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S.I. OVERVIEW

This document provides Supplementary Material for the paper [1]. In Section S.II, we provide detailed derivations for
parameter updates in the M-step for the robust EM-based chamfer registration. In Section S.III, we compare chamfer alignment
under alternative geometric transformations and validate that the second-order polynomial transformation that we utilize is
appropriate in this setting. In Section S.IV, we provide implementation details, including details of the unsupervised preliminary
vessel detection approach, additional network architectures, and the training protocol. In Section S.V, we report on additional
validation performed for the proposed human-in-the-loop labeling. In Section S.VI and S.VII, we present additional quantitative
and sample visual results for the VAMPIRE [2] and the DRIsfahanCFnFA [3] datasets, respectively. Section S.VIII includes
a summary of the CAL metric [4]. Larger versions of Figs. 1 and 4 of the main manuscript are provided in Section S.IX to
provide better visualization.

S.II. DETAILED DERIVATION FOR PARAMETER ESTIMATIONS IN THE M-STEP
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Setting the derivatives of Q
(
θ, θ̂(l)

)
in (S.1) with respect to π, λ, and β to zero, we obtain the expression for the optimal

parameters in (7) and (8).
The optimization problem in (8) can be solved by Levenberg-Marquardt (LM) [5] algorithm that is an iterative method for

solving non-linear least squares problems. The LM algorithm starts with an initial estimate β̂(0) and proceed to refine the
parameters β at each iteration. Specifically, β is adjusted by a parameter increment ∆ to β + ∆, where ∆ is obtained by
solving the linear system of equations NQ∑

j=1

JT
j Jj + σI

∆ = 2

NQ∑
j=1

pjJjrj , (S.2)
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where rj is the residual vector for point rj that can be efficiently calculated by using the distance transform [6], I ∈ R12×12

is the identity matrix, Jj ∈ R2×12 is the Jacobian matrix at each transformed target point Tβ (qj), which is computed as
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and σ is a damping parameter varying from iteration to iteration. If the increment ∆ leads to a reduction in the error, then
σ is divided by a factor of 10 for the next iteration, whereas if ∆ gives an increased error, σ is then multiplied by the same
factor. This process is repeated until the convergence criterion is met.

S.III. EVALUATION OF ALTERNATIVE TRANSFORMATIONS FOR CHAMFER ALIGNMENT

In this section, we provide empirical justification for the suitability of the second-order polynomial transformation as an
appropriate registration transformation for our application. To do so, we evaluate the registration results under alternative
geometric transformations, including common non-elastic transformations (Euclidean, similarity, affine, and homography) and
elastic transformations (second-order and third-order polynomial transformations). The bar plot in Fig. S.1(a) shows the average
of the residual chamfer distance
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computed over all pairs of corresponding CF and FA images in the DRIsfahanCFnFA dataset under the optimal registration
transformations. This residual chamfer distance provides a good proxy for the registration error. From Fig. S.1(a), it is clear
that elastic transformations offers significant improvements over the alternative non-elastic transformations. In addition, there
appears to be very minor benefit from going to a polynomial transformation of high-order than a second-order (2.65 pixels for
the third-order versus 2.74 pixels for the second-order). Therefore, we adopt a second-order polynomial transformation to align
CF and FA vessel images. Figure S.1(b) shows a sample result of chamfer alignment for one image in the DRIsfahanCFnFA
dataset. From the figure, one can also appreciate that the second order polynomial transformation provides adequate accuracy
and it is hard to see any visual improvement with the third-order polynomial transformation.
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Fig. S.1: (a) Estimated registration errors for different parametric transformations. The errors are calculated as average residual
chamfer distance over registered CF and FA images in the DRIsfahanCFnFA dataset. (b) Sample visual results of registered
CF and FA vessel maps with the alternative transformations.
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S.IV. IMPLEMENTATION DETAILS

A. Preliminary Vessel Detection In FA Image

Figure S.2 provides a detailed overview of the unsupervised method used for preliminary FA vessel detection. The input FA
image is decomposed into a two scale Gaussian image pyramid: one at the original image resolution (bottom branch in Fig. S.2)
and the other downsampled by a factor of 2 (top branch in Fig. S.2). The images in each scale are processed independently.
The resulting vessel maps in the lower resolution are upsampled to the original size using Gaussian pyramid expansion. Pixels
where vessel are detected at any scale collectively comprise the estimated vessel map.

