gamut polytope G are

VG =
⋃

J∈C2(〈K 〉)

{
dJ
−

+ pJ[1],dJ
+

+ pJ[2]
}⋃
{t0, t1} , (32)

where each listed vertex is unique. Hence the gamut has
a total of K (K − 1)+ 2 vertices.

6) For a K ≥ 4 primary display, there is a unique control
vector for a tristimulus t ∈ G, iff t ∈ BG .

7) A CCF C that is continuous and piece-wise linear over
each of the parallelepiped partitions in the representa-
tion in (24) is obtained by defining, for i = 3, 4, . . . ,K
and for all J ∈ C2 ([i− 1]),

C (t) = αJi + IK [[J, i]]P−1[J, i]
(
t− cJi

)
, (33)

for all t ∈ P
(
cJi ,P[J, i]

)
, where αJi is as defined

in (26). This is the unique CCF function associated
with the gamut representation of (24), or equivalently,
with the given order for the primaries, in the sense that
for each i and each J ∈ C2 ([i− 1]), the CCF for each
tristimulus t ∈ P

(
cJi ,P[J, i]

)
is defined by a color

control vector of the form α(t) = α
J
i + δ

J,i(t), where
δ
(J,i)
l (t) = 0 for l /∈ [J, i] and 0 ≤ δ

(J,i)
l (t) ≤ 1 for

l ∈ [J, i].
8) For any two parallelepipeds in (24) that have a non-

empty intersection, the intersection is a proper face of
both parallelepipeds.

9) For each J ∈ C2 (〈K 〉), the (K − 2) parallelepipeds
in (24) that include the primaries P[J] form a sequence
where the intersection of successive parallelepipeds is
a common facet of both parallelepipeds spanned by the
primaries P[J], i.e., there exists I ∈ P(〈K 〉 \ J) such
that for any 1 ≤ l ≤ (K − 3),

P
(
cJI[l],P [J | I[l]]

)⋂
H̄
(
uJ, η̄

J
I[l]

)
= P

(
cJI[l+1],P [J | I[l + 1]]

)⋂
H̄
(
uJ, κ̄

J
I[l+1]

)
,

(34)

where η̄
J
I[l] = uTJ

(
cJI[l] + χ

+

(
uTJ pI[l]

)
pI[l]

)
=

κ̄
J
I[l+1] = uTJ

(
cJI[l] + χ

−

(
uTJ pI[l+1]

)
pI[l+1]

)
.

The proof for Theorem 1 is provided in Appendix B.
Theorem 1 immediately provides a direct and readily usable

method for obtaining the complete representation of the
gamut of a multiprimary display and the associated CCF
in (33). Algorithm 1 outlines the simple computational pro-
cedure for computation of relevant parameters for the gamut
surface and the parallelepipeds in the gamut tiling9 of (24),
where we have introduced the short-hand arg sort↑ to return
the list of indices that sorts the argument in increasing order.
Once these parameters have been computed, all the facets,
edges, and vertices can be uniquely and exhaustively enu-
merated using (28), (31), and (32), respectively, to obtain the
complete representation of the gamut boundary. We note that
although Algorithm 1 obtains these gamut and CCF represen-
tations for a K primary gamut directly, without iterating on
the number of primaries K , the sequence of the primaries in
the primary matrix P does determine the parallelepiped tiling
in (24), its associated CCF in (33), and the parallelepiped
chains in Clause 9 associated with the pairs of opposing
gamut facets in (28) for each J ∈ C2 (〈K 〉). We therefore
refer to the representation in (24) as a progressive-by-primary
gamut tiling and the associated CCF C (·) in (33) as the
corresponding progressive-by-primary tiling CCF.

We illustrate the gamut representations obtained using
Theorem 1 via an example, using t0 = [35, 35, 35]T and the
four primary matrix

P =
[
A | [86.475, 76.533, 31.177]T

]
def
= [p1,p2,p3,p4], (35)

which is an extension of the three primary system defined by
matrix A in equation (16). Figure 2 illustrates the tristimulus
gamut G for this four primary system, where the edges and
vertices of the gamut are colored to indicate the associations
as per Clauses 4 and 5 of Theorem 1. Specifically, the two
edges of the same color in a facet indicate the edges associated
with the facet through (31) and the vertex located at the
intersection of these edges is the vertex that (32) associates
with the same facet. It can be appreciated that, as required
by Theorem 1, in each of the cases, (31) and (32), respec-
tively, enumerate the edges and vertices, exhaustively and
uniquely. The corresponding progressive-by-primary tiling of
the gamut following Algorithm 1 is shown in Fig. 3 (a)–(d),
where the progression of figures illustrates the progres-
sive nature of the tiling in (24): subfigure (a) starts with
P
(
c[1 2]
3 ,P[1 2 3]

)
(the only parallelepiped for i = 3), and

subfigures (b)–(d) then introduce, one by one, all the three
parallelepipeds spanned by p4, a parallelepiped for each of
the pairs of facets of P

(
c[1 2]
3 ,P[1 2 3]

)
. For the primaries

in the alternative permuted order P̌ def
= [p̌1, p̌2, p̌3, p̌4] =

[p1,p4,p3,p2], a different progressive-by-primary tiling of
the same gamut is obtained, as shown in Fig. 3 (e)–(h), where
the difference between the tilings can be particularly appre-
ciated by comparing subfigures 3 (d) and (h). The different

9Here we use the term tiling without a formal definition, which is subse-
quently provided in the Part II companion paper [12].
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Algorithm 1 Computation of Parameters for Gamut Rep-
resentations of Theorem 1
input : 3× K primary matrix P = [p1,p2, . . . ,pK ]
output: Color control vectors χJ− , χJ+ , for all

J ∈ C2(〈K 〉).(K
3

)
parallelepipeds that tile the gamut and

define CCF in (33).
Sequence IJ ∈ P(〈K 〉 \ J) identifying the chain

of facets for each J ∈ C2(〈K 〉).
1 begin

// Parameters describing all
(K
2
)
pairs of gamut facets:

2 foreach J ∈ C2(〈K 〉) do //F
(
dJ
−
,P[J]

)
,

F
(
dJ
+
,P[J]

)
parameters

3 Compute uJ, χJ− , and χJ+ using (17)–(19);

// Obtain the
(K
3
)
gamut-tiling parallelepipeds:

4 for i← 3 to K do
5 foreach J← C2(〈i− 1〉) do // Add

P
(
cJi ,P[J, i]

)
6 Compute αJi and c

J
i using (26) and (25);

7 Add P
(
cJi ,P[J, i]

)
to tiling

parallelepipeds list;

8 foreach J ∈ C2(〈K 〉) do // Sequence IJ for

parallelepiped chain for J facets

9

IJ← arg sort↑
i∈〈K 〉\J

uTJ
(
PαJi

)
;

tilings also induce different CCFs, whichwe denote asCP and
CP̌, respectively. In Figs. 3 (c) and (g) two tristimuli ta (green
star) and tb (red star) located, respectively, in the interior and
on the surface of the gamut are also illustrated, which are
obtained with control values CP(ta) = [1/3, 1, 2/3, 2/3]T

and CP(tb) = [2/3, 1, 1/3, 1]T for the CCF CP and have
the associated control values CP̌(ta) = [0.45, 1, 0.49, 0.68]T

and CP̌(tb) = [2/3, 1, 1/3, 1]T for the CCF CP̌. Note
that, the two CCFs yield different control values for ta in
the interior of the gamut and the same control values for
the tristimulus tb on the gamut surface (as mandated by
Clause 6 of Theorem 1 and also by the equivalent result
in [11]).

Additional visualizations of example five and six multi-
primary display tristimulus gamuts that illustrate the gen-
eral applicability and utility of Theorem 1 are included
in Appendix D. For a multiprimary display with a given
set of primaries, K ! (not necessarily distinct) progressive-
by-primary tilings and associated CCFs can be obtained
using Algorithm 1, by arranging the primaries in all
possible orderings. Appendix E illustrates the distinct
progressive-by-primary tilings obtained using Algorithm 1

FIGURE 2. The tristimulus gamut G for the K = 4 primary systems P
defined in (35). The region inside the wireframe corresponds to the
gamut and the edges and vertices are colored to indicate the associations
as per Clauses 4 and 5 of Theorem 1.

for a K = 5 primary system. A natural question arises
whether and how the set of all possible control values for
each tristimulus, which we refer to as the metameric control
set (MCS) for the tristimulus, relates to the alternative CCFs
associated with the progressive-by-primary tilings. As it turns
out, the alternative progressive-by-primary CCFs, provide
only a partial characterization of theMCS and only a subset of
possible parallelepiped tiling CCFs. In the Part II companion
paper [12], we address this topic and provide a complete
characterization. The methodology connects closely with the
parallelepiped chains described in Clause 9 of Theorem 1.

V. APPLICATION EXAMPLES
We now present a series of examples illustrating how

Theorem 1 and Algorithm 1 provide useful tools for the
visualization of gamuts, gamut mapping, for the design of
primaries, and the construction of CCFs with advantageous
attributes. A key advantage of our abstract mathematical
framework that the results can be used for modeling of a wide
range of display technologies and design choices. Tomaintain
the coherence and focus of the paper, we highlight applica-
tions only briefly and rely on citations to provide additional
detail to interested readers.

A. PERCEPTUAL GAMUT BOUNDARY FOR VISUALIZATION
AND GAMUT MAPPING
Practical uses of multiprimary displays demand color man-
agement strategies for reproducing imagery that is originally
designed for the gamut of alternative color devices [17]. Such
strategies usually include gamut mapping operations [18],
whose design can benefit from the description of the gamut
surface, facets, edges, and vertices introduced in this paper.
To allow for trade-offs to be meaningfully formulated based
on the application requirements, gamut mapping is invariably
performed in a color appearance space where the axes and
distances are semantically meangingful. A perceptual repre-
sentation of the tristimulus t is obtained as the mapping of t
to a perceptual space by a nonlinear transformation Ft1 (·),
where the explicit dependence of the transformation on the
white tristimulus t1 indicates the fact that human color vision
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FIGURE 3. Progressive-by-primary gamut tilings for the four primary display systems with primary matrices P = [p1,p2,p3,p4]

P̌ def
= [p̌1, p̌2, p̌3, p̌4] = [p1,p4,p3,p2], obtained from Algorithm 1. Also illustrated are two tristimuli ta (green star) and tb (red star) located

in the interior and on the surface of the gamut for which the progressive-by-primary CCFs corresponding to the tilings provide, respectively,
different and identical control values (See text).

adapts its response relative to the white. The perceptual
representation for tristimulus t is denoted by the 3 × 1
vector τ , and obtained as τ def

= [τL , τ c1 , τ c2 ]
T
= Ft1 (t),

where the τL represents the perceptual correlate of lightness,
and τ c1 , τ c2 represent the perceptual correlates of red-green
and yellow-blue chroma, respectively. The perceptual gamut
GF

def
= Ft1 (G) =

{
τ |τ = Ft1 (Pα + t0) ,α ∈ [0, 1]K

}
is

then the representation of reproducible colors in the percep-
tual color space. Since Ft1 (·) is a continuous one-to-one
mapping, using (24), GF can alternatively be expressed as
the essentially-disjoint union

GF =

K⋃
i=3

 ⋃
J∈C2(〈i−1〉)

Ft1

(
P
(
cJi ,P[J, i]

)) , (36)

while BGF

def
= Ft1

(
BG
)
, the surface of GF , is expressed as

BGF
=

⋃
J∈C2(〈K 〉)

 ⋃
dJ∗∈{dJ−,dJ+}

Ft1

(
F
(
dJ
∗

,P[J]
)) . (37)

Figure 4 shows the perceptual gamut GF (via a plot of its
boundary BGF

) in the CIELUV [1] perceptual color space10

for the four primary system P(4)
V specified in Appendix C,

10The methodology can be readily utilized for most color appearance
spaces, including, current state of the art color appearance spaces such
as CAM16 [19]. We use the CIELUV space for simplicity and prefer it
over CIELAB because the optimization formulations we present subse-
quently have made use of CIELUV due to challenges with CIELAB in
the dark regions [20]. The Supplementary Materials accompanying this
paper include animation videos showing three-dimensional visualizations of
several gamuts in both CIELUV and CIELAB color spaces.

