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ABSTRACT Secondary structure prediction is an important problem in RNA bioinformatics because knowledge of structure is
critical to understanding the functions of RNA sequences. Significant improvements in prediction accuracy have recently been
demonstrated though the incorporation of experimentally obtained structural information, for instance using selective 20-hydroxyl
acylation analyzed by primer extension (SHAPE) mapping. However, such mapping data is currently available only for a limited
number of RNA sequences. In this article, we present a method for extending the benefit of experimental mapping data in sec-
ondary structure prediction to homologous sequences. Specifically, we propose a method for integrating experimental mapping
data into a comparative sequence analysis algorithm for secondary structure prediction of multiple homologs, whereby the map-
ping data benefits not only the prediction for the specific sequence that was mapped but also other homologs. The proposed
method is realized by modifying the TurboFold II algorithm for prediction of RNA secondary structures to utilize basepairing prob-
abilities guided by SHAPE experimental data when such data are available. The SHAPE-mapping-guided basepairing probabil-
ities are obtained using the RSample method. Results demonstrate that the SHAPE mapping data for a sequence improves
structure prediction accuracy of other homologous sequences beyond the accuracy obtained by sequence comparison alone
(TurboFold II). The updated version of TurboFold II is freely available as part of the RNAstructure software package.
INTRODUCTION
RNA functions in diverse cellular activities; it is a carrier of
genetic information in transcription (1), a regulator of gene
expression (2), and a catalyst (3). These cellular functions
depend on the structure of RNA (4). Therefore, accurate
predictions for the secondary structure, i.e., canonical base-
pairings between nucleotides, are critical for understanding
and proposing hypotheses related to RNA functions. A
commonly used approach is to predict secondary structures
based on folding thermodynamics (5,6).

To achieve greater prediction accuracy, several thermo-
dynamics-based methods incorporate experimental data
derived from chemical probing to guide RNA secondary
structure prediction (7–17). One mapping method, selec-
tive 20-hydroxyl acylation analyzed by primer extension
(SHAPE), provides quantitative reactivity at each nucleotide
to the SHAPE reagent, which measures the nucleotide
flexibility (18,19). Because basepaired nucleotides are
structurally restricted, high SHAPE reactivity is generally
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associated with not being canonically basepaired (20).
SHAPE data can be collected with high-throughput
sequencing (21–23) and can also be obtained invivo (24–26).

RSample (Spasic, S.M. Assmann, P.C. Bevilacqua,
D.H.M., unpublished data) models RNA secondary struc-
ture using SHAPE data. It focuses on matching structure
models to the mapping data rather than directly integrating
data into the model. In this way, it can model folding ensem-
bles of multiple structures. A nucleotide-level comparison
between experimental mapping data and modeled mapping
data is used to guide a single refinement of a stochastic
sample. The sample is then clustered to predict sets of struc-
ture models. The single structure prediction accuracy of
RSample is similar to leading methods (>80% of predicted
pairs in the accepted structure) (12), and RSample is able to
estimate the population of multiple structures in the folding
ensemble (27).

Another approach to improving secondary structure pre-
diction accuracy is to use multiple homologous sequences
to identify conserved basepairs (5,28–30). One method,
TurboFold II (31; Z.T., Y. Fu, G. Sharma, D.H.M., unpub-
lished data), iteratively refines basepairing probabilities
for each sequence in a set of homologs by comparing
the predicted basepairing probabilities across the set of
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homologs. Additionally, nucleotide alignment probabilities
in pairwise alignments, estimated using a hidden Markov
model (HMM) (32), are iteratively improved using infor-
mation from estimated secondary structures (33). After
the iterative updates, structures are predicted using the
maximum expected accuracy algorithm (34–36) and a mul-
tiple sequence alignment is estimated using a probabilistic
consistency transformation (36) and progressive alignment.