To extract bright and curvilinear vessel structures in each scale, we apply the modified top-hat operation (Equation (1) of the
main manuscript) with nine line structuring elements, chosen to nominally be spaced 20 degree apart in angle, with lengths of
6/3 for the original/down-sampled scale (generated, for the original scale using the MATLAB function strel(‘line’, 6, α), where
α is the angle of linear structuring elements in degrees). Each top hat filtering yields a response image, where vessel pixel
locations with a matching orientation are invariably high and other locations for background are usually low. The maximum
value of 9 responses across different orientations at each pixel location is selected in the overall response map in which high
and low values are likely for vessel and background pixels, respectively. The obtained soft vessel map is converted into a
binary segmentation by locally adaptive thresholding. The threshold value for each pixel is based on the local mean intensity
in the neighborhood of the pixel (estimated using the MATLAB function adaptthresh(I), where I is the soft vessel map). As
a post-processing step, we remove small incoherent random segments that have fewer than 100 pixels from the binary vessel
maps (using the MATLAB function bwareaopen(BW, 100), where BW is the binary vessel map from the adaptive thresholding).
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Fig. S.2: Overview of the unsupervised method for preliminary vessel detection in FFA.

B. Network Architectures and Loss Function

The Prop. + UNet uses the same network architecture as the generator in the Prop. + GAN, as shown in Fig. 6 (the generator
block). For the Prop. + NestUNet, we adopt the NestUNet architecture proposed in [7]. All convolutional layers use 3 × 3
kernels with stride 1. We use MaxPooling layers with 2×2 kernels to reduce spatial resolutions. The objective function in (10)
(in the main manuscript) is used for the Prop. + UNet and the Prop. + NestUNet.

C. Training Protocol

We feed the network 256 × 256 patches extracted from the FA training data with a fixed stride length 128. Patches that
contains less than 1% vessel pixels are excluded. To prevent neural networks from over-fitting, we further enlarge the training
set by performing on-the-fly data augmentation, i.e., randomly applying a list of transformations with different probabilities
to each image before feeding into neural network as training data. Specifically, we consider following transformations: (1)
rotating the image by an angle from −90◦ to 90◦, (2) horizontally and vertically flipping the image, (3) scaling the image by
a factor of 2, (4) blurring the image using Gaussian filter, and (5) adjusting the brightness and contrast of the image.

The network parameters are optimized using Adam optimizer [8] on a NVidia Tesla V100 GPU. The learning rate is fixed
as 0.001. The coefficients used for computing running averages of gradient and its square are 0.9 and 0.999, respectively. The
batch size is 16 and the training dataset is shuffled between epochs. We split the data into a training set (80%) and a validation
set (20%) and use the model that has the best performance on the validation set. The lambda in (11) is set to 1.
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S.V. ADDITIONAL VALIDATION OF HUMAN-IN-THE-LOOP LABELING

As additional validation, we also assessed the agreement between the ground truth vessel maps generated from the human-
in-the-loop annotation and from de novo manual annotation. In order to do this, we chose two rectangular patches (512× 512
pixels) from the image we used in the last (7th) human-in-the-loop iteration and manually annotated the binary vessel maps
from scratch. The selected patches cover both central and peripheral retina and represent both major and minor vessel branches.
We measure the intraclass correlation coefficient (ICC) [9] to quantify the agreement between the two labeling approaches.
As a benchmark for comparison, we also quantified the level of agreement that may be expected in independent human
annotation of labeled vessel maps. Because multiple independent annotations of the same images were not available for the FA
modality, we assessed the level of agreement between two independent human annotations using the CF datasets DRIVE [10],
STARE [11], and CHASE DB1 [12] datasets, which provide two independent human annotations. The level of agreement was
quantified using the ICC computed between the two alternative human annotations for these datasets. Table S.1 lists the ICC
values computed from each dataset. The ICC is computed by a 2-way mixed-effects model, average measures, and absolute
agreement [9]. The proposed human-in-the-loop annotation achieves an ICC of 0.870 that indicates good reliability and is
comparable to the ICC values in the existing CF datasets.

