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1. Introduction 

For reasons of tractability and modular design, it is common practice to partition digital color imaging 

systems into components based on the functionality they provide. Examples of these components include 

image segmentation, enhancement, compression, color characterization, and halftoning. Indeed many of 

these topics are described in detail in other papers in this issue.  Typically the components are individually 

designed and optimized, and the partitioning has the unintended consequence that engineers working on 

specific components acquire expertise limited to those components and think within the "box" for solving 

problems they encounter. This article highlights the system interactions among these components and 

illustrates through a series of examples how knowledge of system interactions may be beneficially 

exploited to improve color quality and/or performance of the end-to-end system. Examples are specifically 

chosen to highlight concepts in color image processing, and a set of illustrative images is included with the 

examples.  In our presentation we assume that the reader is familiar with the basics of color imaging and 

device characterization. The introductory article of this issue [1] provides a brief primer and additional 

background material can be found in [2]. 

Section 2 presents an overview of a color imaging system and its elements. Section 3 highlights a collection 

of techniques in the literature that attempt to account for system interactions for improved quality or 

performance. Sections 4 and 5 present in greater detail two specific examples of approaches that take into 

account interactions between elements that are normally treated independently.  Concluding remarks are 

presented in Section 6. 

 

2. Color Imaging System Elements 
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The diagram of Fig. 1 illustrates the components that are commonly identified as the building blocks of an 

end-to-end digital color imaging system. A more detailed example illustrating the elements of a digital 

camera (which is a specific input digital imaging system) may be found in a companion article in this issue 

[3] and in [4]. The chain typically begins with analog images that exist as real world scenes or as hardcopy 

images on a physical medium. Image capture devices such as scanners and digital cameras are used to 

capture and digitize these analog images.  The capture step is typically followed by digital image 

processing elements that perform input related processing tasks. For digital color cameras, such tasks 

include de-mosaicing [5,6], white balance correction for the illumination under which the image is 

captured, and input color management to correct for the camera color characteristics [7]. For scanners, the 

processing involves correction of optical artifacts such as integrating cavity effect [8], descreening for 

halftoned input [9,10,11,12], segmentation of the scanned image into regions corresponding to text, 

graphics, and pictorials, and color management to correct for the scanner’s color response [7]. The next 

step in the imaging chain normally consists of processing for the purpose of image archival, exchange, and 

transmission and includes steps such as transformation to standard color spaces, dynamic range reduction 

[13], quantization and compression [14]. For synthetic computer generated imagery, these are typically the 

first processing steps.  On the output side of the digital color imaging chain, the digital output processing 

includes steps preliminary to output rendition – primary among these are color characterization for the 

output device [7], gamut mapping [13], color quantization for palettized displays [15], and halftoning [16].  

The final step on the output side consists of image rendition on a printer or a display and produces as an 

end result an image on a physical medium. The human visual system (HVS) is typically the end consumer 

of imagery generated from the system, and in some scenarios may be involved in comparing the original 

(or recollection thereof) with the output from the system. Characteristics of the HVS are therefore 

commonly exploited throughout the imaging system.  Note that this end-to-end representation of an 

imaging system is intended primarily for conceptual understanding and for illustration of the inter-relations 

among the individual elements. In practical systems, a single device may encapsulate a number of elements 

including some that are not necessarily sequential and not all the elements that are discussed here may be 

present in every imaging system. 
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Figure 1 Overview of digital color imaging system. Digital imaging operations are listed in red text. 

 

The design of digital color imaging systems incorporates some understanding of the overall system 

elements and their interactions. In particular, for imagery intended for a human observer, the characteristics 

of the HVS influence the design of several of the components – specific examples being the compression 

and halftoning operations that exploit the low-pass characteristics of the HVS. Particular examples related 

to color processing are the use of luminance-chrominance (e.g. YIQ) encodings for image compression 

with significantly smaller bandwidths for the chrominance channel in comparison to the luminance; the use 

of device independent color description for de-coupling input and output color devices [17], and a power-

law nonlinearity for encoding color values. However, once the individual elements have been defined they 

are often optimized individually without regard to the interplay among the components. It is our goal in this 

article to illustrate that a system-wide understanding can often be exploited further when considering 

several of the elements either jointly or individually to better exploit cost, performance, and quality trade-
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offs in digital imaging systems. It is our belief that these system optimization opportunities offer the best 

trade-offs and potential for improvement in today’s digital color imaging devices. 