FIGURE 4. The perceptual gamut GF in CIELUV space for the four
primary system P(4)

V designed to maximize the perceptual gamut volume
using the methodology in [23]. Figures (a)-(d) show GF from different
perspectives. The (CIELUV representations of) edges of G identified
in (31) are plotted as black lines.

which was designed to optimize the volume of GF under
a total optical power constraint (as discussed later in this
section). The description of the perceptual gamut boundary
in (37), as well as the perceptual representation of the gamut
edges and vertices, can be exploited for the efficient compu-
tation and visualization of specific regions of the boundary,
such as loci of constant hue (hue slices) or constant lightness,
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which are used in mapping strategies that best preserve per-
ceptual attributes of color [18], [21], [22].

B. GAMUT VOLUME AND GAMUT INCLUSION FOR
PRIMARY DESIGN/EVALUATION
The geometric representations of the gamut introduced in
this paper allow for the computation of alternative metrics
traditionally used for primary designs: the volume of the
perceptual gamut [23]–[25] and the fraction of real-world
surface colors that are included within the gamut [26], [27].
Theorem 1 allows for both these metrics to be readily com-
puted as we illustrate next.

The representation of the tristimulus gamut G and the
perceptual gamut GF in (24) and (36), respectively, parti-
tion the gamut into essentially-disjoint sets: G is tiled by a
set of parallelepipeds P(·), whose perceptual representations
Ft1 (P(·)) yield an essentially disjoint partition of GF . This
geometrical representation can be conveniently exploited for
the computation of the gamut volume in both tristimulus
and perceptual color spaces. In particular, using the fact that
the volume of the parallelepiped spanned by a set of three
primaries is the absolute value of the determinant of the
3× 3 matrix with the primaries as its columns [28, pp. 468],
it directly follows from (24) that the volume of the tristimulus
gamut G is

V (G) =
K∑
i=3

 ∑
J∈C2([i−1])

|det (P[J, i])|

 . (38)

Similarly, the volume of GF , V (GF ) =
∫
GF

dτ , can be
expressed using (36) as the summation

V (GF )=

K∑
i=3

 ∑
J∈C2([i−1])

V
(
Ft1

(
P
(
cJi ,P[J, i]

))) ,
(39)

where V
(
Ft1

(
P
(
cJi ,P[J, i]

)))
is the volume of the per-

ceptual representation of P
(
cJi ,P[J, i]

)
, which can be com-

puted using efficient numerical strategies, as proposed in [7].
Table 2, shows the volume11 for tristimulus and perceptual
gamuts for optimal configurations of K = 3, 4, and 5
primaries designed to maximize perceptual volume under
a total power constraint, following the methodology pro-
posed in [23]. The specifications of the optimal primaries
are provided in Appendix C and animation videos showing
three-dimensional visualizations of the perceptual gamuts in
CIELAB and CIELUV are included as Supplementary Mate-
rials accompanying this paper. As a comparison baseline,
Table 2 also includes the corresponding volumes for the pri-
mary specifications of the High Definition TV, REC. 709 [29]
and Ultra High Definition TV, REC. 2020 [30] standards.

11To enable meaningful comparison of tristimulus volumes, primaries
were normalized to have a luminance of 100 for the white. Perceptual gamut
volumes are in units of

(
1E∗uv

)3.

TABLE 2. Gamut volume and coverage ratio for optimized K = 3,4,5,
and 6 primary display systems and for common standards.

FIGURE 5. Obtaining the axially linear CCF C̄ from the geometric
representation of the gamut provided by Theorem 1.

We note that a display’s capability for reproducing real-world
surface colors is usually quantified by a coverage ratio
defined as the fraction RA(G) def

= N (G ∩A) /N (A) of the
set of representative real-world surface color tristimuliA that
are included in the display gamut G. From the representation
of the gamut as the intersection of plane slices in (27), we see
that G ∩ A = {t ∈ A | τ J ≤ uTJ t ≤ νJ,∀J ∈ C2 (〈K 〉)},
therefore, N (G ∩A) is efficiently obtained by the counting
the number of elements in A that satisfy the K (K − 1)
inequalities. For the optimized and standard primary config-
urations, Table 2 also shows the coverage ratios RPointer
and RSOCS, respectively, for two sets of surface colors that
have frequently been used for evaluating primary designs: the
Pointer set of surface colors [31] and the SOCS database [32],

C. CCF DESIGN: THE AXIALLY LINEAR CCF
In [33], we demonstrated that a CCF that is linear along
lines of constant chromaticity has the advantageous property
that the display gray axis is perceptually robust to variations
in the primaries (under the reasonable assumption that the
entries in the display black tristimulus t0 are negligible,
i.e. ≈ 0, compared to those in display white tristimulus t1).
From the geometric characterization of the gamut provided
by Theorem 1, we can see (see Fig. 5) that each locus of
constant chromaticity intersects the gamut G in a line segment
whose two end points are t0 and a tristimulus t̄ located on
a facet with an origin different from t0. A consequence of
this observation is that the desired property of linearity along
lines of constant chromaticity completely specifies a CCF,
which we called the axially linear CCF C̄ in [33]. We now
highlight how the facet description of the gamut facets and
the uniqueness of the control values on the gamut surface
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FIGURE 6. The decomposition of the tristimulus gamut of the four primary
system P into eight quadrangle pyramids for the axially linear CCF.

can also be exploited conveniently for the construction of
the axially linear CCF and present this construction using the
notation and framework introduced in this paper. Throughout
this section we assume that t0 = 0.
In tristimulus space, loci of constant chromaticity are rays,

i.e., sets of the type {γ t̃ | γ ≥ 0} for a nonzero tristimulus t̃
with nonnegative real-valued entries. Using the gamut repre-
sentation from Theorem 1, as illustrated in Fig. 5, we can see
that such a ray intersects the gamut G in a line segment whose
two end points are t0 and a tristimulus t̄ located on a facet
with an origin different from t0. Consider a CCF C̄ (·) that is
linear along this line segment (See Fig. 5). The uniqueness
of control vectors for points on the boundary defines C̄ at t̄
and t0, and for any other tristimulus tβ = β t̄, 0 < β < 1

FIGURE 7. The decomposition of the tristimulus gamut of the four primary
system P(4)

w into nine quadrangle pyramids for the axially linear CCF.

located in the interior of the line segment of constant chro-
maticity, the of linearity C̄ implies that C̄ (t) = βC̄

(
t̄
)
.

Now t̄ belongs to some gamut facet F
(
dJ∗,P[J]

)
with ori-

gin dJ∗ and spanned by the primaries P[J], where dJ∗ =
t0 + PχJ∗

= PχJ∗ and χJ∗
∈ {χJ−, χJ+

}. It follows that
t̄ = dJ∗+αJ[1]pJ[1]+αJ[2]pJ[2], for some αJ[1], αJ[2] ∈ [0, 1]
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and, therefore,

t̄ = P
(
χJ∗
+ αJ[1]eKJ[1] + αJ[2]e

K
J[2]

)
= PAv =Mv, (40)

where A = [χJ∗, eJ[1], eJ[2]] is a K × 3 matrix, v =
[1, αJ[1], αJ[2]]T is a 1× 3 vector, and M = [dJ∗, pJ[1],
pJ[2]] = PA is a 3× 3 nonsingular matrix. From the unique-
ness of control vectors on gamut the surface, it follows
from (40) that C̄

(
t̄
)
= Av. Observing that tβ = βMv, we see

that v = (1/β)M−1tβ , therefore, the axially linear CCF at tβ
is

C̄
(
tβ
)
= βC̄

(
t̄
)
= βAv = AM−1tβ . (41)

Now, observing that the facet F
(
dJ∗,P[J]

)
is the base of

a quadrangle pyramid Q with apex t0, as shown in Fig. 5,
we see that the expression in (41) applies for the CCF C̄ (·)
throughout the pyramid Q. By considering the remaining
facets not containing t0, we see that the axially linear CCF
C̄ (·) is piece-wise linear function of t, and (41) induces
a partition of the gamut G into quadrangle pyramids over
each of which the C̄ (·) is linear and expressed in the form
of (41). Thus the requirement of linearity along gamut line
segments of constant chromaticity, completely specifies the
axially linear CCF C̄ (·) over the entire gamut. We note that
the quadrangle pyramid partitioning is also obtained, fol-
lowing a different motivation and approach, by the Matrix
Switching methodology [34], from which an equivalent CCF
is specified as a set of matrices, one for each quadrangle
pyramid. Note that the number of pyramids varies from pri-
mary system to primary system. Because of convexity and the
linear independence constraints on the primaries, every gamut
contains at least 3 and at most K facets containing the origin,
thus the number of quadrangular pyramids partitioning the
gamut lies between K (K − 1) − 3 and K (K − 1) − K . Our
methodology developed using Theorem 1 and Algorithm 1
is, however, general and applicable in all cases. By way
of illustration, we present two examples of four primary
systems with different numbers of quadrangular pyramids.
Figure 6 illustrates the gamut partitioning for the four pri-
mary system P defined in (35), where there are 8 quadrangle
pyramids (out of the 12 gamut facets, 4 contain the origin
t0 = 0). Fig. 7 illustrates the pyramid decomposition into the
9 quadrangle pyramids for the gamut of the K = 4 primary

system P(4)
w .

VI. CONCLUSION AND DISCUSSION
The mathematical results presented in this paper provide a
complete characterization of the geometry of multiprimary
display gamuts. Based on Theorem 1 and the associated
Algorithm 1, a geometric representation of the gamut can be
readily computed, which can then be effectively exploited
in color imaging applications. Examples of such applica-
tions were briefly outlined in Section V. Specifically, the
parallelepiped tiling representation provided in Clause 1 of
Theorem 1 is useful for computing gamut volumes in tristim-
ulus and perceptual color spaces, which is useful as a figure of

merit for the design of primaries for multiprimary displays
and was our original motivation for exploring the gamut
geometry [7]. Via Clauses 2–5, Theorem 1 also provides a
complete characterization of the surface of the gamut, which
is useful for assessing which colors are included within the
gamut, for gamut mapping, and for designing color control
strategies with desirable attributes. Theorem 1 also partly
characterizes the flexibility of color control that is afforded
by multiprimary displays. Specifically, Clause 6 asserts the
uniqueness of control values for colors on the gamut surface,
which was also previously shown in [11]. The different CCFs
obtained by using Clause 7 in combination with alternative
orderings of the primaries, also start to characterize color
control options for colors in the interior of the gamut, which
we further develop and fully characterize in the companion
Part II paper [12]. Taken together these two papers provide
a complete mathematical characterization of the geometry
of the color gamut and control options for multiprimary
displays.