Datasets RECOVERY-FA19 (CF) DRIVE [10] (CF) STARE [11] (CF) CHASE DB1 [12]
ICC 0.870 0.863 0.835 0.863

TABLE S.1: ICC values for assessing the level of agreement between alternative labels. For the RECOVERY-FA19 dataset the
ICC quantifies the level of agreement between the labels obtained with the proposed human-in-the-loop approach and de novo
labeling from scratch. For the (pre-existing) CF datasets the ICC quantifies the level of agreement between two independent
human annotations.

S.VI. EVALUATIONS ON THE VAMPIRE DATASET

We provide quantitative metrics comparing the different methods on the VAMPIRE dataset [2]. Table S.2 lists the AUC for
both ROC and PR curves and the maximum DC using the limited accuracy original (vessel) labeling. In addition, we also
report in Table S.2 results evaluated on the “AMD2” and the “GER4” images using both the original labeling and the (refined)
ground truth. Additionally, Table S.3 lists the CAL metrics evaluated on the refined ground truth. In Table S.2, it is interesting
to see that the accuracy of the unsupervised methods, SFAT [2] and MSMA [13], is decreased when they are evaluated using
the (refined) ground truth. This is because the (refined) ground truth data contains more vessel that are not detected by SFAT [2]
and MSMA [13] (implying that these methods actually have more false negatives than would be indicated by the original,
inaccurate, labeling). The performance gains of the DNN approaches using the proposed framework improve when the methods
are evaluated on the more accurate (refined) ground truth compared with evaluations using the original (flawed) labeling. The
CAL metrics in Table S.3 reinforce these findings: the proposed methods offer significant improvement over prior alternatives.

All Test Images: Original Lbl. “AMD2” and “GER4”: Original Lbl. “AMD2” and “GER4”: Refined GT
Methods AUC ROC AUC PR Max DC AUC ROC AUC PR Max DC AUC ROC AUC PR Max DC
SFAT [2] - - 0.624 - - 0.647 - - 0.573

MSMA [13] - - 0.647 - - 0.713 - - 0.654
VDGAN [14] 0.957 0.702 0.686 0.971 0.738 0.680 0.965 0.783 0.707
Prop. + UNet 0.978 0.786 0.715 0.987 0.809 0.713 0.994 0.948 0.878

Prop. + NestUNet 0.979 0.779 0.715 0.987 0.801 0.727 0.995 0.953 0.883
Prop. + GAN 0.978 0.780 0.715 0.988 0.808 0.731 0.995 0.950 0.878

TABLE S.2: Quantitative results obtained from different methods on the VAMPIRE dataset. All deep neural networks are
trained on the generated ground truth from the DRIsfahanCFnFA dataset. The best result is shown in bold.

Methods CAL C A L
SFAT [2] 0.322 0.999 0.541 0.583

MSMA [13] 0.393 0.999 0.613 0.640
VDGAN [14] 0.465 0.998 0.651 0.717
Prop. + UNet 0.775 0.999 0.897 0.864

Prop. + NestUNet 0.786 0.999 0.904 0.870
Prop. + GAN 0.772 0.999 0.897 0.861

TABLE S.3: Quantitative CAL metrics for the different methods on the “AMD2” and “GER4” images from the VAMPIRE
dataset evaluated using the refined labels. The best result is shown in bold.