 

3. Examples of System Optimization in Digital Color Imaging Systems 

Recent literature in the area of digital color imaging offers a number of approaches that illustrate the 

benefits of exploiting interactions among system elements in the optimization process. This section 

contains a brief overview of some of these techniques. Two detailed examples are then presented in 

Sections 4 and 5. 

A common theme in several of the approaches is the joint treatment of color and spatial dimensions, which 

are normally handled independently and separably. Consider the example of JPEG-compressed color 

images that must be rendered to a printer.  The normal workflow is to first perform decompression, 

followed by a printer characterization transform that maps the input image, typically in a device-

independent color space such as YCbCr, to printer CMYK.  Klassen et al [18] have developed a technique 

to combine the decompression and color characterization operations in a manner that significantly enhances 

computational performance. The basic idea is to parse the printer characterization transform into an 

expensive 3-D correction and a simple 1-D correction, and apply the former only to a small N×N subblock 

within each 8×8  image block (N<<8) in the Discrete Cosine Transform domain afforded by the JPEG 

model. In a similar vein, McCleary [19] addresses the problem of noise introduced by color correction of 

digital camera images. Observing that these images are then subsequently JPEG-compressed, he proposes a 

method to synergistically combine the color correction and JPEG compression in order to reduce the noise. 

A problem commonly encountered in halftoning for CMYK printing is color moiré [20,21], an 

objectionable low-frequency beat pattern resulting from the superposition of multiple high-frequency 

halftone screens. Traditional methods to combat color moiré involve carefully optimizing the halftone 

screen angles to minimize the visibility of the artifact. Balasubramanian and Eschbach [22] have observed 

that the moiré can also be reduced by adjusting the continuous tone signals driving the halftone screens.  

This adjustment occurs in the color characterization function executed prior to the halftoning step. Thus 

moiré minimization is treated as an objective in the joint optimization of color characterization and 

halftoning. 
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For devices with limited color capabilities or limited memory for image display, it is common practice to 

quantize the colors to a smaller palette and then approximate the desired image using colors from the 

palette [15]. The former operation is typically referred to as color quantization and the latter is a 

generalized halftoning step. The need for color quantization first arose in desktop displays with limited 

image memory for display. While these displays are now rare in desktop systems, there is renewed interest 

in color quantization for wireless devices whose displays are restricted in their size, memory, and power 

consumption [23].  While most work in color quantization treats the color quantization and halftoning steps 

independently and sequentially the performance can be improved by jointly optimizing these operations. 

Puzicha et al [24] have recently proposed an elegant solution to this problem. They formulate a visually 

motivated cost function that encapsulates the combined cost of palletization and of the assignment of pixels 

to the palette colors. Efficient algorithms based on multi-scale deterministic annealing determine a 

“spatially quantized” image that optimizes the cost function.  The results are a significant improvement 

over sequential processing, particularly, for small thumbnails that are often necessary on mobile devices. 

Illustrative results from their technique may be found online at [25]. The technique can also be applied to 

the case where the output images are binary halftones, for which its cost function becomes similar to that 

used for other model-based halftoning techniques [26, 27, 28, 29], which themselves are examples of 

system optimization that explicitly incorporate the human observer instead of developing heuristic 

techniques based on HVS characteristics. Benefits from system optimization have also been realized in 

color output rendering for hardcopy through the use of techniques that consider printed color separations 

jointly rather than individually. Specifically, for clustered-dot halftoning schemes the use of non-

orthogonal halftone screens [16, 26, 30] offers the capability for reduced moiré through suitable selections 

of a set of screens corresponding to the separations [16]. While a similar concept has been the basis of 

analog halftone screens for lithographic printing for a long time, the issue has only recently been addressed 

in the context of the rectilinear grids necessitated by digital halftoning. Robust system optimization 

techniques for this problem have also been proposed earlier in [31]. Similarly, for dispersed dot screens and 

error diffusion, joint considerations of color texture from overlap of multiple separations in print has 

yielded significant improvements with little additional computational cost [32,33].  Some recent work in 
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this field also incorporates considerations from mis-registrations in halftoning/halftone design [34,35] 

thereby addressing system wide robustness that goes even beyond the color imaging components. 