As noted earlier, the display gamut belongs to the family
of convex polytopes called zonotopes, whose definition as a
Minkowski sum of set of line segments [10, Chap. 7] is a
generalization of (4), wherein P is a general d × K matrix
instead the more constrained setting for our multiprimary
display gamuts, where we assumed that P is a 3 × K matrix
with nonnegative entries for which any three columns are
linearly independent. Our main mathematical results in The-
orem 1 are obtained in the setting of d = 3 dimensional
zonotopes. Clauses of the theorem, other than Clause 5,
are applicable, more generally, for any three dimensional
zonotope, where P is a 3 × K matrix for which any three
columns are linearly independent. The physically motivated
constraint of the nonnegative entries in P is sufficient though
not necessary for Clause 5 to apply. Our proof of Theorem 1
demonstrates that Clause 5 also applies more broadly for
d = 3 dimensional zonotopes where P satisfies the constraint
that no column of P can be formed as a linear combination of
three other columns using exclusively negative coefficients.12

The theorem therefore also provides a direct way to obtain
geometric representations of more general d = 3 dimen-
sional zonotopes beyond multiprimary gamuts. Specifically,
we note that polar zonohedra, which are three-dimensional
zonotopes that have received particular attention in prior
mathematical explorations [35], satisfy the constraint that no
column of P can be formed as a linear combination of three
other columns using exclusively negative coefficients and
Theorem 1 therefore applies in its entirety to polar zonohe-
dra. Appendix G provides examples of geometric represen-
tations of three-dimensional polar zonohedra obtained using
Algorithm 1 and Theorem 1.We note that our problem setting
of multiprimary displays also motivated new mathematical
questions that have not arisen in prior mathematical studies
of zonotopes as abstract mathematical geometric objects.

12Appendix F provides an example of a zonotope inR3 for which Clause 5
of Theorem 1 does not apply.
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Specifically, the tiling CCF in Clause 7 of Theorem 1 arises
naturally in the multiprimary display context due to our
interest in color control, whereas such functions have not
previously been studied in the context of general zonotopes.
Generalizations of these tiling CCFs, which we address in the
companion Part II paper [12], specifically provide a complete
characterization of the flexibility in color control afforded by
multiprimary displays. Finally, we note that from a math-
ematical perspective, extensions of our results to d > 3
dimensional zonotopeswould also be of interest, though these
are clearly beyond the scope of the present work.

APPENDIX A
PROOF OF LEMMA 1
From the non-singularity of A it follows that the set P(v,A)
has the alternative equivalent representation

P(v,A) =
{
t ∈ R3

| 0 ≤ A−1 (t− v) ≤ 1
}
, (42)

where 0 and 1 denote the 3 × 1 vectors of zeros and
ones, respectively, and the inequalities relating vectors apply
termwise. From Cramer’s rule [36, pp. 200] we can write

A−1 =
1

det(A)

 (⊗A[23])T

− (⊗A[13])T

(⊗A[12])T

 , (43)

det(A) = (−1)(i+1) (⊗A[J])T ai, J ∈ C2 (〈3〉), (44)

where i = 〈3〉 \ J, and det(·) denotes the determinant.
It follows that the ith row of A−1 is

nJ =
1

(⊗A[J])T ai
(⊗A[J]) = sgn

(
uTJ ai

) ∥∥nJ∥∥uJ, (45)
where J = 〈3〉\i. Using these expressions, through arithmetic
manipulation (42) can be rewritten as

P(v,A) =
⋂

J∈C2(〈3〉)

{
t ∈ R3

| τ J ≤ uTJ t ≤ ν
J
}

=

⋂
J∈C2(〈3〉)

H
(
uJ, τ J, νJ

)
. (46)

Note that νJ > τ J, so the interval [τ J, νJ] is non-empty.
As an affine map of the (bounded) unit cube, P(v,A) is
readily seen to be bounded and is therefore a polytope.

It is readily seen that for the unit cube [0, 1]3 =

P(0, I3), the interior, surface, and vertices (extremal points)
are, respectively, given by: (a) (0, 1)3, (b) points α =

[α1, α2, α3]T where αl ∈ {0, 1} for some 0 ≤ l ≤ 3,
and (c) points α = [α1, α2, α3]T where αl ∈ {0, 1} for
all 0 ≤ l ≤ 3. Using our established notation, the unit
cube and its faces can be compactly expressed as the sets
S(
∑

l∈〈3〉\I δle
3
l , I3[I]), where I ⊂ 〈3〉, δl ∈ {0, 1}, and N (I)

is the dimensionality of the face. Using this expression, for
0 ≤ l ≤ 2, the number of l-faces of the cube is seen to
be 23−l

(3
l

)
. Specifically, for N (I) = 3, we obtain the cube

[0, 1]3 = S(0, I3); for N (I) = 2 we obtain the six facets
F(δle3l , I3[I]), I ∈ C2 (〈3〉) , l = 〈3〉 \ I; for N (I) = 1 we

obtain the twelve edges E(
∑

l∈〈3〉\i δle
3
l , e

3
i ), i ∈ 〈3〉; and for

N (I) = 0 we obtain the eight vertices
∑3

l=1 δle
3
l , where

the δl terms are chosen from {0, 1} in all cases. An alter-
native expression for the facets is obtained by noting that
for each I ∈ C2 (〈3〉), setting l = 〈3〉 \ I and ξ =(
I3[I]T I3[l]

)
∈ {−1, 1}, we can write F(δle3l , I3[I]) =

H̄ (⊗ I3[I], ξδl)
⋂ (⋂

I′∈C2(〈3〉)\IH
(
ξ ′ ⊗ I3[I′], 0, 1

))
,

where for I′ ∈ C2 (〈3〉) \ I, ξ ′ =
(
I3[I′]T I3[〈3〉 \ I′]

)
∈

{−1, 1}. The facets represent an essentially disjoint parti-
tioning of the surface of the cube. Note also that each facet
contains four edges, and each edge contains two vertices.

Since the parallelepiped P(v,A) is a non-singular affine
mapping of the unit cube [0, 1]3 = P(0, I3), the inte-
rior of the cube is mapped to the interior of the paral-
lelepiped, while the surface and extremal points of the cube
are mapped to the surface and extremal points of P(v,A).
The parallelepiped and the faces are therefore enumerated
as S(v + A

∑
l∈〈3〉\I δle

3
l ,AI3[I]) = S(v +

∑
l∈〈3〉\I δlal,

A[I]), with δl ∈ {0, 1}. Specifically, the six facets are
F(v+

∑
l∈〈3〉\I δlal,A[I]), I ∈ C2 (〈3〉); the twelve edges are

E(v +
∑

l∈〈3〉\i δlal, ai), i ∈ 〈3〉; and the eight vertices are
v +

∑3
l=1 δlal . The surface of the parallelepiped is obtained

as the essentially disjoint union of its distinct facets

BP(v,A) =
⋃

J∈C2(〈3〉)

(F (v,A[J]) ∪ F (v+ ai,A[J]))

=

⋃
J∈C2(〈3〉)

(
F
(
dJ
−

,A[J]
)
∪ F

(
dJ
+

,A[J]
))
,

(47)

where the last step is obtained by noting that whenever
χ−
(
uTJ ai

)
= 1, then χ+

(
uTJ ai

)
= 0 and vice versa, so that

dJ
−

and dJ
+

represent the vectors v and v+ ai (possibly in a
different order). Observe that the origin for any face does not
include any of the primaries that span the face.
Note that t ∈ P(v,A)

⋂
H̄
(
uJ, τ J

)
⇔ uTJ t = τ

J and for
some α ∈ [0, 1]3, t = Aα + v = A[J]α[J] + αiai + v, with
i = 〈3〉 \J⇔ uTJ (αiai + v) = τ J = uTJ

(
χ−
(
uTJ ai

)
ai + v

)
⇔ αi = χ

−

(
uTJ ai

)
⇔ t = A[J]α[J]+dJ− ∈ F

(
dJ
−

,A[J]
)
.

Therefore F
(
dJ
−

,A[J]
)
= P(v,A)

⋂
H̄
(
uJ, τ J

)
. From

the alternative expression for the facets of the [0, 1]3 cube
presented above, we can also see that F

(
dJ
−

,A[J]
)
=

H̄
(
uJ, τ J

)⋂(⋂
J′∈C2(〈3〉)\JH

(
uJ′ , τ J

′

, νJ
′
))

and that the

planes H̄
(
uJ′ , τ J

′
)
and H̄

(
uJ′ , νJ

′
)
for J′ ∈ C2 (〈3〉) \ J

support the edges of the facet F
(
dJ
−

,A[J]
)
. Similarly,

we conclude that F
(
dJ
+

,A[J]
)
= P(v,A)

⋂
H̄
(
uJ, νJ

)
=

H̄
(
uJ, νJ

)⋂(⋂
J′∈C2(〈3〉)\JH

(
uJ′ , τ J

′

, νJ
′
))

, where the

edges of these facets are supported by the planes H̄
(
uJ′ , τ J

′
)

and H̄
(
uJ′ , νJ

′
)
for J′ ∈ C2 (〈3〉) \ J. Next we note that
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the non-singular affine mappings to/from P(0, I3) = [0, 1]3

place the edges and vertices in P(v,A) in one-to-one corre-
spondence with the edges and vertices in P(0, I3), respec-
tively, and infact with every other parallelepiped P(v′,A′)
where v′ ∈ R3 and A′ ∈ R3×3 is non-singular. The fact that
Clauses 3 and 4 of Lemma 1 enumerate the edges and vertices
exhaustively and uniquely is then readily seen by verifying it
for any single example (See Fig. 1).

Finally, the non-singularity of A directly implies that the
mapping α 7→ Aα + v and its inverse mapping t 7→
A−1 (t− v) def

= β(t) are bijective linear (and continuous)
functions from R3 onto R3. From the fact that P(v,A) is
the range of [0, 1]3 under the map α 7→ Aα + v, it directly
follows that for any t ∈ P(v,A), α = A−1 (t− v) ∈ [0, 1]3

is the unique feasible control vector such that t = Aα + v.
From (43) we also directly see that, for i = 1, 2, 3, βi(t) =
(−1)(i+1) (⊗A[J])T (t− v) /det(A), where J = 〈3〉 \ i.

APPENDIX B
PROOF OF THEOREM 1
Prior to proving the theorem, we establish a couple of useful
sub-results for our proof as the following lemmas.
Lemma 2: For a K ≥ 4 primary display, control values

are non-unique for any tristimulus lying in the interior of the
gamut G.

Proof: Suppose t = t0 + Pα lies in the interior of the
gamut G. There exists a positive real number ε such that the
ball D (t, ε) of radius ε centered at t is contained in G. Since
the map α′ : [0, 1]K → G, defined as α′ 7→ t0 + Pα′ is
continuous andD (t, ε) is an open set relative to G, the inverse
image of D (t, ε) is an open set 9 ⊂ [0, 1]K . Clearly α ∈
9 so there exists a positive real number δ such that the ball
D (α, δ) of radius δ centered at α is contained in 9. Now,
because K > 3, there exists a nonzero vector ζ in the null
space of P, so for some positive real number δ2, the vector
γ = α + δ2ζ ∈ D (α, δ) ⊂ 9. Observing that α 6= γ and
t0+Pγ = t0+Pα = t, we see that α and γ are two distinct
control vectors for t. �
Lemma 3: If a tristimulus t ∈ F

(
dJ
−

,P[J]
)
∪

F
(
dJ
+

,P[J]
)
, for some J ∈ C2 (〈M〉), then the control

vector for t is unique.
Proof: Assume that t ∈ F

(
dJ
−

,P[J]
)
for some J ∈

C2 (〈K 〉) (the case for t ∈ F
(
dJ
+

,P[J]
)
follows analogous

arguments). Now, let α1,α2 ∈ [0, 1]K be any two control
vectors for t. We will establish uniqueness by showing that
α1 = α2. For any α ∈ [0, 1]K , observing that we can write
uTJ (t0 + Pα) − τ J =

∑K
k=1

∣∣∣(αk − χ−(uTJ pk))uTJ pk ∣∣∣,
we can see that {α ∈ [0, 1]K |uTJ (t0 + Pα) = τ J} = {χJ−

+

IK [J]β | β ∈ [0, 1]2}. Therefore there exist β1,β2 ∈ [0, 1]2,
such that α1 = χJ−

+ IK [J]β1 and α2 = χJ−
+ IK [J]β2.

