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ABSTRACT

TurboFold, an iterative algorithm for estimating the common sec-
ondary structures of multiple RNA homologs, is presented. The al-
gorithm is motivated by and has structure and attributes analogous to
the turbo decoding algorithm in communications. Instead of solving
the joint problem of aligning and folding multiple RNA sequences,
TurboFold uses an iterative process to fold a collection of RNA ho-
mologs. Beneficial information from inter-sequence comparisons is
incorporated by using feedback from iteration to iteration in the form
of pseudo-prior probabilities for base pairing which are incorporated
in the computation of base pairing probabilities. As a result Turbo-
Fold retains several of the advantages of join alignment and folding
while maintaining a per iteration computational complexity com-
parable to single sequence RNA folding. Experimental evaluation
of the algorithm, performed over six ncRNA families, demonstrates
that TurboFold achieves high accuracy, offering better performance
than available alternatives for estimating RNA base pairing proba-
bilities.

Index Terms— RNA secondary structure, Turbo decoding, Iter-
ative Estimation

1. INTRODUCTION AND BACKGROUND

RNA has recently emerged as a key player in biology, serving a num-
ber of crucial noncoding roles, in addition to its traditionally known
function as a transient mRNA copy of the genetic code for protein
synthesis [1]. The secondary structure, i.e. the set of hydrogen-
bond-mediated pairings between bases located within the linear
strand of an RNA molecule, plays a key role in defining the function
for these noncoding RNAs (ncRNAs). The secondary structure is
important in developing hypotheses about function, finding new in-
stances of an RNA family in genomes , designing therapeutics , and
is crucial in modeling and solving the 3D structure . Computational
prediction of RNA secondary structure, commonly referred to as
computational RNA folding, is therefore an important problem in
computational biology [2, Chap. 10].

Computational methods for predicting RNA secondary structure
use, as inputs, the primary structure information for RNA, which,
for the purposes of the ensuing discussion, consists of a sequence
x € AN where A = {A,U,G,C} and N denotes the length of
the sequence. The length of the sequence corresponds to the number
of nucleotides in the RNA chain and the elements of the sequence
denote the identifying nitrogenous base associated with each of the
nucleotides arranged in order from the 5 to the 3’ end of the chain.
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Permissible pairings are A — U, G — C, and G — U and prediction
methods seek to identify the subset of possible pairings that actually
occur in the RNA molecule in the physiological setting of the cell.

The folding of an RNA molecule in nature is governed by ther-
modynamics, as is the case for most chemical reactions. Therefore,
a popular class of computational methods models the thermodynam-
ics of RNA folding and uses dynamic programming to estimate the
minimum free energy secondary structure, which is the structure pre-
dicted to be most likely under the thermodynamic model [3]. In
addition, machine learning techniques, in particular stochastic con-
text free grammars (SCFGs) and hidden Markov models (HMMs)
have recently been applied to the problem of RNA secondary struc-
ture prediction) [2, Chap. 10] [4]. The SCFGs/HMMs are trained
using databases of known secondary structures and can then be de-
ployed for prediction. Both thermodynamic model based and SCFG
based techniques for prediction of RNA secondary structure offer re-
markable improvements in accuracy when, instead of predicting sec-
ondary structure for a single sequence, these tools are extended and
applied to multiple RNA homologs, i.e. evolutionarily related RNA
sequences that serve the same function and therefore share common'
secondary structure. The methods are commonly referred to as joint
folding and alignment techniques because they attempt to simulta-
neously address the problems of folding the RNA sequences (into a
common secondary structure) and aligning the sequences.

Joint folding and alignment offers accuracy improvements by
harnessing comparative information across different genomes repre-
sented in the multiple RNA homologs, where the same secondary
structure is represented by different sequences because evolution-
ary changes in the sequence are feasible while conserving the func-
tionally significant secondary structure. In fact, the most effective
techniques for the prediction of RNA secondary structure rely on
manually driven comparative analysis of a large (several hundred)
number of homologous sequences. These methods offer excellent
accuracy” but can only be utilized by a small set of skilled scientists
in a labor intensive and slow fashion. Automated methods for joint
folding and alignment, on the other hand, are limited by their com-
putational complexity. The basis for these algorithms was provided
in a theoretical paper by Sankoff [6], which first formulated the prob-
lem and presented a solution approach using dynamic programming.