Figure S.3 plots the ROC and the PR curves evaluated on the “AMD2” and the “GER4” images using the (refined) ground
truth. The Prop. + GAN network achieves an AUC ROC of 0.995, an AUC PR of 0.950, the maximum DC of 0.878, and a
CAL of 0.772. For reference, we also plot the accuracy of the original (vessel) labeling on the plots (shown by the points
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marked by the blue cross ×), which achieves the maximum DC of 0.642. These plots highlight that the network-predicted
vessel maps are significantly better than original vessel map labels, which further demonstrates the utility of the proposed
pipeline.
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Fig. S.3: (a) ROC and (b) PR curves for different methods. The results are evaluated on the “AMD2” and the ”GER4” images
from the VAMPIRE [2] dataset with the refined ground truth. The gray curves in (b) represent the isolines of Dice coefficients.
The small circular dots on the curves in (a) and (b) identify the corresponding values of the threshold τ .

In addition to the evaluation on de novo annotated image patches (Table III of the main manuscript), we also performed an
additional assessment of the proposed approach and alternatives on labeled data from the VAMPIRE dataset that is obtained
(largely) independently of the iterative human-in-the-loop labeling process. Specifically, we identified “trusted regions” of the
VAMPIRE dataset, where the annotations were accurate and evaluated the methods on these “trusted regions” while excluding
the non-trusted regions where the VAMPIRE dataset was missing vessel annotations (see Fig. 10 of the main manuscript).
The approach relied on the observation that the VAMPIRE annotations were missing vessel annotations but did not have
false positives. Figure S.4 shows an example image showing the identification of “trusted regions”, which were estimated to
conservatively exclude regions that could include pixels that were clearly labeled incorrectly. These “trusted regions” were
created using simple morphological operations and then visually validated. Note that the labels over the trusted regions are those
provided directly in the VAMPIRE dataset and therefore not subject to potential confirmation bias in the labeling process. We
report area under the ROC and Precision-recall curves and the maximum Dice coefficient for different methods in Table S.41.
Just like the results presented earlier, these results highlight the fact that the proposed approach offers a much higher accuracy
than the prior SFAT and MSMA approaches also improves significantly over the VDGAN precursor for the proposed approach.

(a) (b) (c) (d)

Fig. S.4: Identification of the “trusted regions” of the VAMPIRE dataset. (a) The original labels. (b) The refined labels. (c)
Comparison between the original and the refined labels. The red and the blue regions show where the vessels are annotated
only in the original and the refined labels, respectively. (d) Pixels annotated as vessels in the VAMPIRE dataset that were in
close vicinity to pixels labeled as vessels via our proposed iterative human-in-the-loop approach were designated as “trusted”
vessel pixels (black). Pixels that were labeled as background in the VAMPIRE dataset but were close to pixels labeled as
vessels via our proposed iterative human-in-the-loop approach and not close to pixels labeled as vessels in the VAMPIRE
annotation, were designated as “non trusted” background pixels (gray) and the remaining background pixels in the original
annotation were considered “trusted” background pixels (white).

1Note that the computation of the CAL metrics is not meaningful with the restriction of the evaluation to only the trusted regions and CAL metrics are
therefore not reported.
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Methods AUC ROC AUC PR Max DC
SFAT [2] - - 0.670

MSMA [13] - - 0.728
VDGAN [14] 0.958 0.791 0.729
Prop. + UNet 0.989 0.892 0.831

Prop. + NestUNet 0.990 0.890 0.832
Prop. + GAN 0.989 0.893 0.833

TABLE S.4: Quantitative results obtained from different methods on the “trusted region” from the VAMPIRE dataset. The best
result is shown in bold.