Now, using the fact that t = t0 + Pα1 = t0 + Pα2, we have
P[J]

(
β1 − β2

)
= 0. Because any selection of two primaries

from P is linearly independent, it follows that β1 = β2,
whereby α1 = α2. �
We prove Theorem 1 by induction on K . For K = 3

the result follows immediately from Lemma 1. Next, for a
positive integer M ≥ 4, we assume the result holds for all
integers K ≤ (M − 1) and show that it holds for K = M .
To simplify notation, in this section, we use P to consistently
represent the matrix of all the M primaries and rely on the
sub-selection via indices to represent systems with fewer
primaries. Also, we denote by Gl , Bl , and Cl the gamut,
surface, and CCF, respectively, for the l-primary system with
the primary matrix P [〈l〉]. Furthermore, we denote

dJ
−

l = t0 + PχJ−
l , (48)

dJ
+

l = t0 + PχJ+
l , (49)

τ
J
l = uTJ d

J−
l , (50)

ν
J
l = uTJ d

J+
l . (51)

Observe that these definitions imply that for any given J, τ Jl
and νJl , viewed as sequences indexed by l, are, respectively,
non-increasing and non-decreasing. Furthermore, for l ≥ 4
and J ∈ C2 (〈l − 1〉), we can see that[

τ
J
l , ν

J
l

]
=

[
τ
J
l−1, ν

J
l−1

]⋃[
κ
J
l , η

J
l

]
, (52)

where

κ
J
l = χ

−

(
uTJ pl

)
τ
J
l + χ

+

(
uTJ pl

)
ν
J
l−1, (53)

η
J
l = χ

−

(
uTJ pl

)
τ
J
l−1 + χ

+

(
uTJ pl

)
ν
J
l . (54)

Also note that: (a) τ Jl−1 > ν
J
l−1, (b) either κ

J
l = ν

J
l−1 or

η
J
l = τ

J
l−1, and (c) ηJl > κ

J
l . Thus (52) represents an essen-

tially disjoint union of intervals with nonempty interiors.
Now, for each j ∈ 〈M − 1〉, we define the function

fj(t)
def
= (uT[j,M ]t) (55)

for all t ∈ R3. For α ∈ [0, 1]M , we note that we can write

uT[j,M ] (t0 + Pα)− τ [j,M ]
M

=

M−1∑
k=1
k 6=j

∣∣∣(αk − χ−(uT[j,M ]pk
))

uT[j,M ]pk
∣∣∣ , (56)

ν
[j,M ]
M − uT[j,M ] (t0 + Pα)

=

M−1∑
k=1
k 6=j

∣∣∣(αk − χ+(uT[j,M ]pk
))

uT[j,M ]pk
∣∣∣ . (57)

Thus the minima (maxima) for the function fj(t) over
t ∈ GM is τ [j,M ]

M (ν[j,M ]
M ) and achieved precisely over

the set {t0 + Pχ [j,M ]−
M + P[j,M ]β | β ∈ [0, 1]2} =

F
(
dJ
−

M ,P[j,M ]
)

({t0 + Pχ [j,M ]+
M + P[j,M ]β | β ∈

[0, 1]2} = F
(
dJ
+

M ,P[j,M ]
)
). Noting that τ [j,M ]

M = τ
[j,M ]
M−1 ,

ν
[j,M ]
M = ν

[j,M ]
M−1 , χ

[j,M ]−
M = χ

[j,M ]−
M−1 , χ [j,M ]+

M = χ
[j,M ]+
M−1 and
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that the upper limits in the summations in (56) and (57) are
(M − 1), we also conclude from the above equations that
the minima (maxima) for the function fj(t) over t ∈ GM−1
is τ [j,M ]

M−1 (ν[j,M ]
M−1 ) and achieved precisely over the set {t0 +

Pχ [j,M ]−
M−1 +βpj | β ∈ [0, 1]} = E

(
dJ
−

M ,pj
)
({t0+Pχ

[j,M ]+
M−1 +

βpj | β ∈ [0, 1]} = E
(
dJ
+

M ,pj
)
).

From the gamut definition in (4), we have

Gl =
{
P [〈l〉]α + t0 | α ∈ [0, 1]l

}
, (58)

for l = 1, 2, . . .M . From the definition, it follows that
GM−1 ⊂ GM . Then, via the induction hypothesis, we have

GM−1 =
M−1⋃
i=3

 ⋃
J∈C2(〈i−1〉)

P
(
cJi ,P[J, i]

) , (59)

=

⋂
J∈C2(〈M−1〉)

H
(
uJ, τ

J
M−1, ν

J
M−1

)
, (60)

and the surface of GM−1 is given by

BGM−1 =
⋃

J∈C2(〈M−1〉)

(
F
(
dJ
−

M−1,P[J]
)
∪F

(
dJ
+

M−1,P[J]
))
,

with

F
(
dJ
−

M−1,P[J]
)
= GM−1

⋂
H̄
(
uJ, τ

J
M−1

)
, (61)

F
(
dJ
+

M−1,P[J]
)
= GM−1

⋂
H̄
(
uJ, ν

J
M−1

)
. (62)

representing a pair of congruent parallelogram facets with
supporting planes H̄

(
uJ, τ

J
M−1

)
and H̄

(
uJ, ν

J
M−1

)
, respec-

tively, for each J ∈ C2 (〈M − 1〉). Furthermore, each edge
of a facet spanned by a primary pj is supported by a plane

H̄
(
uJ̄, τ

J̄
)
or H̄

(
uJ̄, ν

J̄
)
for some J̄ ∈ C2 (〈K 〉) such that

j ∈ J̄. Also, for points on each of the boundary BGM−1 con-
trol values are uniquely determined. Specifically, the control
vectors corresponding to any of the origins of the faces are
uniquely determined.
For subsequent elements in our proof, we will find it con-

venient to relabel the facets, their supporting planes, and cor-
responding halfspaces in the preceding equations as follows.
For each J ∈ C2 (〈M − 1〉), we denote the two half-spaces
in the intersection H

(
uJ, τ

J
M−1, ν

J
M−1

)
as H<

(
uJ, φ

J
M−1

)
and H>

(
uJ, ψ

J
M−1

)
based on whether pM points into or

out of the halfspace. Specifically, if uTJ pM < 0, set

H<
(
uJ, φ

J
M−1

)
= H−

(
uJ, ν

J
M−1

)
and H>

(
uJ, ψ

J
M−1

)
=

H+
(
uJ, τ

J
M−1

)
, where φJM−1 = ν

J
M−1 = ν

J
M , ψJ

M−1 =

τ
J
M−1 = η

J
M and κ

J
M = τ

J
M−1 + uTJ pM = τ

J
M so

that we also have H−
(
uJ, ν

J
M

)
= H<

(
uJ, φ

J
M−1

)
and

H+
(
uJ, τ

J
M

)
= H>

(
uJ, κ

J
M

)
= pM + H>

(
uJ, ψ

J
M

)
.

Otherwise, if uTJ pM > 0, set H<
(
uJ, φ

J
M−1

)
=

H+
(
uJ, τ

J
M−1

)
and H>

(
uJ, ψ

J
M−1

)
= H−

(
uJ, ν

J
M−1

)
,

where φJM−1 = τ
J
M−1, ψ

J
M−1 = ν

J
M−1 = κ

J
M , and ηJM =

ν
J
M−1 + uTJ pM = ν

J
M so that we also have H−

(
uJ, ν

J
M

)
=

H>
(
uJ, η

J
M

)
= pM +H>

(
uJ, ψ

J
M−1

)
andH+

(
uJ, τ

J
M

)
=

H<
(
uJ, φ

J
M−1

)
. Note that in both cases, the halfspaces

H<
(
uJ, φ

J
M−1

)
and pM +H>

(
uJ, ψ

J
M−1

)
provide a rela-

beling of the halfspaces associated with the plane slice

H
(
uJ, τ

J
M , ν

J
M

)
and therefore the planes H̄

(
uJ, φ

J
M−1

)
and pM + H̄

(
uJ, ψ

J
M−1

)
also provide a relabeling of the

planes H̄
(
uJ, τ

J
M

)
and H̄

(
uJ, ν

J
M

)
associated with the plane

slice. Now, let F
(
dJ<M−1,P[J]

)
= GM−1

⋂
H̄
(
uJ, φ

J
M−1

)
and F

(
dJ>M−1,P[J]

)
= GM−1

⋂
H̄
(
uJ, ψ

J
M−1

)
denote the

facets of GM−1 supported by the planes H̄
(
uJ, φ

J
M−1

)
and

H̄
(
uJ, ψ

J
M−1

)
, respectively. The relabeling also induces

a corresponding partition of the surface of GM−1 into
the two essentially disjoint subsets of facets BGM−1 =
B<GM−1

⋃
B>GM−1 where

B<GM−1 =
⋃

J∈C2(〈M−1〉)

F
(
dJ<M−1,P[J]

)
, (63)

B>GM−1 =
⋃

J∈C2(〈M−1〉)

F
(
dJ>M−1,P[J]

)
. (64)

Next we consider the edges of GM−1. Let E = E (o,pi) be
an edge of GM−1 where o denotes the origin of the edge and
pi the primary spanning the edge. Let Fj = F

(
oj,
[
pi,pj

])
and Fl = F (ol, [pi,pl]) denote the two facets of GM−1 such
that E = Fj

⋂
Fl . Now for q = j, l, oq−o =

(
(δq − 1)/2

)
pq

where δq ∈ {±1} and δqpq is the feasible direction from
the edge E along the facet Fq. Now, assume without loss of
generality (wlog) that sgn

(
det

([
pi, δjpj, δlpl

]))
= 1, so that

pi, δjpj, δlpl form a positively oriented basis (otherwise,
swap j and l). Then from the convexity of GM−1, it follows
that

(
pi ⊗ δjpj

)
and (δlpl ⊗ pi) define the inward pointing

normals for the facets Fj and Fl , respectively. Now denote
δjM (E)=sgn

(
det

([
pi,pM , δjpj

]))
=sgn

(
(pi ⊗ pM )T δjpj

)
=

sgn
(
uT[i,M ]δjpj

)
= −sgn

((
pi ⊗ δjpj

)TpM) and δlM (E) =
sgn (det ([pi,pM , δlpl]))= sgn

(
(pi ⊗ pM )Tδlpl

)
=sgn(uT[i,M ]

δlpl)= sgn
(
(δlpl ⊗ pi)TpM

)
. Then we can see that we have

four cases based on the values of δjM (E), δlM (E):
1) If δjM (E) = 1 and δlM (E) = 1, E is the (local, and via

convexity global) minimizer of fi(t) over t ∈ GM−1 and
Fj ∈ B>GM−1 , Fl ∈ B<GM−1 . Furthermore,

{t∈GM−1|fi(t)=τ [i,M ]
} = GM−1 ∩ H̄

(
u[i,M ], τ

[i,M ]
)

= E
(
d[i.M ]−
M−1 ,pi

)
= E, (65)

so that H̄
(
u[i,M ], τ

[i,M ]
)
is a supporting plane for E and

δq = (1− 2χ [i,M ]−
q ) for q = j, l.
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2) If δjM (E) = −1 and δlM (E) = −1, E is the (local, and
via convexity global) maximizer of fi(t) over t ∈ GM−1
and Fj ∈ B<GM−1 , Fl ∈ B>GM−1 . Furthermore,

{t∈GM−1|fi(t)=ν[i,M ]
} = GM−1 ∩ H̄

(
u[i,M ], ν

[i,M ]
)

= E
(
d[i.M ]+
M−1 ,pi

)
= E, (66)

so that H̄
(
u[i,M ], ν

[i,M ]
)
is a supporting plane for the E

and δq = (1− 2χ [i,M ]+
q ) for q = j, l.

