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S.I. OVERVIEW

This document provides Supplementary Material for the paper [1]. In Section S.II, we present the least squares estimation
for the global transformation parameters β for different order polynomial transformation. In Section S.III, we provide details
of the EM-based chamfer alignment algorithm used in the second stage of our proposed hybrid registration algorithm by
deriving the expressions for posterior probabilities and the parameter updates. Finally, in Section S.IV, we show larger images
corresponding to entire registered vessel maps for the proposed and alternative techniques; smaller regions from these are
included in the main paper.

S.II. LEAST SQUARES PARAMETER ESTIMATES FOR THE GLOBAL REGISTRATION TRANSFORM

The polynomial transformation parameters β used for the global geometric transform in Section II-A of the main manuscript
are obtained via a least-squares procedure that we outline in this section. The geometric transformation from the target to the
reference spatial coordinates is defined in terms of a polynomial in the variables x and y, as

ψM ([x, y]ᵀ,β) =

M∑
m=0

m∑
i=0

βm,ix
m−iyi

def
= βᵀ

Ma([x, y]ᵀ), (S.1)

βM = [β0,0, β1,0, β1,1, β2,0, β2,1, . . . , βM,M ]
ᵀ , (S.2)

a([x, y]) =
[
1, x, y, x2, xy, . . . , yM

]ᵀ
, (S.3)

where M is the order of the polynomial and βm,i,m = 0 . . .M, i = 0 . . .m denote the (M + 1)(M + 2)/2 coefficients of the
polynomial. In terms of the polynomial in (S.1), we can then express the M -th order polynomial geometric transformation as

T̄βM

(
p(t)

)
= βᵀ

Ma(p(t)), (S.4)

where p(t) and T̄βM

(
p(t)

)
are 2 × 1 coordinate vectors denoting corresponding spatial locations in the target and reference

images, respectively, βM = [βuM ,β
v
M ] denotes the matrix whose columns βuM and βvM are the parameter vectors for M -th

order polynomial transformations corresponding to the two spatial coordinates in the reference image space, denoted by u and
v, respectively.

Given N pairs of matched feature points p
(r)
n = (un, vn)ᵀ and p

(t)
n = (xn, yn)ᵀ in the reference and target images,

respectively, we would like to determine the optimal transformation parameters β∗M such that the transformed target coordinates
closely approximate their corresponding reference points, i.e., (β∗M )ᵀan ≈ p

(r)
n for n = 1, 2, . . . N . Least squares estimates

are readily obtained as

β∗M = arg min
βM

‖AβM − b‖2 = A†b, (S.5)
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where

A = [a1,a2, · · · ,aN ]
ᵀ , (S.6)

b =
[
p
(r)
1 ,p

(r)
2 , · · · ,p(r)

N

]ᵀ
, (S.7)

and A† denotes the pseudo-inverse of A given by A† = (AᵀA)
−1

Aᵀ for the typical situation where (AᵀA) is non-singular.

S.III. DETAILED DERIVATION OF THE PARAMETER ESTIMATION WITH THE EM ALGORITHM

We describe the computation of the registration parameters for the kth pair of coarsely aligned corresponding reference and
target image patches and therefore assume that k is fixed throughout the following description. For the jth vessel pixel p

(t,k)
j in

the kth target image patch, the squared chamfer distance dj (βk) to the corresponding reference image under the transformation
T̃βk

(·) is defined as the minimum squared Euclidean distance between the transformed point T̃βk

(
p
(t,k)
j

)
and the set of vessel

pixel locations Qr,k for the corresponding reference image, i.e.,

dj (βk) = min
i

∥∥∥p(r,k)
i − T̃βk

(
p
(t,k)
j

)∥∥∥2 . (S.8)

The E-step calculates the expectation of the complete-data log-likelihood

Q = E

Mt,k∑
j=1

log p
(
dj , z

k
j |πk, λk,βk

)
=

Mt,k∑
j=1

∑
zkj ∈{0,1}

p
(
zkj |πk, λk,βk, dj

)
log p

(
dj , z

k
j |πk, λk,βk

)

=

Mt,k∑
j=1

pkj [−λkdj + log (πk) + log (λk)] +
(
1− pkj

)
[log (1− πk)− log (P )] ,

(S.9)

where pkj is the posterior probability given the current parameter estimates, which is obtained using Bayes’ rule as

pkj = p(zkj = 1|πk, λk,βk, dj)

=
πkλke

−λkdj

πkλke−λkdj + 1−πk

P

.
(S.10)

In the M-step, we determine updated values for the parameters πk, λk, and βk by maximizing the expectation Q, which
yields

πk =

∑Mt,k

j=1 pkj
Mt,k

, λk =

∑Mt,k

j=1 pkj∑Mt,k

j=1 pkj dj
, (S.11)

and

βk = arg min
β

1

Mt,k

Mt,k∑
j=1

pkj dj(β). (S.12)

We use the Levenberg-Marquardt (LM) [2] algorithm to solve the optimization problem in (S.12). Starting with an initial
estimate of β(0)

k (chosen as the identity transformation in our local registration setting), the LM algorithm obtains the optimum
on the right-hand-side of (S.12) as the limit of the sequence β

(l+1)
k = β

(l)
k + ∆, where ∆ = [∆u,∆v], with ∆u and ∆v

representing the parameter increments for βuk and βvk , respectively. The parameter increment ∆u is obtained by solving the
linear equation Mt,k∑

j=1

Jᵀ
jJj + σE

∆u = 2

Mt,k∑
j=1

pkj r
k
j,uJ

ᵀ
j , (S.13)

where rkj,u is the u-component of the residual distance vector

rkj = min
i

(
p
(r,k)
i − T̃βk

(
p
(t,k)
j

))
, (S.14)

which can be efficiently obtained from the distance transform [3] and Jj is the Jacobian of the u-component of the transformation
T̃βk

(
p
(t,k)
j

)
evaluated at the jth target point p

(t,k)
j , which is obtained as

Jj =
∂
(
aᵀ
jβ

u
k

)
∂βuk

= aᵀ
j , (S.15)
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E is the identity matrix, and σ is an iteration dependent damping parameter. If the parameter increment obtained by solv-
ing (S.13) leads to an increase in error, then σ is multiplied by a factor of 10. Otherwise, σ is divided by the same factor. The
increment ∆v is similarly obtained.

S.IV. VISUAL RESULTS OF THE ENTIRE REGISTERED VESSEL MAP

We provide larger images corresponding to the entire registered vessel maps from which smaller regions were presented in
the results of Fig. 6 in the main manuscript. Figures S.1 and S.2 show the images from the FLoRI21 [4] and the FIRE [5]
datasets, respectively. For consistency, Figs. S.1 and S.2 use the same layout as Fig. 6 in the main manuscript, readers can
view the PDF document under high zoom to see individual images or selected regions within the images.
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Proposed GAINGFEMR

Fig. S.1: Sample registration results for the proposed method and alternative methods on the FLoRI21 dataset. The images are
the composition of the reference vessel map (magenta) and the registered target vessel map (green). The regions highlighted
by the cyan rectangles are shown in the Fig. 6(a) of the main manuscript.
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Proposed GAINGFEMR

Fig. S.2: Sample registration results for the proposed method and alternative methods on the FIRE dataset. The images are
the composition of the reference vessel map (magenta) and the registered target vessel map (green). The regions highlighted
by the cyan rectangles are shown in the Fig. 6(b) of the main manuscript.