  

Finally, we highlight one more example of joint spatial and color considerations applicable for scan to print 

applications involving halftone input and halftone reproduction. In such systems, the interaction between 

input and output halftones can generate objectionable “re-screening” moiré even though the input sampling 

satisfies the well understood Nyquist sampling criterion. Traditionally, this problem has been addressed by 

de-screening the scanned image prior to halftoning on the output side- a process that corresponds to a form 

of low-pass filtering (potentially non-linear) and invariably leads to loss of high frequency detail. Novel 

approaches that do not suffer from this limitation have been proposed to address this problem in recent 

work  [36], [37]. Instead of considering the spatial halftoning operation independently of the color, these 

techniques employ a combined spatial and color model of the output device. This model enables predition 

of the output spatial image, which includes the halftone spatial structure and therefore also mimics the re-

screening moiré. Low pass differences between the predicted output image and the desired image represent 

the prediction of the moiré, which can be pre-compensated for in the input. The resulting algorithm may be 

understood in signal processing terms as a feedback compensation scheme as opposed to the heuristic low-

pass filtering techniques.  

 

In the following sections, we present in some detail two specific examples that illustrate how the interplay 

among system elements can be beneficially exploited in system optimization. 

 

4. Low-cost color lookup table transforms exploiting spatial interactions 

A primary goal of color management in hardcopy imaging systems is to achieve consistent and accurate 

color reproduction across different devices. This necessitates the derivation and application of color 

correction transformations that correct for the nonlinear behavior of both the device and the HVS. The 

color transformations are typically complex multidimensional functions, which makes the the real-time 

processing of image data a computationally prohibitive task. To reduce the computational cost, the 

functions are typically implemented as multidimensional lookup tables (LUTs).   
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For hardware economy, the LUTs constitute a sparse sampling grid of nodes that partition the 3-

dimensional input color space into a set of rectangular cells. An example is shown in Fig. 2 for a 

transformation from CIELAB to printer CMYK.  Given an input color, the LUT transformation comprises 

two basic steps: i) retrieval of a set of nodes lying on the enclosing rectangular cell; and ii) 3-D 

interpolation among these nodes. LUTs are invariably built on a regular rectangular grid so that the cell 

retrieval step can be performed with minimal computation.  Most of the computational cost thus lies in the 

interpolation step.  Many interpolation schemes exist. In 3 dimensions, these include trilinear, prism, 

pyramid, and tetrahedral interpolation [38]. Of these, tetrahedral interpolation requires the fewest 

computations, and all three require comparable storage and memory. 

CMYK stored
at nodes

a*

b*

input L*a*b*L*

 

Figure 2: Example of a 3-D LUT transformation from CIELAB to CMYK. The white circle is the input 

point to be mapped, and the surrounding black circles are the points used for interpolation. 

 

For some applications the computational cost of 3-D interpolation can be prohibitive.  Examples of such 

applications include very high speed printing, and rendering on devices with limited computational 

resources. It is beneficial in these instances to improve the performance of the LUT transformation, while 

yet maintaining acceptable output quality. A promising approach for reducing this cost is to apply 

multilevel halftoning among neighboring nodes of the LUT [39,40]. For each input color, exactly one of the 

neighboring nodes in the enclosing cell is selected for output based on a spatial dither mask. The basic idea 

behind these approaches is that the halftoning introduces a high-spatial frequency pattern that is least 

noticed (effectively averaged) by the visual system. In other words, the intermediate levels normally 
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obtained by interpolation are thus achieved via visual averaging of a high-spatial-frequency halftone 

pattern. This technique exploits several interactions and dependencies. First, it recognizes that human color 

perception is a function of spatial dimensions, being far less sensitive to color variations at high spatial 

frequencies. Secondly, for binary output devices, the impact on visual quality can be minimized by 

exploiting the fact that the output signals from the LUT undergo subsequent binary halftoning.  This is thus 

another good example of exploiting system interactions to improve performance.  