3) If δjM (E) = 1 and δlM (E) = −1, Fj,Fl ∈ B>GM−1 and
E is neither a maximizer nor a minimizer of fi(t) over
t ∈ GM−1.

4) If δjM (E) = −1 and δlM (E) = 1, Fj,Fl ∈ B<GM−1 and
E is neither a maximizer nor a minimizer of fi(t) over
t ∈ GM−1.

Figure 8 illustrates these four cases geometrically. It fol-
lows that we can partition the edges of GM−1 into four sets

E><GM−1 = {E ∈WGM−1 | δjM (E) = δlM (E) = 1}, (67)

E<>GM−1 = {E ∈WGM−1 | δjM (E) = δlM (E) = −1}, (68)

E�GM−1 = {E ∈WGM−1 | δjM (E) = 1 = −δlM (E)}, (69)

E�GM−1 = {E ∈WGM−1 | δjM (E) = −1 = −δlM (E)}. (70)

Denote

AM =
⋃

J∈C2(〈M−1〉)

P
(
cJM ,P[J,M ]

)
, (71)

A = GM−1
⋃

AM (72)

=

M⋃
i=3

 ⋃
J∈C2(〈i−1〉)

P
(
cJi ,P[J, i]

) . (73)

As a part of the induction step for establishing the first
clause of the theorem, we show next that A = GM and that
the sets in (73) are essentially disjoint. Suppose, t ∈ A. Then
from (72), either t ∈ GM−1 ⊆ GM or t ∈ AM , i.e., there exists
a J0 ∈ C2 (〈M − 1〉) such that t ∈ P

(
cJ0M ,P[J0,M ]

)
. In the

latter case, by Lemma 1, βJ0,M = P−1[J0,M ]
(
t− cJ0M

)
is

the unique vector in [0, 1]3 such that t = P[J0,M ]βJ0,M +
cJ0M . Now, by definition, cJ0M = t0 + PαJ0M , with

α
J0
M = χ

+

(
uTJ0pM

)
χ
J0+
M−1 + χ

−

(
uTJ0pM

)
χ
J0−
M−1. (74)

Observe that the definition of αJ0M ensures that the entries
in this vector located at indices in [J0,M ] are zero. Using
this observation and noting that P[J0,M ] = P IK [J0,M ],
we can see that α = α

J0
M + IK [J0,M ]βJ0

M = α
J0
M +

IK [J0,M ]P−1[J0,M ]
(
t− cJ0M

)
defines a feasible control

vector in [0, 1]M such that t = Pα + t0 = P [〈M〉]α + t0.
It follows then that t ∈ GM and therefore A ⊆ GM . Next
suppose t ∈ GM . Then from (58) it follows that t = Pα + t0
for some α ∈ [0, 1]M . If t ∈ GM−1 then t ∈ A because
GM−1 ⊂ A. If on the other hand, t /∈ GM−1 then αM > 0 and

FIGURE 8. Classification of edges of GM−1. An edge E of GM−1 spanned
by the primary pi is the intersection of two different facets
Fj = F

(
oj ,
[
pi ,pj

])
(plotted in blue) and Fl = F

(
ol , [pi ,pl ]

)
(plotted

in green), with the common primary pi (plotted in purple). The
figure shows the facets using a positive orientation for the basis
pi , δj pj , δl pl , where δq ∈ {±1} is defined by the fact that δqpq is the
feasible direction from the edge E along the facet Fq. The values
δjM (E) = sgn

(
det

([
pi ,pM , δj pj

]))
∈ {−1,1} and

δlM (E) = sgn
(
det

(
[pi ,pM , δl pl ]

))
∈ {−1,1} classify the edges into the

four cases shown: (a) δjM (E) = δlM (E) = 1, E ∈ E><GM−1
,

(b) δjM (E) = δlM (E) = −1, E ∈ E<>GM−1
, (c) δjM (E) = 1 = −δlM (E),

E ∈ E�GM−1
, and (d) δjM (E) = −1 = −δlM (E), E ∈ E�GM−1

.

(t− αMpM ) ∈ GM−1. Let γ denote the smallest13 nonneg-
ative real number such that t′ = t − γpM is in GM−1. Note
that 0 < γ ≤ αM ≤ 1 and t′ lies on a surface facet of GM−1
such that pM points outward from the facet. Specifically, there
exists Jt ∈ C2(〈M−1〉) such that either t′ ∈ F

(
dJt−M−1,P[Jt]

)
and uTJtpM < 0, or t′ ∈ F

(
dJt+M−1,P[Jt]

)
and uTJtpM > 0.

Consider the casewhen uTJtpM < 0 (the other case is similarly

handled). Then cJtM = dJt−M−1 and t ∈ P
(
cJtM ,P[Jt,M ]

)
⊂

AM ⊂ A. It follows that GM ⊂ A, which in combination
with the result shown earlier in this paragraph implies that
GM = A.
Next, using the first part of Lemma 1 we obtain an alterna-

tive representation for P
(
cJM ,P[J,M ]

)
in (71). Specifically,

noting that for any J occurring in (71), we have cJM =

χ−
(
uTJ pM

)
dJ
−

M−1 + χ
+

(
uTJ pM

)
dJ
+

M−1, we can see that

P
(
cJM ,P[J,M ]

)
= H

(
uJ, κ

J
M , η

J
M

)
⋂ ⋂

j∈J
H
(
u[j,M ], κ̄

[j,M ]
i , η̄

[j,M ]
i

) ,
(75)

13The fact thatGM−1 is closed and bounded ensures that γ is well defined.
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where i = J\j, κ̄ [j,M ]
i = fj

(
cJM + χ

−

(
uT[j,M ]pi

)
pi
)
, η̄[j,M ]

i =

fj
(
cJM + χ

+

(
uT[j,M ]pi

)
pi
)
. It follows that

[
κ̄
[j,M ]
i , η̄

[j,M ]
i

]
is

a non-empty interval with fj
(
cJM
)
and fj

(
cJM + pi

)
as its

end points. Using (75) with the fact that the intervals in
the right hand side (RHS) of (52) are essentially-disjoint,
it follows that the parallelepipeds in the union on the RHS
of (71) are essentially-disjoint with GM−1. From our prior
characterization of τ [j,M ]

M and ν[j,M ]
M as the minima and max-

ima, respectively, of fj (t) over t ∈ GM , it follows that for

each j ∈ 〈M − 1〉,
[
κ̄
[j,M ]
i , η̄

[j,M ]
i

]
⊂

[
τ
[j,M ]
M , ν

[j,M ]
M

]
. Using

the linearity of the functions fj along with (18)–(19) and

(48)–(51), we also see that
∑

i∈〈M−1〉\j

(
η̄
[j,M ]
i − κ̄

[j,M ]
i

)
=

P
(
χ
[j,M ]+
M − χ

[j,M ]−
M

)
=

(
ν
[j,M ]
M − τ

[j,M ]
M

)
, whereby it fol-

lows that the nonempty intervals
[
κ̄
[j,M ]
i , η̄

[j,M ]
i

]
, i ∈ 〈M −

1〉 \ j form an essentially disjoint partition of the interval[
τ
[j,M ]
M , ν

[j,M ]
M

]
. It follows that each of the parallelepipeds

in (71) and (73) are essentially disjoint and for each j ∈
〈M − 1〉, we have a sequence Ij ∈ P(〈M − 1〉 \ j) such that

τ [j,M ]
= κ̄

[j,M ]
Ij[1] < η̄

[j,M ]
Ij[1] = κ̄

[j,M ]
Ij[2] < η̄

[j,M ]
Ij[2] · · ·

κ̄
[j,M ]
Ij[M−2] < η̄

[j,M ]
Ij[M−2] = ν

[j,M ]
M . (76)

This completes the induction step for Clause 1 for
Theorem 1. Next let

C =
⋂

J∈C2(〈M〉)

H
(
uJ, τ

J
M , ν

J
M

)
. (77)

As part of the induction to establish the second part of the
theorem, we show next that C = GM . First observe that if
y ∈ GM , then y = t0 + P [〈M〉]α for some α ∈ [0, 1]M .
Using (18),(19),(50), and (51), we can deduce that for any
J ∈ C2 (〈M〉), uTJ y−τ

J
M =

∑M
k=1

∣∣∣(αk − χ−(uTJ pk))uTJ pk ∣∣∣
ν
J
M =

∑M
k=1

∣∣∣(αk − χ+(uTJ pk))uTJ pk ∣∣∣ and thus uTJ y ∈[
τ
J
M , ν

J
M

]
. It follows that GM ⊂ C. Next we show that

C ⊂ GM .
First observe that GM−1 ⊂ GM ⊂ C, therefore, we can

write

GM−1 =

 ⋂
i∈〈M−1〉

H
(
u[i,M ], τ

[i,M ]
M , ν

[i,M ]
M

)⋂
⋂

J∈C2(〈M−1〉)

H
(
uJ, τ

J
M−1, ν

J
M−1

)
. (78)

Now consider the polyhedron

C∗M−1 =

 ⋂
i∈〈M−1〉

H
(
u[i,M ], τ

[i,M ]
M , ν

[i,M ]
M

)⋂

 ⋂
J∈C2(〈M−1〉)

H>
(
uJ, ψ

J
M−1

) . (79)

From our characterization and partitioning of the facets
and edges of GM−1, we see that for every J ∈ C2 (〈M − 1〉),
the facet F>

J = GM−1
⋂

H̄>
(
uJ, ψ

J
M−1

)
lies in B>GM−1 and

that the edges defining the boundary of the facet either
1) belong to E�GM−1 , in which case, the edge is the

intersection of F>
J with another facet F>

J′ =

GM−1
⋂

H̄>
(
uJ′ , ψ

J′
M−1

)
∈ B>GM−1 , or

2) belongs to E<>GM−1 or E><GM−1 , in which case, the edge
is the intersection of F>

J with a supporting plane

H̄
(
u[i,M ], τ

[i,M ]
M

)
or H̄

(
u[i,M ], ν

[i,M ]
M

)
.