An open problem in the field is the integration of both
structure mapping data and comparative data to improve
secondary structure prediction accuracy. Prior work focused
on the case where SHAPE data is available for all homolo-
gous sequences (37). For this situation, a multiple sequence
alignment was first created by also including SHAPE data in
pairwise global alignment. Then the RNAalifold method
(38) was used to predict a consensus structure that is
conserved given the fixed input alignment, using pseudo
free energies to incorporate the SHAPE information (7).
This article addresses the problem of predicting conserved
secondary structures when SHAPE mapping is only avail-
able for one homolog. This use case is expected to be
increasingly common as SHAPE is performed in vivo across
transcriptomes. The method reported in this article is the
integration of RSample into TurboFold II. In the resulting
method, SHAPE-guided structure prediction and prediction
of conserved structures act synergistically to improve sec-
ondary structure prediction accuracy, even for sequences
for which SHAPE mapping was not performed. Results
demonstrate that the SHAPE mapping data for a sequence
improves structure prediction accuracy of other homologous
sequences beyond the accuracy obtained by sequence com-
parison alone (TurboFold II).
METHODS

Fig. 1 illustrates the proposed new version of TurboFold II that uses avail-

able SHAPE mapping data for one or more of the RNA sequence homo-

logs to improve structure prediction for the sequences without SHAPE

data. The input to TurboFold II is a set of homologous sequences and

the outputs are the predicted secondary structures for each sequence and

a multiple sequence alignment (31). To incorporate experimental

mapping data into the predictions, the proposed approach makes use of

RSample. Specifically, as shown in Fig. 1, within the TurboFold II itera-

tions, RSample is used to refine estimated basepairing probabilities for se-

quences with SHAPE data and these estimated basepairing probabilities

are incorporated in the iterations. As shown via the dashed lines in

Fig. 1, in subsequent TurboFold II iterations, the incorporated SHAPE

information propagates to other homologous sequences and thereby

improves the prediction of structure for these sequences, in addition to

improving structure prediction for the sequence with which the SHAPE

data is affiliated. The major individual steps in the proposed approach

are outlined next.
SHAPE-guided computation of basepairing
probabilities using RSample

RSample first generates a stochastic sample (39) using a secondary struc-

ture partition function calculation (40). Then SHAPE reactivities are esti-
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mated for each nucleotide in each structure based on the status of the

nucleotide: unpaired, paired at the last position of a helix, or paired in

the interior of a helix. SHAPE reactivities are drawn from distributions

composed of a database of 16 known secondary structures with experimen-

tally measured SHAPE reactivities (12). The estimated SHAPE reactivity

for a nucleotide is then the mean reactivity across all structures. The sto-

chastic sampling is then repeated, where the partition function is reesti-

mated so that the estimated SHAPE reactivities better match the

experimental SHAPE mapping data. The free energy change term intro-

duced to the partition function is

DGbonus;i ¼ 0:5 � ln

�
Rexpi þ 1:1

Rcalci þ 1:1

�
; (1)

where Rexpi and Rcalci are experimentally measured reactivities and esti-

mated reactivities of nucleotide i. This functional form was chosen so

that the free energy of basepair stacking is only altered for nucleotides

for which the originally estimated SHAPE reactivity does not match the

experiment. The constants 0.5 and 1.1 in the equation were obtained

(data not shown) via a grid search as the parameters that maximized struc-

ture prediction accuracy. The free energy bonus DGbonus, i is then applied

for each basepair stack involving nucleotide i. This approach focuses on

matching the experimentally measured SHAPE reactivity.
Incorporation of RSample into TurboFold II

TurboFold II is a method to predict secondary structures for multiple RNA

homologs and multiple sequence alignments. TurboFold II iteratively esti-

mates basepairing probabilities for each sequence using intrinsic informa-

tion and extrinsic information for sequence folding. Intrinsic information

is derived from the thermodynamic model, which used the latest set of near-

est-neighbor thermodynamic parameters (11,41). Extrinsic information is a

proclivity for basepairing inferred from the basepairing probabilities of

other homologous sequences, mapped to the sequence of interest by the

posterior probabilities of nucleotide coincidence of the other homologs to

the sequence (32). The posterior coincidence probabilities can be obtained

with a HMM for pairwise alignments (42). The estimated basepairing prob-

abilities can be used to predict secondary structure using the maximum ex-

pected accuracy (MEA) algorithm (34,35,43) or the ProbKnot method (44).