!n the biological context, common does not imply exactly identical.

2In a benchmark study, over 97% of the base pairs predicted in ribosomal
RNA by comparative analysis were validated by comparisons with crystal
structures [5].
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The resulting algorithm, however, has a complexity that increases
exponentially with the number of sequences. As a result, practi-
cal implementations of automated algorithms for joint alignment and
folding of multiple RNA homologs are restricted to two or at most
three sequences, or work progressively through multiple sequences
in a pairwise manner. Even with these restrictions, these algorithms
require heuristics for reducing computation. Additionally, the con-
sensus structure defines an unrealistically rigid constraint, to which
all sequences must conform, contrary to the variations seen in Biol-
ogy. Finally, despite the computational simplifications, the methods
can address only relatively short sequences due to memory and com-
putation time requirements.

This paper presents, TurboFold, a new method for prediction of
RNA secondary structures for multiple RNA homologs, that over-
comes several of the aforementioned limitations of joint folding and
alignment methods by addressing the problem in an framework in-
spired by turbo decoding [7] in digital communications. This yields
an iterative algorithm whose per-iteration complexity is identical
to single sequence folding, while retaining the desirable attribute
of joint folding and alignment techniques that comparative se-
quence information is incorporated in the folding process. The
algorithm is experimentally evaluated over a set of randomly cho-
sen sequences from six noncoding RNA families and shown to of-
fer performance comparable to or better than existing techniques for
prediction of RNA secondary structure across multiple homologs.

Section 2 provides an overview of TurboFold. In Section 3, ex-
perimental results are presented, where using databases of known
secondary structures, the performance of TurboFold is benchmarked
and compared with several alternative methods. Section 4 explores
connections with Turbo decoding and directions for future work.
Space constraints for this paper do not permit a detailed description
of TurboFold and extensive comparison against alternatives. Inter-
ested readers are referred to a companion journal article [8] for a
more complete algorithmic description, additional benchmarks, and
biologically relevant examples.

2. TURBOFOLD ALGORITHM OVERVIEW

Let x1, X2, ..., Xx denote the set of K input homologous RNA se-
quences and let N,, indicate the length of x,,,. Then, x,, € AN™
using the notation introduced previously. Furthermore, let N' =
{1,..., K} denotes the set of sequence indices.

The (true) secondary structure S,, for x,, consists of the set
of base pairings (¢,7), 1 < i < j < N,, that occur in the RNA
molecule with high probability in the physiological setting of the
cell. These pairings are a subset of the permissible pairings A — U,
G — C,and G — U (order independent). The fact that the sequences
are homologs implies that the secondary structures for the sequences
X1,X2,...,XK are common, i.e. the secondary structures match
topologically (rather than exactly), though occasional minor varia-
tions in topology are also not uncommon.

Computational methods for predicting common structures ex-
ploit two types of information: a) intra-sequence information con-
tained within a single RNA sequence and b) comparative information
that arises from the fact that the sequences share common secondary
structures and an underlying alignment that conforms to the common
secondary structures. Joint alignment and folding methods attempt
to use these two pieces of information collectively but, as indicated
earlier, require compromises in practice because of computational
complexity.

TurboFold formulates the problem of estimating secondary
structures for multiple RNA homologs in a probabilistic framework,
where, instead of predicting a single secondary structure for each
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RNA sequence, base pairing probabilities ,II" are estimated for
each of the RNA sequences {Xm }menr. Here ,2JI"™ is an Ny, X Ny
symmetric matrix (i,7)*" entry j > i represents the probability
that (in the equilibrium ensemble for sequence m) the base pair
(4,7) occurs. This probabilistic formulation of the RNA secondary
structure estimation problem, in turn, enables an approximate solu-
tion for this problem using iterative updates for the estimated base
pairing probabilities. At each iteration, pseudo-prior probabilities
for base pairing are computed for each sequence using the pairwise
posterior probabilities for sequence alignments and the base pairing
probabilities for other sequences in the set of input homologs. The
iteration is completed by recomputing base pairing probabilities for
each sequence using information intrinsic to the sequence provided
by a thermodynamic model along with the extrinsic information pro-
vided by the pseudo-prior probabilities. The TurboFold algorithm is
summarized below in pseudo code format.