In either case, C∗M−1
⋂

H̄>
(
uJ, ψ

J
M−1

)
= F>

J , whereby
we can conclude that the boundary of the polyhedron C∗M−1
satisfies

BC∗M−1 ⊂
⋃

J∈C2(〈M−1〉)

F
(
dJ>,P[J]

)⋃
⋃

i∈〈M−1〉

(
H̄
(
u[i,M ], τ

[i,M ]
M

)⋃
H̄
(
u[i,M ], ν

[i,M ]
M

))
. (80)

Note that GM−1 ⊂ C∗M−1 and therefore C∗M−1 6= φ. Now
denoting

YM =

 ⋂
J∈C2(〈M−1〉)

H
(
uJ, κ

J
M , η

J
M

)⋂
 ⋂
i∈〈M−1〉

H
(
u[i,M ], τ

[i,M ]
M , ν

[i,M ]
M

) , (81)

we see that C = GM−1
⋃

YM . Now suppose y ∈ C. If y ∈
GM−1 then y ∈ GM because GM−1 ⊆ GM . On the other hand,
if y /∈ GM−1 then y ∈ YM and y /∈ C∗M−1. Now consider
z = y − pM . Then, for every i ∈ 〈M − 1〉, uT[i,M ]z =

uT[i,M ]y ∈
[
τ
[i,M ]
M , ν

[i,M ]
M

]
and for every J ∈ C2 (〈M − 1〉),

uTJ z = uTJ y− sgn(uTJ pM )
(
η
J
M − κ

J
M

)
, from which it follows

that z ∈ H>
(
uJ, ψ

J
M−1

)
. Thus z ∈ C∗M−1. Since C

∗

M−1 is a
convex set and y /∈ C∗M−1 and y − pM ∈ C∗M−1, there exists
a smallest 0 < γ < 1 such that z∗ = y − γpM ∈ BC∗M−1 .
Noting that uT[i,M ]pM = 0 for all i ∈ 〈M − 1〉, from (80),

we can conclude that z∗ ∈
⋃

J∈C2(〈M−1〉) F
(
dJ>M−1,P[J]

)
.

It then follows that y = z∗ + γpM ∈ P
(
dJ>M−1,P[J,M ]

)
=

P
(
cJM ,P[J,M ]

)
⊂ GM . Thus C ⊂ GM and combining with

our prior result we have C = GM . The facts that C is a
polyhedron and that GM , being an affine map of the closed
and bounded unit hypercube, is a closed and bounded set
then imply that GM is a polytope that can be expressed as the
convex hull of its vertices. This completes the induction step
for Clause 2 for Theorem 1.
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Nowusing the fact that C = GM alongwith Lemma 2 and 3,
it follows that the boundary of GM is

BGM =
⋃

J∈C2(〈M〉)

(
F
(
dJ
−

M ,P[J]
)
∪ F

(
dJ
+

M ,P[J]
))
, (82)

with

F
(
dJ
−

M ,P[J]
)
= GM

⋂
H̄
(
uJ, τ

J
M

)
, (83)

F
(
dJ
+

M ,P[J]
)
= GM

⋂
H̄
(
uJ, ν

J
M

)
. (84)

representing a pair of congruent parallelogram facets with
supporting planes H̄

(
uJ, τ

J
M

)
and H̄

(
uJ, ν

J
M

)
, respectively,

for each J ∈ C2 (〈M〉). Thus GM has
(M
2

)
pairs of paral-

lelogram facets. Using the preceding characterization of the
boundary of GM with Lemma 2 and 3 we also immediately
see that a tristimulus t ∈ GM has a unique control vector iff
t ∈ BGM , establishing Clause 6 for Theorem 1.

Next we revisit the essentially disjoint set of paral-
lelepipeds in the set AM in (71) that are added in GM
over GM−1. From the defining expressions, we can see
that for each J ∈ C2 (〈M − 1〉), we have cJM = dJ>M−1,

i.e., the origin of the parallelepiped P
(
cJM ,P[J,M ]

)
and the origin of the facet F

(
dJ>M−1,P[J]

)
are iden-

tical. It follows that there is a one-to-one correspon-
dence that relates, for each J ∈ C2 (〈M − 1〉), the
facet F

(
dJ>M−1,P[J]

)
of GM−1 and the parallelepiped

P
(
cJM ,P[J,M ]

)
added in GM , with P

(
cJM ,P[J,M ]

)
={

t̂+ αMpM | t̂ ∈ F
(
dJ>M−1,P[J]

)
, 0 ≤ αM ≤ 1

}
. It also

follows that for each J ∈ C2 (〈M − 1〉), the parallelepiped
P
(
cJM ,P[J,M ]

)
extends the sequence of (M − 3) paral-

lelepipeds in GM−1 that include the primaries P[J] and where
the intersection of successive parallelepipeds is a common
facet of both parallelepipeds spanned by the primaries P[J]
to a sequence of (M − 2) parallelepipeds in GM−1, where
the same properties hold (If uTJ pM > 0 (uTJ pM < 0) the
sequence I in Clause 9 for Theorem 1 for GM−1 is replaced
by the sequence [I,M ] ([M , I]) for GM .).

Now, for a given j ∈ 〈M − 1〉, consider the 〈M − 2〉
parallelepipeds P

(
cJM ,P[J,M ]

)
, J ∈ C2 (〈M − 1〉) , j ∈

J and their corresponding facets F
(
dJ>M−1,P[J]

)
, J ∈

C2 (〈M − 1〉) , j ∈ J. Let J1 denote the pair of indices j

and Ij[1] then, from (76), we see that τ
[j,M ]
M = κ̄

[j,M ]
Ij[1]

and the parallelepipedP
(
cJ1M ,P[J1,M ]

)
has the correspond-

ing facet F
(
dJ1>M−1,P[J1]

)
, over one of whose pj edges

the function fj(t) achieves the minimum value of τ [j,M ]
M .

The other pj edge of the facet F
(
dJ1>M−1,P[J1]

)
lies in

the plane H̄
(
u[j,M ], κ̄

[j,M ]
Ij[1]

)
is non-extremal with respect

to the function fj(t) and from (69) we see that the edge
is therefore shared with another facet F2 of GM−1 from

the set F
(
dJ>M−1,P[J]

)
, J ∈ C2 (〈M − 1〉) , j ∈ J, J 6=

J1. The corresponding parallelepiped P2 (from the set
P
(
cJM ,P[J,M ]

)
, J ∈ C2 (〈M − 1〉) , j ∈ J, J 6= J1) has a

facet supported by the plane H̄
(
u[j,M ], κ̄

[j,M ]
Ij[1]

)
. From (76),

we note that η̄[j,M ]
Ij[2] = κ̄

[j,M ]
Ij[1] and the only parallelepiped from

the set P
(
cJM ,P[J,M ]

)
, J ∈ C2 (〈M − 1〉) , j ∈ J, J 6= J1

that has a facet supported by the plane H̄
(
u[i,M ], κ̄

[i,M ]
Ij[1]

)
is

the parallelepiped P
(
cJ2M ,P[J2,M ]

)
, where j and Ij[2] are

the elements of J2. HenceP2 = P
(
cJ2M ,P[J2,M ]

)
andF2 =

F
(
dJ2>M−1,P[J2]

)
. The process can be continued for l =

2, 3, . . . (M − 3), where denoting Jl+1 as the pair of indices j
and Ij[l + 1], we conclude that the facet F

(
dJl>M−1,P[Jl]

)
shares a pj edge with the facet F

(
dJl+1>M−1 ,P[Jl+1]

)
con-

tained in the facet supporting plane H̄
(
u[i,M ], κ̄

[i,M ]
Ij[l+1]

)
of

the associated parallelepiped P
(
cJl+1 ,P[Jl+1,M ]

)
. Relating

the origins of the chain of facets with the shared edges,
we obtain cJlM = dJl>M−1 = dJl−1>M−1 + sgn

(
uT[j,M ]pIj[l]

)
pIj[l] =

cJl−1M + sgn
(
uT[j,M ]pIj[l]

)
pIj[l], l = 2, 3, . . .M − 2. We can

then see that for each j ∈ 〈M − 1〉, the subset of (M − 2)
parallelepipeds in the set AM in (71) that include pj and pM
among their spanning primaries form a chain in which the l
and (l+1)th parallelepipeds in the chain intersect in a common
facet spanned by primaries pj and pM , specifically the M
primary equivalent of (34) holds, viz.,

P
(
cJlM ,P[Jl | M ]

)⋂
H̄
(
u[j,M ], η̄

[j,M ]
Ij[l]

)
= P

(
cJl+1M ,P[Jl+1 | M ]

)⋂
H̄
(
u[j,M ], κ̄

[j,M ]
Ij[l+1]

)
. (85)

Except for the facets supported by the planes
H̄
(
u[j,M ], τ

[j,M ]
M

)
and H̄

(
u[j,M ], ν

[j,M ]
M

)
all other facets of

parallelepipeds P
(
cJM ,P[J,M ]

)
, J ∈ C2 (〈M − 1〉) , j ∈ J

spanned by the primaries pj and pM occur in pairs of paral-
lelepipeds that lie on either side of the facets ensuring that the
relative interior of these facets is in the relative interior of GM .
Combining with our prior conclusion for J ∈ C2 (〈M − 1〉)
this completes the induction step for Clause 9 for Theorem 1.
Consider next the relation between the boundaries of GM

and GM−1, which can be appreciated from the example illus-
trated in Fig. 9. By recalling that the planes H̄

(
uJ, φ

J
M−1

)
and pM + H̄

(
uJ, ψ

J
M−1

)
provide a relabeling of the support-

ing planes H̄
(
uJ, τ

J
M

)
and H̄

(
uJ, ν

J
M

)
, we can write

BGM=

 ⋃
J∈C2(〈M−1〉)

(
F
(
dJ
−

M ,P[J]
)
∪F

(
dJ
+

M ,P[J]
))

∪

 ⋃
i∈〈M−1〉

(
F
(
d[i,M ]−
M ,P[i,M ]

)
∪F

(
d[i,M ]+
M ,P[i,M ]

))
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FIGURE 9. The gamuts GM−1 and GM and the relation between their
boundaries: (a) GM−1 and B<GM−1

(blue); (b) GM−1, B>GM−1
(light red,

with B<GM−1
transparent with edges shown with dashed lines), and

(c) GM with B<GM−1
(blue) and pM +B>GM−1

(red).

=

 ⋃
J∈C2(〈M−1〉)

(
F
(
dJ<M ,P[J]

)
∪

(
pM+F

(
dJ>M ,P[J]

)))
∪

 ⋃
j∈〈M−1〉

(
F
(
d[j,M ]−
M ,P[j,M ]

)
∪ F

(
d[j,M ]+
M ,P[j,M ]

))
(86)

where the sets involved are essentially disjoint and therefore
involve distinct facets. Additionally, we can see that for each
J ∈ C2 (〈M − 1〉), edges of the facet F

(
dJ<M ,P[J]

)
(alterna-

tively, pM + F
(
dJ>M ,P[J]

)
) that are in E�GM−1 (alternatively,

E�GM−1 ) are supported by the (alternatively, pM translated
versions of the) same planes in GM as they were in GM−1 and
edges that are in E><GM−1 or E

<>
GM−1 are supported inGM by either

the plane H̄
(
u[j,M ], τ

[j,M ]
M

)
or H̄

(
u[j,M ], ν

[j,M ]
M

)
where j

denotes the index of the primary spanning the edge. Also, for
each j ∈ 〈M − 1〉, for each of the facets F

(
d[j,M ]−
M ,P[j,M ]

)
and F

(
d[j,M ]+
M ,P[j,M ]

)
,

• edges spanned by the primary pj are seen (using
Lemma 1 and our previous organization of the par-
allelepipeds into chains) to be intersections of these
facets with a facetF

(
dJ
−

M ,P[J]
)
orF

(
dJ
+

M ,P[J]
)
with

J ∈ C2 (〈M − 1〉) , j ∈ J, and the edges are therefore
supported by the corresponding planes H̄

(
uJ, τ

J
M

)
or

H̄
(
uJ, ν

J
M

)
, and

• edges spanned by the primary pM are the edges of a
parallelepiped in AM defined in (71) and supported
(as edges of the facet polytope) by one of the planes

H̄
(
u[i,M ], τ

[i,M ]
M

)
and H̄

(
u[i,M ], ν

[i,M ]
M

)
for some i ∈

〈M − 1〉, i 6= j. Specifically, consider an edge E of
the facet F

(
d[j,M ]−
M ,P[j,M ]

)
(the case for an edge

of the facet F
(
d[j,M ]+
M ,P[j,M ]

)
follows an analo-

gous argument) spanned by the primary pM . The facet
F
(
d[j,M ]−
M ,P[j,M ]

)
of GM is also a facet of the par-

allelepiped P
(
cJIj[1],P[J,M ]

)
where j and Ij[1] are the

two indices in J. Now by Lemma 1, in the parallelepiped
P
(
cJIj[1],P[J,M ]

)
edge E is the intersection of the

facet F
(
d[j,M ]−
M ,P[j,M ]

)
of GM with another facet F2

that is spanned by pM and pIj[1]. If F2 is also a facet
of GM , then its supporting plane in the parallelepiped
P
(
cJIj[1],P[J,M ]

)
also serves as the supporting plane

for the edge E in the facet F
(
d[j,M ]−
M ,P[j,M ]

)
of GM .