RSample is integrated into TurboFold II to estimate basepairing probabil-

ities for homologous sequences with available SHAPE mapping data on

one of the homologs. The integrated algorithm uses nine steps illustrated

in Fig. 1.

We adapt the description focusing particularly on the new elements intro-

duced in this article.

Step 1 computes pairwise posterior coincidence probabilities using an

HMM. Pairwise posterior coincidence probabilities are estimated for all

pairs of sequences with an HMM as implemented by Harmanci et al.

(32). Using the forward-backward algorithm, matrices of posterior coinci-

dence probabilities for two nucleotides (one from each sequence) are

computed. Details can be found in Harmanci et al. (32).

Step 2 computes basepairing probabilities of all sequences using the

partition function method in RNAstructure (40).

Steps 3–5 are only performed for sequences for which there is SHAPE

mapping data.

Step 3 generates an ensemble of Ns ¼ 10,000 structures by stochastic

sampling for sequences with input SHAPE reactivity.

Step 4 estimates the SHAPE reactivity for each nucleotide based on the

sample. The SHAPE reactivities are assigned to each nucleotide at each

structure in the sample according to the distributions for three different

local structures: unpaired, paired at a helix end, or paired in the interior

of a helix. The SHAPE reactivity for each nucleotide is the arithmetic

mean across structures in the sample. Because the size of ensemble is large,

the variance between samples is relatively low.
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FIGURE 1 Flowchart for TurboFold II with incorporation of SHAPE mapping data for one or more sequences. The input is a set of H homologous RNA

sequences and the outputs are the predicted secondary structures for each sequence and the predicted multiple sequence alignment. Steps 1–11 are described

in Materials and Methods. The dashed arrow lines show the flow of SHAPE information and illustrate how, through the iterations, the SHAPE information

contributes not only to the structure prediction for sequences with SHAPE data but also to the structure prediction for other sequences. Steps 3–5 in the

dashed box show the processing for the sequences with SHAPE mapping data using RSample.
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Step 5 recalculates the partition function using the free energy change

term (in Eq. 1) to predict basepairing probability for the sequence with

input SHAPE reactivities. Nucleotides with higher or lower estimated

SHAPE reactivity than that measured by experiment are restrained with

a lower or higher propensity to basepair, respectively. Nucleotides with

consistent estimated and experimental SHAPE reactivity receive no

restraint.

Step 6 calculates match scores that encourage alignment between nucle-

otide positions where both nucleotides are upstream paired, downstream

paired, or unpaired. The match score was first proposed in PMcomp

(33), and is utilized in TurboFold II as a prior for recalculating posterior

coincidence probability in next step via the HMM pair alignment algo-

rithm. For the mth sequence, based on estimated basepairing probabilities

between all pairs of nucleotide positions obtained from the partition func-

tion calculation, for a nucleotide at position i, the estimated probability

of downstream pairing is Pm
< ðiÞ ¼

P
j > iP

m
ij , of upstream pairing is

P m
> ðiÞ ¼

P
j < iP

m
ij , and of being unpaired is Pm

� ðiÞ ¼ 1� Pm
< ðiÞ � Pm

> ðiÞ.
The match score between nucleotides i and k in sequences m and n, respec-

tively, is formulated as

rði; kÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P m
< ðiÞP n

< ðkÞ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P m

> ðiÞP n
> ðkÞ

q �
þ 0:8

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm
� ðiÞPn

� ðkÞ
q �

þ 0:5: (2)

For sequences without SHAPE mapping data, the basepairing probabilities

from Step 2 are utilized for the computation of match scores, whereas for
sequences with SHAPE mapping data, the basepairing probabilities from

Step 5 are used in the computation of the match scores.