N,
m A
Input Sequences >
{Xm }m eN 1
Ny 1 Ny
X1 N TurboFold - N
! N L] P N
[ AN
x. =
g Bl {;)H’"}I{;H’"} AN
. N > : 1 Ny
. /\/ n Iterations :
K 1 Tk Nk
s
! N
1
1 Ng

Fig. 1. TurboFold Overview: inputs, outputs, and iterative structure.

1. Initialization. Using a pair-wise HMM for sequence align-
ment, compute posterior alignment co-incidence® probability
matrices [TI¢™ for all s, m € N,s # m. Initialize itera-
tion count ¢ < 0, pseudo-priors for base pairing for each of
the sequences f,f[m with uniform distributions. This step has
O(K*N?) time complexity

2. Compute estimates of base pairing probabilities ;II"™ for
each sequence m € N using a modified single sequence
partition function [10] computation using a nearest neighbor
thermodynamic model that incorporates ;f[m as pseudo-
prior probabilities* for base pairing. This step has O(K N®)
time complexity.

3. Increment iteration count ¢ «— (¢t 4 1). If ¢ > 1), stop (itera-
tions completed).

4. Compute updated pseudo-prior probabilities for each of the
sequences using the pairwise-intersequence coincidence
probabilities and the base pairing probabilities computed
in the preceding step.

™ =a> wem JI e e (1)

where ws,, is a weighting factor determined based on the
similarity of the sequence s with the sequence m and « is

3Two nucleotide positions (one from each of the two sequences) are co-
incident if they are either aligned, or if one nucleotide position (from one
of the sequences) occurs in an insertion in that sequence that begins at a
nucleotide position aligned with the second nucleotide position (from the
other sequence) [9].

4This is analogous to the pseudo-prior interpretation for Turbo decoding
in[11]



a normalizing constant determined to ensure that ;,1:[’" sums
up to 1. In its naive form the step above has computational
complexity K2N2 N2, Significant computational gains are
obtained by using sparse approximations of the matrices in-
volved. Continue iterations by going to step 2.

The overall resulting flow diagram for TurboFold is depicted in
Fig. 1. A key observation is that computationally Step (2) of the
algorithm dominates and therefore the algorithmic complexity is ef-
fectively linear in the number of sequences K and therefore scales
reasonably with increasing number of sequences. The number of it-
erations is set to 3 based on empirical tests of performance and one
other (scalar) algorithmic parameter internal to the algorithm that
balances the relative weights of intrinsic and extrinsic information is
determined by evaluating and optimizing performance on a training
database (distinct from the database for which results are reported in
the next section). In addition, there are several implementation ef-
ficiencies that can be realized in practice. Details of both can be
found in [8]. Upon completion the algorithm provides estimates
SII™ for the base pairing probabilities for each of the sequences.
Secondary structures can be obtained from these estimated probabil-
ities by including within the predicted structure base pairs that have
an estimated probability higher than a desired significance threshold
thesh-

3. RESULTS

To evaluate the performance of TurboFold, datasets of known sec-
ondary secondary structures from six ncRNA families are utilized.
Datasets are generated selecting at random, for each of these fam-
ilies, a number of sequences from databases of known homologs
for the family and splitting these into groups of K sequences where
K ranges from 2 through 10. Specifically, the random selections
include 200 RNase P sequences, 200 tmRNA sequences, 30 telom-
erase RNA sequences, 400 SRP sequences, 400 tRNA sequences,
and 400 5S rRNA sequences. The number of sequences varies
across the families because the number of available homologs and
the average sequence length, which determines execution time, vary
significantly between these families. The number of sequences
varies across the families because the number of available homologs
and the average sequence length, which determines execution time,
vary significantly between these families®. The procedure yields 9
datasets corresponding to the different values of K.

The performance of TurboFold is compared with three other
methods that estimate base pairing probabilities®: 1) LocARNA [12]
(Version 1.5.2a is used, with Vienna RNA Software Package version
1.8.4), 2) RNAalifold [13] (The version included in Vienna RNA
Software Package version 1.8.4 is used with command line option
’-p’ for computation of base pairing probabilities with ClustalW
2.0.11 [14] for computation of input sequence alignment), and 3)
Single sequence estimates of base pairing probabilities using a near-
est neighbor thermodynamic model [10, 15] (as implemented in
RNAstructure version 4.5 [15,16]).