A variant of the aforementioned approach exploits the fact that the human visual system is even less 

sensitive to high-frequency variations in chrominance than in luminance [41]. Assuming the input color 

space of the LUT transformation is a luminance-chrominance representation, multilevel halftoning is 

applied only in the two chrominance dimensions; while 1-D interpolation is applied in the luminance 

dimension. This is shown schematically in Fig. 3.  The dither matrix employed in this approach was the 

Bayer dispersed dot matrix [42, 41]. 
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 (a)        (b) 

Figure 3 (a) Multilevel halftoning along the two chrominance (a*, b*) dimensions using a spatial dither 

matrix; (b) 1-D interpolation along luminance or lightness (L*) 

Fig. 4 compares the output from standard 3-D tetrahedal interpolation with that of the proposed 

chrominance halftoning scheme. The input image was represented in CIELAB coordinates, and was 

converted to CMYK for a Xerox 5795 laser printer.  A 16x16x16 LUT, with nodes uniformly distributed 

along each of the L*, a*, and b* axes was used to perform the conversion using either the standard or 
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proposed LUT transformation techniques. The CMYK images were then converted to CIELAB using a 

printer model, then transformed to sRGB for inclusion in this document. Fig. 4 is thus a softproof of the 

printed output.1 The differences between the standard and proposed techniques manifest themselves mostly 

as high-frequency chrominance textures in the smooth background regions. Recall that the image actually 

undergoes an additional binary halftoning step before printing. This step, which cannot be effectively 

simulated in the softproofs in Fig. 4, often serves to mask the high-frequency textures introduced by the 

multilevel chrominance halftoning. Another observation is that from our experiments, the use of multilevel 

halftoning in all 3 dimensions of the LUT (as proposed by [39] and [40]) introduces textures in the 

luminance channel as well as chrominance. The luminance textures are more easily perceived by the human 

visual system, and more difficult to mask in the binary halftoning step.  Finally, the textures can be reduced 

by simply increasing the size of the LUT along the dimensions in which multilevel halftoning is performed. 

Figure 4: (included at the end for space considerations).  

 

Table 1 compares the computational cost of standard interpolation techniques (tetrahedral and trilinear) 

with the proposed approach of chrominance halftoning in conjunction with 1-D luminance interpolation. It 

is evident that significant computational savings can be had with the proposed technique. The cost benefit 

comes from the fact that halftoning is far less computationally intensive than 3-D interpolation. 

 

Table 1: Cost analysis comparing standard and proposed LUT transformation techniques. N is the number 

of output signals. M, A, C, and S denote multiplications, additions, comparisons, and shift operations, 

respectively.  T denotes the real execution time in µsec to perform the interpolation for each pixel on a Sun 

Sparc20 workstation with a CPU clock speed of 75 MHz. 

Interpolation Algorithm M A C S T 
(µ-sec) 

1. Trilinear 7N 7N+2 0 2 18.0 

2. Tetrahedral 3N 3N+2 2.5 2 12.0 

3.    Proposed method N N+4 0 2 5.9 

                                                           
1 Note that re-printing of these images on an uncalibrated printer can produce additional errors and artifacts. 
The reader is encouraged to judge color quality on a standard CRT with characteristics similar to sRGB. 
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4. % Savings from (2) to (3) 67 43 100 0 51 

 