Step 7 reestimates the posterior coincidence probability. Information

from prior iterations is utilized to reestimate alignment posterior probabil-

ities and basepairing probabilities for secondary structures. The iterative

reestimation of alignment posterior probabilities is introduced (TurboFold
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II) and uses the standard HMM alignment model (42), but with the match

score of Eq. 3 incorporated as a prior.

Step 8 calculates extrinsic information for each sequence by combining

basepairing probabilities from other input sequences using posterior coinci-

dence probabilities:
Pðn/mÞði; jÞ ¼
X

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

P
k;l

1%k < l%Nn

k˛Cm;n
i

l˛Cm;n
j

Probbpðk; lÞ � Pðm;nÞði � kÞ � Pðm;nÞðj � lÞ � ðH � 1Þ � l ðif sequence n is with SHAPEÞ

P
k;l

1%k < l%Nn

k˛Cm;n
i

l˛Cm;n
j

Probbpðk; lÞ � Pðm;nÞði � kÞ � Pðm;nÞðj � lÞ � �
1� jm;n

� ðotherwiseÞ;

(3)
where P(n/m) denotes the extrinsic information for sequence m inferred

from sequence n. Nn indicates the length of sequence n. The notations

Cm;n
i and Cm;n

j denote the sets of indices for which posterior coincidence

alignment probabilities P(m,n) (i � k) and P(m,n) (j � l), respectively,

exceed a predetermined threshold below which values are considered 0

for computational simplification. Probbp(k,l) denotes the (estimated)

basepairing probability between nucleotide k and nucleotide l within a

sequence. The value ‘‘i � k’’ indicates the alignment between indices i

and k in two sequences. H is the number of homologous sequences.

To keep the ratio of extrinsic information from sequence n to every

other sequence constant, the extrinsic information term for sequence n

is multiplied by H�1 if sequence n has SHAPE data. This ensures that

more extrinsic information is used from sequences with SHAPE data

than from sequences without SHAPE data. l is a parameter, optimized

based on training. The factor (1 � jm,n) weights the contribution

of sequence n to the extrinsic information for sequence m using the

sequence identity, jm,n, for sequences m and n computed from an HMM

alignment. This term is only used when sequence n does not have associ-

ated SHAPE mapping data. Because of the factor (1 � jm,n), sequences

that are highly similar to sequence m have a lower contribution to extrinsic

information than those with lower similarities. The extrinsic information is

calculated from basepairing proclivity for each sequence as inferred from

every other sequence pairwise. Because the sequence with SHAPE

reactivities is presumed to have more accurate estimates of basepairing

probabilities, the basepairing proclivities from the sequence with SHAPE

reactivities to sequences without SHAPE reactivities are assigned a

different, adjustable weighting (l). The basepairing proclivities for se-

quences without SHAPE data and from other sequences to the sequence

with SHAPE data are computed in an identical fashion to the TurboFold

II algorithm.

Step 9 updates the basepairing probability by recomputing the partition

function for each sequence with the addition of extrinsic information.

The extrinsic information is incorporated as a pseudo free energy term in

the partition function calculation for each sequence. A detailed description

is in Harmanci et al. (31).

Steps 2–9 form a loop that is iterated through three times, which is shown

to be optimal in Harmanci et al. (31).

Steps 10 and 11 perform progressive alignment and predict final sec-

ondary structures, respectively. In Step 10, the posterior coincidence
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probabilities obtained with the updated match scores via Step 6 are

used to calculate a multiple sequence alignment. A probabilistic

consistency transformation, as described in ProbCons (36), is used

to refine alignment probabilities based on three-way alignment consis-

tency of pairwise HMM posterior probabilities. Refined alignments are
further predicted hierarchically based on a guide tree, as described in

ProbCons (36).