The accuracy of TurboFold and the other methods is assessed
by first obtaining base pairing predictions from these probabilities
by comparing the estimated probabilities against a (variable) signif-
icance threshold Piyesn; all base pairings whose estimated probabili-
ties lie above Presh are assumed to be present in the secondary struc-
ture and those below are assumed to be absent. The predicted base

SRefer to [8] for additional details and citations for the databases, which
are not included here due to space constraints.

6 Additional methods for secondary structure prediction are also compared
in [8], where the TurboFold predicted probabilities are used in a post process-
ing method for prediction of secondary structures.
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pairs can then be scored for accuracy against the known structures
from the databases to determine both the sensitivity, i.e. the number
of base pairs from the known structure that are included in the pre-
dictions, and the positive predictive value (PPV), i.e. the number of
base pairs in the predictions that are present in the known structures.
Finally, the methods are compared by plotting the sensitivities and
PPVs obtained as Piesh i varied (over a range from 0.04 to 0.96)
in a receiver operating characteristic (ROC) plot that highlights the
trade off between these two quantities. These ROC curves are illus-
trated in Fig. 2 for TurboFold and for the three alternative methods
for the cases of K’ = 3 and K = 10.
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Fig. 2. ROC curves of sensitivity versus PPV for TurboFold and
three alternative methods.

From the plots in Fig. 2, we see that TurboFold offers a better
sensitivity vs PPV tradeoff than the three other alternative methods
that provide estimates of base pairing probabilities. We also see that,
as expected from comparative analysis, using a large number of se-
quences K = 10 provides a greater advantage than using a smaller
number K = 3.

A comparison of the methods’ performance as a function of the
number of sequences K is also of interest. For this comparison,
we set the significance threshold Piesh to 0.5 and plot sensitivity
and PPV as a function of the number of sequences K in Figs. 3(a)
and 3(b), respectively. The plots indicate that the sensitivity and
PPV of TurboFold increases with increasing /. Among the methods
benchmarked here, TurboFold offers the highest sensitivity. Turbo-
Fold also provides the second highest PPV, after LocARNA, which,
however, provides its high PPV at the cost of a rather poor (lowest
among the methods plotted) sensitivity.

Runtime (seconds) for
K=3|K=5|K=10
TurboFold 136.75 | 2779 517.0
LocARNA || 746.44 | 28159 | 11395.8
RNAalifold 0.2 0.3 0.6

Table 1. Time requirements (in seconds) for the methods.

The run times for the three methods that work with multiple
sequences were also benchmarked and are listed in Table 1 for K
values of 3,5, 10. TurboFold requires significantly more time than
RNAalifold but much less time than LocARNA. More importantly,
with increasing values of K, the run time requirements for Turbo-
Fold scale up by a much smaller factor than for the other methods,
which is preferable because ideally the methods need to be scaled up
for deployment on larger values of K, just like manual comparative
analysis is deployed currently.
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Fig. 3. Sensitivity and PPV of structures obtained from TurboFold
and three alternative methods by including base pairs with estimated
pairing probabilities > 0.5.

4. DISCUSSION

TurboFold is inspired by the Turbo-decoding technique [7, 11, 17]
used for error-correction in digital communications and, despite the
very different problem domains, shares several strong similarities
with Turbo-decoding. The similarity between the problems can be
understood by realizing that, in homologous RNAs, nature provides
multiple encodings of a secondary structure that differ in sequence
but share essentially the same structure whereas, in Turbo-decoding
for digital communications, a single message to be communicated
is deliberately encoded with different convolutional encoders [17]
prior to transmission over a noisy channel; both situations require,
for the best performance, that the encoded information be estimated
jointly from the multiple encoded versions for the best possible ac-
curacy. In both situations, the computational complexity of joint
estimation approaches, however, poses a challenge. TurboFold and
Turbo-decoding both address the computational challenge by solv-
ing instead an approximate version of the joint problem that is com-
putationally tractable as an iterative algorithm.