If on the other hand, the F2 is not a facet of GM ,
then from the fact that the parallelepipeds in GM that
include the primaries pM and pIj[1] are arranged in a
chain with only the facets located in planes extremal for
fIj[1](t) spanned by the primaries pM and pIj[1] exposed
as surfaces of the gamut (recall (85)), it follows that there
is a parallelepiped P2 that shares the facet F2 with the
parallelepiped P

(
cJIj[1],P[J,M ]

)
. By Lemma 1, in the

parallelepiped P2 the edge E is the intersection of F2
with another facet F3, and because the edge is an edge
of GM and every edge is contained in a surface facet,
it follows thatF3 is a facet of GM that intersects the facet
F
(
d[j,M ]−
M ,P[j,M ]

)
in the edge E and the supporting

plane for the facet F3 serves as a supporting plane for
the edge E for the facet F

(
d[j,M ]−
M ,P[j,M ]

)
.

Thus we have shown that every edge of a facet spanned by
a primary pj in GM is supported by a plane H̄

(
uJ̄, τ

J̄
)
or

H̄
(
uJ̄, ν

J̄
)
for some J̄ ∈ C2 (〈M〉) such that j ∈ J̄, complet-

ing the induction step for Clause 3 for Theorem 1. A direct
implication of the clause is that every edge is contained in
precisely two facets and is the intersection of the two facets
that contain it. Therefore the number of distinct edges in GM
is 2M (M − 1). Furthermore, by combining the fact that the
control values for tristimuli on the facets are unique and that
those for the vertices of the facets take values only in {0, 1},
we also see that any t is a vertex of GM iff it is a vertex of
one of the facets forming the boundary of GM . Using Euler’s
formula [16, pp. 123] relating the number of facets, edges,
and vertices for a polytope in R3, we see that the number of
distinct vertices in GM isM (M − 1)+ 2.
Now for J ∈ C2 (〈M − 1〉) consider the parallelepiped

P
(
cJM ,P[J,M ]

)
⊂ AM in (71). Via Lemma 1, for each

VOLUME 9, 2021 96591



G. Sharma, C. E. Rodríguez-Pardo: Geometry of Multiprimary Display Colors I: Gamut and Color Control

t ∈ P
(
cJM ,P[J,M ]

)
, β = P−1[J,M ]

(
t− cJM

)
is the

unique vector in [0, 1]3 such that t = cJM + P[J,M ]β.
It follows that α(t) = α

J
M + δ

J,M (t) represents a control
vector for the tristimulus t, where δJ,M (t) = IK [[J,M ]]β.
From (26) it can be seen that αJM is a control vector in GM−1
for dJ>M−1 = cJM lying on the surface of GM−1, therefore, αJM
is the unique control vector in GM−1 for cJM (via the induction
hypothesis). It follows that α(t) = αJM +δ

J,M (t) is the unique
control vector for t of the form the form δ

(J,M )
l (t) = 0 for

l /∈ [J,M ] and 0 ≤ δ
(J,M )
l (t) ≤ 1 for l ∈ [J,M ]. Also

t̂ = t − β3pM is the unique vector of the form t − βpM
lying on the surface of GM−1 and from the uniqueness of
control values on the surface of GM−1 it then follows that if
t lies on the surface of GM−1 then β3 = 0 and if there exists
another J′ ∈ C2 (〈M − 1〉) such that t ∈ P

(
cJ
′

M ,P[J
′,M ]

)
then the control vectors for t in both the parallelepipeds are
identical. Along with the induction hypothesis, the preceding
conclusions imply that a CCF CM that is continuous and
piece-wise linear over each of the parallelepiped partitions
in the representation in (24) is obtained by defining, for i =
3, 4, . . . ,M and for all J ∈ C2 ([i− 1]),

CM (t) = α
J
i + IM [[J, i]]P−1[J, i]

(
t− cJi

)
, (87)

for all t ∈ P
(
cJi ,P[J, i]

)
, where this CCF function is unique

in the sense stated earlier. This completes the induction step
for Clause 7 for Theorem 1.

Now we note that because the parallelepipeds in the right-
hand-side of (73) are essentially disjoint, the intersection
of two parallelepipeds is contained within the boundary of
both parallelepipeds. Combining this with the continuity and
uniqueness of the CCF defined in (87) we can see that for any
two parallelepipeds in (24) that have a non-empty intersec-
tion, the intersection is a proper face of both parallelepipeds,
which completes the induction step for Clause 8 for
Theorem 1.

Next, we show that (31) and (32) uniquely associate two
edges and a vertex to each of the facets, where the equa-
tions are interpreted as associating the sequence of two
edges E

(
dJ
−

,pJ[1]
)
and E

(
dJ
−

+ pJ[1],pJ[2]
)
and the ver-

tex dJ
−

+pJ[1] with the facetF
(
dJ
−

,P[J]
)
and the sequence

of two edges E
(
dJ
+

,pJ[2]
)
and E

(
dJ
+

+ pJ[2],pJ[1]
)
and

the vertex dJ
+

+ pJ[2] with the facet F
(
dJ
+

,P[J]
)
. Observ-

ing that uJ is the direction pointing into and out-of the
gamut G from the facets F

(
dJ
−

,P[J]
)
and F

(
dJ
+

,P[J]
)
,

respectively, we note that the sequence of edges associated
with the facet is consistently and uniquely determined by the
property that the cross-product between the primary spanning
the first edge and the primary spanning the second edge is the
direction pointing into the gamut G from the facet. Noting
that the facets contain their associated vertices and edges,
it follows that vertices and edges associated with disjoint

facets are distinct and we therefore need only to consider
distinct intersecting facets. Specifically, because τ J < νJ

the facets F
(
dJ
′
−,P[J]

)
and F

(
dJ
′
+,P[J]

)
are disjoint

and we only need consider distinct facets F (o,P[J]) and
F
(
o′,P[J′]

)
, where J, J′ ∈ C2 (〈K 〉), J′ 6= J, o∈ {dJ− ,dJ+}

and o′ ∈ {dJ
′
−,dJ

′
+
}. As the intersection of two differ-

ent two-dimensional faces of a polytope is another face of
lower dimensionality, the intersection A = F (o,P[J]) ∩
F
(
o′,P[J′]

)
is either a vertex ov or an edge E(oe,pm), with

origin oe and spanned by pm where m = J
⋂

J′.
Assume first that A = E(oe,pm). We denote j = J \ m

and j′ = J′ \ m and use the convenient short hand labels
Fj = F (o,P[J]), Fj′ = F

(
o′,P[J′]

)
, oj = o, oj′ = o′ for

the facets and their origins. Assume wlog (otherwise, simply
interchange J and J′) that sgn

(
det

([
pm, δjpj, δj′pj′

]))
= 1, so

that pm, δjpj, δj′pj′ forms a positively oriented basis for R3,
where, for q = j, j′, δqpq is the feasible direction along the
facetFq from the edge E(oe,pm), with δq ∈ {±1} determined
by the facet Fq via the relation oq = oe −

(
(δq − 1)/2

)
pq.

From the convexity of the gamut G and our chosen orienta-
tion, it then follows that

(
δj′pj′ ⊗ pm

)
points into the gamut

G from the facet Fj′ . Now if δj′ = 1,
(
pj′ ⊗ pm

)
points into

the gamut G from the facet Fj′ , oj′ = oe, and the edges
E(oj′ ,pj′ ) = E(oe,pj′ ) and E(oj′ + pj′ ,pm) = E(oe + pj′ ,pm)
and the vertex oj′ + pj′ = oe + pj′ are associated with the
facet Fj′ . On the other hand, if δj′ = −1,

(
pm ⊗ pj′

)
points

into the gamut G from the facet Fj′ , oj′ = oe − pj′ , and the
edges E(oj′ ,pm) = E(oe − pj′ ,pm) and E(oj′ + pm,pm) =
E(oe− pj′ + pm,pj′ ) and the vertex oj′ + pm = oe− pj′ + pm
are associated with the facetFj′ . In both cases, we see that the
edge E(oe,pm) that is shared between the facets Fj and Fj′ is
not associated with theFj′ and that the vertex associated with
the facet Fj′ is not contained in the facet Fj (and analogous
arguments demonstrate that in both cases the edge E(oe,pm)
is associated with the facet Fj) It therefore follows that the
edge and vertex associations for two facets sharing a common
edge cannot conflict and are unique. Figure 10 provides an
illustration of the situation that provides geometric intuition
for the preceding algebraic arguments and Table 6 lists the
different possible cases for the edge and vertex associations.

Next consider the case when the intersection A = {ov} is
a vertex of both FJ = F (o,P[J]) and FJ′ = F

(
o′,P[J′]

)
.

From the uniqueness of the control values for a vertex and the
linear independence for any subset of three primaries, it fol-
lows that J

⋂
J′ = φ. Therefore, the edges associated with

the intersecting facets are clearly different. Thus, we only
need to show that the associated vertices are different as
well. Specifically, we show that if ov is associated with both
of the intersecting facets, then one of the four primaries in
P[J, J′] is the linear combination of the remaining three using
exclusively negative coefficients,14 which, being impossible

14Instead of introducing additional notation, we continue to refer to the
vectors spanning the facets as primaries in the rest of this paragraph, even
though they may include negative values, which is not possible for physically
meaningful primary tristimuli.
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FIGURE 10. Edge and vertex associations predicated by (31) and (32) for
a pair of facets Fj = F

(
o,P[J]

)
(gray shade with blue edges) and

Fj ′ = F
(
o′,P[J′]

)
(gray shade with red edges) intersecting in a common

edge E(oe,pm) that has origin oe and is spanned by pm, where
m = J

⋂
J′ , j = J \m and j ′ = J′ \m. The direction pointing into the gamut

G from the facet is identified by, respectively, the blue and red normal
vectors placed at the center of the facets F

(
o,P[J]

)
and F

(
o′,P[J′]

)
.