In Step 11, the structures are predicted by the MEA algorithm. Given the

basepair probabilities Pm(i,j) for structure sm of sequencem, the MEA struc-

ture is defined as

S�m ¼ argmax
Sm

8>>>><
>>>>:

X
ði; jÞ˛Sm

2 ,Pmði; jÞ þ
X
ci;

i unpaired in Sm

PmðiÞ

9>>>>=
>>>>;
;

(4)

where Pm(i) is the probability that nucleotide position i is not basepaired,

computed as

PmðiÞ ¼ 1�
XNm

j¼ iþ1

Pm ði; jÞ �
Xi�1

j¼ 1

Pm ðj; iÞ; (5)

and where Nm is the length of sequence m. The MEA structure is ob-

tained with a dynamic programming algorithm, as described in Harmanci

et al. (31).
Parameter optimization

To train the parameter l corresponding to the weighting of the extrinsic

information term in Eq. 3, 20 groups of input sequences formed by 10

homologous sequences (including the sequence with SHAPE data)

were randomly chosen from the small subunit ribosomal RNA in the

RNAStralign database. The range for parameter l was from 0 to 2.0

(with samples at 0, 0.02, 0.1, 0.2, 0.4, 1.0, 1.6, and 2.0). The resulting

optimal parameter (l ¼ 1.0) was then used as the default for the method.

The geometric mean of sensitivity and PPV was used as the accuracy metric

for optimizing the parameter l, and the values of this metric over the

training set are given in the Supporting Material (Fig. S15).
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Benchmarks

For benchmarking, groups of sequence homologs were selected

from several families based on the selection criterion that SHAPE data

were available for a sequence in the family (12). Hepatitis C virus

(HCV) IRES domain, TPP riboswitch, cyclic-di-GMP riboswitch,

SAM I riboswitch, M-box riboswitch, and Lysine riboswitch RNA se-

quences were randomly selected from the Rfam database (45). tRNA,

5S ribosomal RNA, and group I intron sequences were selected from

the RNAStralign database (http://rna.urmc.rochester.edu/RNAStralign.

tar.gz). 23S rRNA sequences were selected from the Comparative

RNA web site and project (http://www.rna.icmb.utexas.edu/). Specif-

ically, 20 groups of 4-, 9-, or 19-sequence homologs were selected

from each of the RNA family. All methods were benchmarked on

the same groups of sequences. Detailed information of selected

sequences is in Tables S1 and S2. For comparison, a single sequence

prediction accuracy was also computed as the average of the accu-

racies for each homolog in the set of sequences for predictions obtained

using the MaxExpect (maximum expected accuracy) method from

RNAstructure 5.7.
Scoring of prediction accuracy

The F1 score, which is the harmonic mean of sensitivity and PPV, is used in

the structure-prediction benchmark. The F1 score is computed as

F1 ¼ 2 � Sensitivity � PPV

Sensitivityþ PPV
: (6)

Sensitivity is the fraction of basepairs from the Rfam database that are

correctly predicted. PPV is the fraction of predicted basepairs that are cor-

rect, i.e., included in the Rfam database.

Predicted basepairs are considered correct if a nucleotide on either the

50- or 30-position of the helix is off by one position compared to the standard

(13,46). For instance, a predicted basepair (i, j) is correct if basepair (i, j), or