In its current form TurboFold updates only the intra-sequence
base pairing probabilities at each iteration and the estimated proba-
bilities for inter-sequence alignments are invariant from iteration to
iteration. This is suboptimal because the refinement of secondary
structures along with the requirement of commonality in secondary
structures also provides useful information for updating sequence
alignments. Future work, exploring this option is desirable where
iterative updates refine not only base pairing probabilities but also
the sequence alignments. In the constrained setting of two RNA ho-
mologs, such an iterative framework was introduced by the authors
in a conceptual framework presented in [18].
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5. CONCLUSION

This paper presented, TurboFold, an iterative structure prediction al-
gorithm for multiple homologous RNA sequences. Using an algo-
rithmic structure inspired by turbo decoding in digital communica-
tions, the method retains advantages of joint multi-sequence estima-
tion while reducing per iteration computational complexity to the
level required for a single sequence estimation. Results show that
the structures predicted utilizing the base pairing probabilities com-
puted from TurboFold are more accurate than structures predicted by
other available methods that estimate base pairing probabilities.

6. REFERENCES

[1] S.R.Eddy, “Non-coding RNA genes and the modern RNA world,” Nat.
Rev., vol. 2, no. 12, pp. 919-929, Dec. 2001.

[2] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Se-
quence Analysis : Probabilistic Models of Proteins and Nucleic Acids.
Cambridge, UK: Cambridge University Press, 1999.

M. Zuker, “Computer prediction of RNA structure,” Methods Enzymol.,
vol. 180, pp. 262288, 1989.

[4] B.-J. Yoon and P. P. Vaidyanathan, “Computational identification and
analysis of noncoding RNAs - unearthing the buried treasures in the
genome,” [EEE Sig. Proc. Mag., vol. 24, no. 1, pp. 64-74, Jan. 2007.

R. R. Gutell, “Comparative studies of RNA: inferring higher-order
structure from patterns of sequence variation,” Current Opinion in
Structural Biology, vol. 3, no. 3, pp. 313 — 322, 1993. [Online].

D. Sankoff, “Simultaneous solution of RNA folding, alignment and
protosequence problems,” SIAM J. App. Math., vol. 45, no. 5, pp. 810—
825, Oct. 1985.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE
Intl. Conf. Communications, vol. 2, Geneva, Switzerland, May 1993,
pp. 1064-1070.

[8] A.O.Harmanci, G. Sharma, and D. H. Mathews, “TurboFold: Iterative
Probabilistic Estimation of Secondary Structures for Multiple RNA Se-
quences,” 2010, submitted for review.

3

—

[

—

[6

[

[7

—

[9] ——, “Efficient pairwise RNA structure prediction using probabilistic
alignment constraints in dynalign,” BMC Bioinformatics, vol. 8, p. 130,
Apr. 2007.

[10] J.S.McCaskill, “The equilibrium partition function and base pair bind-
ing probabilities for RNA secondary structure,” Biopolymers, vol. 29,
no. 6-7, pp. 1105 — 1119, Nov. 1990.

[11] P. A. Regalia, “Iterative decoding of concatenated codes: A tutorial,”
EURASIP Journ. Appl. Sig. Proc., vol. 6, pp. 762—774, 2005.

[12] S. Will, K. Reiche, I. L. Hofacker, P. F. Stadler, and R. Backofen, “In-
ferring noncoding RNA families and classes by means of genome-scale
structure-based clustering,” PLoS Comput. Biol., vol. 3, no. 4, pp. 680—
691, Apr. 2007.

[13] S. H. Bernhart, I. L. Hofacker, S. Will, A. R. Gruber, and P. F. Stadler,
“RNAalifold: improved consensus structure prediction for RNA align-
ments,” BMC Bioinformatics, vol. 9, p. 474, 2008.

[14] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGetti-
gan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D.
Thompson, T. J. Gibson, and D. G. Higgins, “ClustalW and ClustalX
version 2.” Bioinformatics, vol. 23, no. 21, pp. 2947-2948, 2007.

[15] D. H. Mathews, “Using an RNA secondary structure partition function
to determine confidence in base pairs predicted by free energy mini-
mization,” RNA, vol. 10, no. 8, pp. 1178-1190, 2004.

[16] J.S.Reuter and D. H. Mathews, “RNAstructure: software for RNA sec-
ondary structure prediction and analysis.” BMC Bioinformatics, vol. 11,
p. 129, 2010.

[17] T. K. Moon, Error Correction Coding: Mathematical Methods and Al-
gorithms.  New York, NY: Wiley-Interscience, 2005.

[18] A.O.Harmanci, G. Sharma, and D. H. Mathews, “Toward turbo decod-
ing of RNA secondary structure,” in Proc. IEEE Intl. Conf. Acoustics
Speech and Sig. Proc., vol. 1, Apr. 2007, pp. 365-368.