See text for additional description and definitions of δj , δj ′ .

for physically meaningful primaries, yields our desired result
by contraposition. Now assume that (32) associates the shared
vertex ov with both facets FJ and FJ′ . From (32) we see
that ov 6= o and ov 6= o′. Let pi, pj denote the sequence of
spanning primaries associated with theFJ such that ov = o+
pi and let pl , pm denote the sequence of primaries associated
with the facet FJ′ such that ov = o + pl . Then, the normals
nJ =

(
pi ⊗ pj

)
and nJ′ = (pl ⊗ pm) point into the gamut G

from the facets FJ and FJ′ and the minima of the functions
nTJ t, n

T
J′ t over t ∈ G are achieved precisely over the sets FJ,

FJ′ , respectively. Noting that the vertex ov is the intersection
of the sequence of edges associated with its facet, we see that
for α ∈ [0, 1], ov − αpq ∈ G for q = i, l and ov + αpq ∈ G
for q = j,m. It follows that nTJ pm = det

(
[pi,pj,pm]

)
> 0 >

nTJ pl = det
(
[pi,pj,pl]

)
and nTJ′pj = det

(
[pl,pm,pj]

)
>

0 > nTJ′pi = det ([pl,pm,pi]). From these inequalities,
we can conclude that the primaries pi, pj, pm form a positively
oriented basis for R3. Next, we express the primary pl in
terms of this basis as pl =

∑
q=i,j,m βqpq, where βq ∈ R3.

Now for this (in general, oblique) positively-oriented basis
representation, we have (see Clause 5 for Lemma 1)

sgn(βi)= sgn
(
(pj⊗pm)Tpl

)
=sgn

(
det

(
[pj,pm,pl]

))
=−1,

sgn
(
βj
)
= sgn

(
(pm⊗pi)Tpl

)
=sgn(det ([pm,pi,pl]))=−1,

sgn(βm)= sgn
(
(pi⊗pj)Tpl

)
=sgn

(
det

(
[pi,pj,pl]

))
=−1.

Therefore, pl is the linear combination of pi,pj,pm using
exclusively negative coefficients. Figure 11 provides an illus-
tration of the situation that provides geometric intuition for
the preceding algebraic arguments. Now, by contraposition,
it follows that for physically meaningful primaries that have
only non-negative values, the enumerated vertices in (32)
cannot be simultaneously associated with two different inter-
secting facets, and are therefore unique.

FIGURE 11. Intersecting facets with the same associated vertex. A pair of
gamut facets FJ = F

(
o,P[J]

)
(red) and FJ′ = F

(
o′,P[J′]

)
(blue), with

J ∩ J′ = φ, intersect in a common vertex ov (magenta), which is assumed
to be associated with both facets. The primary pairs pi ,pj and pl ,pm
span the sequence of associated edges for the facets FJ and FJ′ ,
respectively, so the facet normals nJ and nJ′ point into the gamut from
the facets. The primaries pi ,pj ,pm form a positive oriented basis, and
pl is the linear combination of pi ,pj ,pm using exclusively negative

coefficients. The parallelepiped P
(

o, [pi ,pj ,pm]
)
⊂ G is shown in gray

to help with visualization of the situation in three dimensions.

Noting that the vertices corresponding to display black t0
and display white t1 are not associated with any facet, but
are explicitly included in (32), we can conclude that (32)
uniquely enumerates M (M − 1)+ 2 vertices of GM and (31)
uniquely enumerates 2M (M − 1) edges for GM . Because,
we have these values as the number of distinct edges and
vertices, respectively, in GM , we have hereby completed the
induction step for Clauses 4 and 5 in Theorem 1.

APPENDIX C
SPECIFICATIONS OF PRIMARY SYSTEMS USED IN
EXAMPLES
Table 3 lists the tristimulus values corresponding to the
columns of the primary matrices used as examples in the
paper. The primary systems P(K )

V , with K = 3, 4, 5, and 6,
maximize volume in the CIELUV space, under a total
power constraint, and are obtained following the method-
ology proposed in [23]. The four-primary system P(4)

w and
the five-primary system P(5)

w are obtained as extensions of
the optimal systems P(3)

V and P(4)
V , respectively, by adding

a primary whose chromaticity matches the display white
chromaticity; specifically, P(4)

w = [(2/3)P(3)
V | (1/3)P

(3)
V 1]

and P(5)
w = [(3/4)P(4)

V | (1/4)P
(4)
V 1]. Note that any three

columns of P(4)
w are linearly independent (as required by

our assumptions) but the four columns are not linearly
independent.
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TABLE 3. CIE XYZ tristimuli of the primaries for the multiprimary systems
used for the examples in the paper.

APPENDIX D
ADDITIONAL TRISTIMULUS GAMUT VISUALIZATIONS
Figure 12 illustrates the tristimulus gamuts G for the 5 pri-
mary system P(5)

w and the six primary system P(6)
V (with

t0 = 0 in all cases). The edges and vertices of the gamut are
colored to indicate the associations as per Clauses 4 and 5 of
Theorem 1 using a convention identical to that used for Fig. 2.

FIGURE 12. The tristimulus gamuts G for the K = 5 and 6 primary CIELUV
gamut volume maximizing designs P(5)

w , and P(6)
V . In each case, the region

inside the wireframe corresponds to the gamut and the edges and
vertices are colored to indicate the associations as per clauses 4 and 5 of
Theorem 1 (see text).

APPENDIX E
EXAMPLES OF PROGRESSIVE GAMUT TILINGS
In this section, we present the different progressive-by-
primary tilings of the gamut of the K = 5 primary
system P(5)

w produced by Algorithm 1. While the different
progressive-by-primary tilings are produced from different
permutations of the primaries inP(5)

w , the fact that the first par-
allelepiped in the tiling is defined by the first three primaries

in P(5)
w indicates that Algorithm 1 can produce a maximum of(K

3

)
(K − 3)! = K !/3 = 20 different tilings. For the primary

system P(5)
w , Algorithm 1 actually produces 8 different tilings

shown in Fig. 13, with the list of the permutations of P(5)
w

producing each gamut tiling shown in Table 4. To allow the
distinct parallelepipeds in the tilings to be seen, the centers
of the parallelepipeds have been displaced radially outward
with respect to the center of the gamut (by scaling the original
displacements by a factor of 1.8) and the axes in Fig. 13 are
therefore labeled as X ′,Y ′,Z ′.

TABLE 4. Primary permutations producing the different
progressive-by-primary tilings of the gamut of the K = 5
primary system P(5)

w .

APPENDIX F
UNIQUENESS OF VERTEX ENUMERATION IS
INAPPLICABLE FOR GENERAL ZONOTOPES
Let v be any vector in R3 and A ∈ R3×K be a matrix, any
three of whose columns are linearly independent. Consider
the associated three dimensional zonotope

A (v,A) =
{
Aα + v | α ∈ [0, 1]K

}
, (88)

that exactly mirrors our definition of the multiprimary gamut
in (4), with the exception that while entries in P were con-
strained by physics to be nonnegative, no such constraint
applies to the entries in A. Then, as already noted, except
for Clause 5, all other clauses of Theorem 1, also apply to
the representation of the three-dimensional zonotope in (88).
From the proof for Theorem 1, we see that the uniqueness of
the vertices enumerated in (32) and the validity of Clause 5
holds provided no column of A is a linear combination of
three other columns of A using exclusively negative coef-
ficients. Because this condition directly holds for primary
matrices P with nonnegative entries, Theorem 1 holds in
general for any multiprimary display gamut. Here we provide
an example demonstrating failure of the uniqueness of the
vertices enumerated in (32) for a three-dimensional zonotope
obtained with a matrix A one of whose columns is a linear
combination of three other columns of A using exclusively
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TABLE 5. Edges and vertices associated with the intersecting facets F
(
o,P[J]

)
and F

(
o′,P[J′]

)
with common edge E(oe,pm) spanned by pm and

origin oe. The associated edges and vertices are obtained from expressions (31) and (32) for all possible values for facet origins o and o′ , relative to oe.

FIGURE 13. The progressive-by-primary tilings of the gamut of the K = 5
primary system P(5)

w , produced by Algorithm 1 with the columns of P(5)
w

permuted in different orders. Table 4 lists the permutations
corresponding to each of the tilings.

FIGURE 14. Example illustrating the three dimensional zonotope
A
(
0,A

)
where A is defined in (89) for which the enumeration of vertices

by (32) in Theorem 1 fails. See text for description.

negative coefficients. Specifically consider the 3× 4 matrix

A def
= [a1 a2 a3 a4] =

 1 0 0 −0.5
0 1 0 −0.5
0 0 1 −0.5

 , (89)

where it can be noted that a4 = −0.5 (a1 + a2 + a3). The
corresponding three dimensional zonotopeA (0,A) is shown
in Fig 14, where the two edges of the same color in a facet
indicate the edges associated with the facet through (31) and
the vertex located at the intersection of these edges is the
vertex that (32) associates with the same facet. By examining,
Fig 14 we can see that the vertex tv = [−0.5, 0.5,−0.5]T

is associated with two different facets (corresponding to the
facets that have two brown and two blue colored edges). Thus
the enumeration of the vertices predicated by (32) in Theo-
rem 1 is not unique for the zonotope A (0,A). From Fig. 14,
we also note that for the zonotope A (0,A), the expressions
in (32) fail to enumerate several of the vertices (vertices
not marked by circles in Fig. 14) and incorrectly identify
the points v = 0 (marked by the diamond in Fig. 14) and
v +

∑4
k=1 ak (marked by the star in Fig. 14) as vertices.

We note that our results do not establish that the uniqueness
of the vertex associations in (32) fails whenever one of the
columns of the matrixA is a linear combination of three other
columns of A using exclusively negative coefficients, though
computational exploration suggests this is the case.
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TABLE 6. Matrices A(K )
◦ used for generating the polar zonohedra for K = 3,6,12,24.

FIGURE 15. Polar zonohedra generated by the matrices 3× K matrices
A(K )
◦ , with r = 1, R = 2, and K = 3,6,12,24 (See description in text). The

subfigures in each row illustrate two views of the corresponding polar
zonohedron. For instance, (a) and (b) are views for the K = 3 polar
zonohedron.

APPENDIX G
APPLICATION OF THEOREM 1 FOR POLAR ZONOHEDRA
A polar zonohedra is a zonotope A in R3 resulting from the
mapping of [0, 1]K , K ≥ 3 by a 3 × K matrix A whose

columns are vectors starting at the apex of a circular cone
and ending at points located on the base evenly spaced in
angle [35]. Even though the matrix A that generates a polar
zonohedron can contain negative entries (unlikemultiprimary
display matrices), as noted in Section VI Theorem 1, applies
in its entirety to polar zonohedra and can therefore be used to
directly obtain geometric representations of polar zonohedra.
We illustrate this application in this section.

Using a circular cone of radius r , height R and apex at
the origin 0, a polar zonohedra for K ≥ 3 is obtained
by the matrix denoted by A(K )

◦ with column vectors ak =
[r cos(2πk/K ), r sin(2πk/K ),R]T , for k ∈ 〈K 〉. Note that all
the column vectors have the same norm ‖ak‖ =

√
R2 + r2.

With r = 1, R = 2, the column vectors of A(K )
◦ for K =

3, 6, 12, and 24, are shown in Table 6. The geometric rep-
resentations for the corresponding polar zonohedra obtained
using Algorithm 1 and Theorem 1 are shown in Fig. 15,
where the edges are depicted as colored arrows that indicate
the directions of the vectors ak that span the facets and
facilitate the identification of the edge and vertex associations
indicated by Clauses 4 and 5 of Theorem 1. Specifically, for
each sequence of magenta and cyan arrows, in that order and
in the direction indicated by the arrows, the facet shared by
the arrows is the facet with which the corresponding edges
associate as per Clause 4. For each such sequence, the blue
circle where themagenta arrow terminates and the cyan arrow
begins identifies the vertex that associates with the same facet
as per Clause 5. Note that for each facet the cross-product
between the vector for the associated magenta edge and the
vector for the associated cyan edge, in that order, consistently
points into the gamut.
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