5.  Color correction exploiting media characteristics  

It is well known that the color characteristics of input and output devices are quite strongly dependent on 

the “medium” being captured or rendered to, respectively [43, 44, 45 (page 290), 46], where medium refers 

to the combination of colorants and substrates for hardcopy prints and more generally to spectral 

characteristics of the input for capture devices such as digital cameras. For input devices the problem can 

be minimized through an optimized design of capture device’s spectral sensitivities. This is achieved by 

using a comprehensive system-wide metric that incorporates the impact of the end human observer, the 

statistical characteristics of the input, and the system noise [47, 48, 49, 50]. However, such optimization is 

rare in current consumer image capture devices.  In many systems, the characterization for input or output 

is optimized for only one medium, and utilized for the multiple different media used in practice. This 

simplification occurs mainly because re-characterization for every new medium is time consuming and 

costly.  For output devices, recent work [46] has shown that it is possible to use an accurate 

characterization for a single reference medium and a minimal number of additional measurements, to 

characterize the device for each new media. There still remains the challenge of associating, at the system 

level, the correct characterization profile for a given document based on the user’s selection of medium. In 

the remainder of this section, we highlight how using wider system knowledge the problem for color 

scanners in particular can be mitigated.  

 

The spatial characteristics of the input can aid the selection of an appropriate color characterization profile 

for color scanners. The technique relies on the fact that typical inputs for these devices are themselves color 

hardcopy reproductions from other imaging systems. The images in Fig. 5 depict scans from images printed 

with different printing technologies, captured at a resolution of 600dpi. The scans correspond to small 

uniform regions in each print and are shown in a blown-up view here in order to illustrate the micro-

structure of the printed images. From the images, it is clear that their spatial structure identifies the printing 

technology. Since the photograph is a continuous tone process, its scan shows almost no spatial variation 

while the scans from other technologies illustrate their halftone structure. Since halftoning techniques are 
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typically matched to the printing technology for reasons of robustness and image quality [16, 51], the 

knowledge of the spatial characteristics may be exploited in order to classify the scanned input to the 

corresponding print technology, which in turn can be used to identify a color characterization profile (or 

group of profiles) for the input.  

The principle of the technique is illustrated in Fig. 6 where the estimated power spectra of the scanned 

images corresponding to the different marking technologies are shown.  These images represent the 2-D 

power spectrograms [52,53] for the scanned images where the dark regions represent concentrations of 

energy and the color of each region indicates the concentration of energy in corresponding scanner color 

channels. The estimated power spectra clearly highlight the differences among the printing processes. The 

halftone technologies are all readily distinguished from the photograph by the much higher concentration of 

high frequency energy in the corresponding power spectra. Among the halftone technologies, the 

periodicity of the halftones in lithographic and xerographic input images gives rise to sharp peaks in the 

power spectra at the locations of the halftone frequencies and their harmonics. These are therefore readily 

distinguished from the inkjet input where no peaks are observed in the power spectrum (other than the DC 

component) because the halftones are aperiodic. The periodic clustered halftones for lithographic and 

xerographic printing show considerable similarity but can be distinguished based on the placement of the 

peaks in the power spectra and the noise characteristics. Additional details for the classification process can 

be found in [54] and computationally simpler techniques for the identification of the halftone process from 

the scanned data and comprehensive results are included in [55]. It is worth noting that spatial analysis of 

the input scanned image is often already conducted the purposes of de-screening/enhancement. Hence the 

proposed scheme often does not entail significant additional computation in the overall system. 

  

The above example illustrated how analysis of spatial characteristics of scanned images can be exploited 

for improving the accuracy of color characterization.  In the example that follows we illustrate that an exact 

knowledge of the input can often enable not only a recovery of color but also the complete spectral 

reflectance from scanner RGB values. Fig. 7 illustrates the concept. The scanner senses the reflectance 

distribution at its input and reduces it to a 3-dimensional RGB representation as illustrated in the rightmost 

two blocks of Fig. 7.  In the absence of additional information, the three dimensional “color” information is 
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clearly insufficient for accurately reconstructing the object spectral reflectance r(λ). In most color scanning 

applications, however, the “original” input image that is to be electronically captured is itself a 

reproduction. This is the case, for instance, when a photographic print is to be scanned or a Xerographically 

produced color document is to be copied. Since these reproductions are produced by exploiting the 

trichromacy of human vision, they are typically produced by using only three independent color controls2  

                                                           
2 Even for four color CMYK printing devices (and other devices employing process colors), typically only 
three independent controls are exercised in practice and the situation of Fig. 7 applies. 
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Figure. 5. Scanned image regions from prints produced with different printing technologies. 