S.VII. EVALUATIONS ON THE DRISFAHANCFNFA DATASET

Figure S.5 show the ROC and the PR curves for different methods on the DRIsfahanCFnFA dataset [3]. The best performing
method (Prop. + GAN) achieves an AUC ROC of 0.974, an AUC PR 0.887, and the maximum DC of 0.808, outperforming other
baseline methods. The unsupervised methods, SFAT [2] and MSMA [13], are developed for detecting vessels from UWFFA
images rather than fundus FA and thus have relatively low DC (0.607 and 0.691, respectively). While deep neural networks
are trained only using the UWFFA images from the RECOVERY-FA19 dataset, they have the generalization ability to detect
vessels from fundus FA images and show significant improvement over the unsupervised methods. In Fig. S.6, we show visual
results of the vessel detection obtained with the Prop. + GAN and the Prop. + NestUNet. While deep neural networks are
trained only using the UWFFA images from the RECOVERY-FA19 dataset, it has the generalization ability to detect vessels
from fundus FA images. Compared with the Prop. + NestUNet, the GAN loss term LGAN encourages consistency between
the predicted vessel maps and the ground truth globally over the entire image patch in consideration (orange arrows in the
enlarged views in Fig. S.6 illustrate this).
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Fig. S.5: (a) ROC and (b) PR curves for different methods on the DRIsfahanCFnFA dataset [3]. The gray curves in (b) represent
the isolines of Dice coefficients.The small circular dots on the curves in (a) and (b) identify the corresponding values of the
threshold τ .

S.VIII. DESCRIPTION OF CAL METRIC

CAL is a function for quantitatively evaluating the performance of retinal vessel detection [4] that takes into account
the structure of retinal vasculature, unlike pixel-wise comparison metrics, such as, precision, recall, and Dice coefficient.
Specifically, CAL assesses the overall consistency between a binary ground truth vessel map VG and a binary predicted vessel
map VP by computing three factors between 0 and 1 that, respectively, assess the consistency with regard to connectivity (C),
overlapping area (A), and the corresponding skeletons (L) (lengths). The connectivity C compares the number of the connected
segments in VG and VP with respect to the number of vessels pixels in VG, and is computed as

C = 1−min(1,
|n(VP )− n(VG)|

|VG|
), (S.5)

where n(·) denotes the number of connected segments and |W | represents the cardinality, i.e., the number of elements, in the
set W . The area factor A is computed as

A =
|(V r1

P

⋂
VG)

⋃
(VP

⋂
V r1
G )|

|VG

⋃
VP |

, (S.6)

where V r denotes the dilated version of the image V using a disk-shaped structuring element, r pixels in radius. The motivation
for the dilation comes from the fact that pixels adjacent to the periphery of labeled vessels may span both vessel and background
regions and therefore their labeling may be inherently uncertain. The computation of the area factor A in (S.6) measures the
relative overlap between two vessel maps while discounting for the ambiguity in pixels that are adjacent to the periphery of
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Input Fundus FA Ground Truth Prop. + GAN Prop. + NestUNet

Fig. S.6: Qualitative comparison of results from the DRIsfahanCFnFA dataset [3]. The orange arrows highlight regions where
the proposed adversarial network produces more accurate detections than NestUNet [7].

labeled vessels in either VG and VP . For this reason, compared with direct pixel-wise metrics (TPR (Recall)/FPR/Precision/Dice
coefficient), the area metric provides robustness against variations in the labeling of these uncertain pixels. The length factor
L; computed as

L =
|(S(VP )

⋂
V r2
G )

⋃
(V r2

P

⋂
S(VG))|

|S(VP )
⋃
S(VG)|

, (S.7)

where S(·) denotes the morphological skeletonization operation; measures the consistency of the skeletons for the vessel maps
VG and VP . The global score of CAL metric is defined as the product of C, A, and L and ranges in value between 0 and 1,
where a high value indicates better match with the ground truth. Default values of r1 = r2 = 2 are used in our computation
of the CAL metrics.

S.IX. HIGH RESOLUTION FIGURES

We provide larger views of Figs. 1 and 4 of the main manuscript as Figs. 1H, 4H, respectively. Although, the key ideas that
these images illustrate can also be seen in the versions included in the main manuscript, the larger versions included here (and
the corresponding images in the dataset accompanying the paper [15]) provide clearer visualizations.
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Fig. 1H: Sample fluorescein angiography (FA) images. left: fundus FA. Middle: ultra-widefield FA. Right: enlarged view of
the cyan rectangle (top and bottom: the original and the contrast-enhanced views, respectively).

(a) (b) (c) (d)

Fig. 4H: Sample results of generated training data for FA imagery in DRIsfahanCFnFA dataset. (a) and (c) show two FA
images, and (b) and (d) are the corresponding vessel maps. Notice that the generated vessel maps are robust under different
contrast conditions.
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