                                

  

                                

 
Figure. 6. Two-dimensional power-spectra of scanned images produced with different printing 

technologies. 
   

(a) Photo (b) Inkjet 

(c) Lithographic (d) Xerographic 

(a) Photo (b) Inkjet 

(c) Lithographic (d) Xerographic 



14 

 

Color
Output
Process

Reflectance
Spectrum

(λ)r3−dimensional

Signals
E.g. RGB/CMY

Device Control

λ

3−dimensional

Mapping F( . )

( One−to−one )

Mapping G( . )

Scanner
RGB Values

Scanner

 

Figure 7. Block diagram illustrating the relationship between scanner RGB output, device signals used for 

creation of the input and the reflectance spectra. 

 

as illustrated by the rightmost two blocks of Fig. 7. If we consider the complete end-to-end system 

illustrated in Fig. 7, under normal imaging conditions the mapping F(.) from the 3-D device control signals 

used for printing to the corresponding scanner RGB values is one-to-one (ignoring quantization and noise 

artifacts). This one-to-one nature arises because the color production systems are designed to produce 

different colors in response to different input control signals and even though scanners have confusion 

among scanned spectra the confusion exists only among spectra for different media.  The one-to-one nature 

of the mapping assures its invertibility and therefore there exists a mapping F−1(.) that can map the 

colorimetric values back to the 3-D device control signals that were used to produce the corresponding 

output. Fig. 7 also illustrates the forward device response function G(.), which represents the mapping from 

3-D device control values to the reflectance spectrum produced on the output device in response to those 

control values. A concatenation of the mappings F−1(.) and G(.) therefore allows scanner RGB values to be 

mapped to the corresponding spectral reflectance values for the given color production system. This is 

illustrated in Fig. 8. Therefore, for the case where the input is known exactly, it is feasible to extract 

complete spectral reflectance data from scanner RGB data. A practical system for performing this spectral 

recovery in general situations is presented in [56]. The work uses a neural network to estimate the mapping 

H(.) and enables spectral reconstruction that has an error of under 1 ∆E*
94 units across multiple illuminants. 
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We illustrate the technique in a more constrained setting where a more direct signal processing solution is 

applicable. The method is based on techniques from set theoretic estimation [57] whose use has already 

been proposed for color problems [58].   
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Figure 8. Spectrum recovery from scanner RGB values for color reproduction. 

For the case when the input is a photographic medium, the system is well approximated by the linear in 

spectral density model already introduced in this issue in [1]. Using the same notation, we note that the 

spectrum g for a given point on the photographic print illuminated by a light source l can be expressed in 

optical density domain as  

cDlg .)(log)(log 1010 +−=−   (1) 

where the logarithm is applied term-wise to the vectors. For our particular case, the matrix D contains the 

spectral density of the CMY colorants used in the photograph and the vector c is the concentration of these 

colorants at the point in consideration. Thus in density space the input spectra for the scanner illustrated in 

Fig. 7 lie on a 3-dimensional affine manifold. The above model can be successfully used along with 

empirical regression to obtain a spectral calibration for scanners [59]. By exploiting additional system 

information, as we illustrate below, one can obtain an entirely model based solution. 

 

If the scanner spectral sensitivities are known to correspond to the matrix M, the scanner response to the 

spectrum g can be expressed as 

gMv T=    (2) 



16 

Thus knowledge of the scanner RGB values v constrains its spectrum by 3 linear equations in the domain 

of spectral reflectance. If this constraint is used jointly with the constraint imposed by the model for the 

photographic medium, the spectrum may be uniquely determined from the scanner RGB values v. One 

challenge remaining, however, is a robust algorithm for solving these joint constraints. While both sets of 

constraints are linear3, they lie in different domains and therefore cannot be solved using simple linear 

algebra or by conventional convex set theoretic estimation schemes [57] that require constraints to be 

convex in the same domain. The problem can be simplified however by using a novel set theoretic 

estimation technique [60] that maps the problem into a product space. The technique provides not only a 

robust solution to the specific problem considered here but also a general formulation [61] that is applicable 

to a wider set of problems in subtractive color. 

 

The problem of estimating the spectra of photographic prints from scanner RGB data is reduced to a 

problem of joint satisfaction of convex closed constraints through an application of the results in [60] to the 

models of Eqns. (1) and (2). The method of projections onto convex sets (POCS) [62] therefore provides a 

robust technique for solving the problem. Of course, practical use of the algorithm also requires knowledge 

of the spectral density D. For typical situations, where this knowledge is not explicitly available it may be 

estimated to within a non-singular transform by using principal components analysis on a small number of 

measured density values from the photograph being scanned itself [61,]. This allows one to have a target-

less scheme for spectral calibration of scanners [63], wherein the spectral sensitivity of the scanner along 

with a few spectral measurements from the image being scanned allow the scanner to accurately estimate 

spectral data from the scanned RGB values. Illustrative results from this technique are presented in Fig. 9, 

where four estimated spectral reflectances (shown as broken lines) are compared against the corresponding 

measured values (shown as solid lines). From these plots it is apparent that the technique provides accurate 

estimates of the spectra.  Over a typical photographic calibration target the above technique provides 

accuracy of around 1.8 ∆E*
ab units which is quite comparable to other non-spectral calibration schemes 

[63]. The spectral calibration offers advantages over the conventional color calibration methods in that the 

                                                           
3 Technically the constraint in density space is affine. 
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colorimetry under different viewing illuminants may be subsequently calculated, which is not possible if 

only a colorimetric calibration is available.  
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Figure 9. Representative results illustrating measured photographic reflectance spectra versus estimates 

from model-based scanner calibration. 

 

6. Conclusions 

We have attempted to show, via several examples, that the optimization of the quality and performance of a 

color imaging system is indeed a system-wide problem that must take into account interactions among the 

various components. In additional to the examples described in Sections 3-5, other instances of color 

imaging system interactions can be conceived. For example, hidden interactions between input and output 

device characterization functions can result in image artifacts unless accounted for. Take the instance of an 

International Color Consortium (ICC) profile for an sRGB device [64]. The sRGB standard is defined for 

D65 white point, while the “profile connection space” in the ICC standard is defined for D50 white point 

[65]. A chromatic adaptation transform (CAT) is thus needed to convert from one white point to another. 

Different vendors of sRGB profiles employ different CATs to perform this conversion. Thus an sRGB 

source profile from one vendor using one CAT, combined with an sRGB destination profile from another 
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vendor using a different CAT, can introduce significant color shifts into a process that ought to produce an 

identity transformation. 

 We believe that in general, a systems approach rooted in signal processing principles typically offers 

improved “operating points” in the computation and quality trade-off “operating curves”. In many cases, 

the systems approach can actually simplify the optimization of the individual components- as is illustrated 

by the example of joint optimization of device characterization and halftoning to minimize moiré [22]. In 

other cases, overall system performance is improved at no additional cost. Our second example illustrated 

this where the intelligent use of spatial side information obtained in the scanning process improved input 

color characterization accuracy. The article will hopefully provoke more engineers working on color 

imaging to also think in terms of systems and create additional examples of the benefits of such thinking. 
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Figure 4 (a) 
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Figure 4(b) 

Figure 4: Images comparing (a) 3-D tetrahedral interpolation with (b) chrominance halftoning and 1-D 

luminance interpolation. 

Gaurav Sharma
Text Box
Image data used for generating this figure is processed for the specific purpose of printing. Some artifacts may be seen in the electronic image due to the undesirable compression and/or re-scaling which are not seen in the suitably generated prints.
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