(i 5 1, j), or (i, j 5 1) exists in the database. This is important because of

uncertainty in the determination of secondary structure by comparative

analysis (47) and also because of thermodynamic fluctuations of local struc-

tures (48,49).
Significance testing

To assess the statistical significance of the differences in F1 score, sensi-

tivity, and PPV, paired t-tests were performed using R 3.0.2 (50) between

TurboFold II with SHAPE data and each of the other methods (51). Alpha,

the type I error rate, was set to 0.05. The figures summarizing the bench-

marking results are annotated to indicate the results of the significance

tests.
Alternative methods

Although no previous work has been reported on using SHAPE data

for one homolog in the prediction of structures for other homologs,

the RNAalifold (38,52) method can be used for this purpose and it is

therefore used for comparison. For RNAalifold, the SHAPE reactivity

data is converted to per-nucleotide pseudo free energies that are then

applied for each basepair stack including a nucleotide. A log-linear fit

based on Deigan et al. (7) is used to convert reactivities into pseudo

free energies. The RNAalifold method does not compute an alignment

and requires an input multiple sequence alignment. Input alignments

for RNAalifold (2.2.5) were generated using ClustalW (2.1) (38,53).

Default options and parameters were used for these programs in the

benchmarking.
RESULTS

The new version of TurboFold II, capable of incorporating
SHAPE data, was benchmarked for structure prediction
accuracy using RNA families, where one sequence in
each family has measured SHAPE reactivity (12). The
method was compared with RNAalifold (38), RSample,
and MaxExpect (35). RNAalifold is a method for predicting
consensus structures for multiple homologs. It was previ-
ously adapted for using SHAPE data, and was benchmarked
for cases when all sequences had SHAPE mapping data
(37). RSample is run for the single sequences with SHAPE
data available. MaxExpect is the single sequence maximum
expected accuracy method, and maximum expected accu-
racy is used to generate the predicted structures from
predicted basepairing probabilities with TurboFold. The
accuracy results are represented in Figs. 2 and S1–S11;
Tables S4 and S5.

Fig. 2 shows the average structure prediction accuracy for
the sequences without SHAPE data. The results demonstrate
that the majority of RNA families (tRNA, 5S rRNA, hepati-
tis C virus IRES, group I intron, lysine riboswitch, SAM I
riboswitch, cyclic-di-GMP riboswitch, and 23S rRNA)
have significantly (p < 0.05) better structure prediction ac-
curacy when SHAPE is used in the calculation than when
SHAPE data is not used. This shows that SHAPE data for
a single sequence can inform the structure modeling for ho-
mologous sequences. However, for the M-box riboswitch
and TPP riboswitch, the accuracies are not significantly
improved by having SHAPE data. For the sequences without
SHAPE data, the new version of TurboFold II performed
better than RNAalifold using SHAPE data and MaxExpect.
Fig. S12 shows that much of the improvement in accuracy is
for sequences that were relatively poorly predicted in the
absence of SHAPE data. The accuracy performance for
those sequences is rescued by having SHAPE information
for a homologous sequence.

It is observed that structure prediction accuracies by
TurboFold II using SHAPE data across sizes of sequence
groups are scarcely changed (from 5 to 20 sequences).
The relationship between structure prediction accuracies
and sequence lengths is also weak (Tables S1 and S2). For
the 23S rRNA family, which has the longest average
sequence length (�2900 nucleotides), all methods, except
single-sequence MaxExpect, perform well. On the RNA
families with sequence lengths shorter than 200 nucleotides,
TurboFold II þ SHAPE improves structure predictions for
tRNA, 5S, lysine riboswitch, and cyclic-di-GMP riboswitch,
but does not improve structure predictions for M-box ribos-
witch and TPP riboswitch.

For the one sequence with SHAPE mapping data in each
RNA family, the results show that the majority of RNA fam-
ilies (5S rRNA, HCV IRES domain, group I intron, TPP
riboswitch, and 23S rRNA) have significantly (p < 0.05)
improved prediction accuracy when SHAPE data are used
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FIGURE 2 Average F1 score of structure predic-

tions of the sequences that did not have SHAPE

mapping data. Given here is the average F1 score

of structure predictions obtained by running the

methods with 5-, 10-, or 20-input sequences on

tRNA, 5S rRNA, hepatitis C virus IRES domain,

group I intron, lysine riboswitch, M-box ribos-

witch, SAM I riboswitch, TPP riboswitch, cyclic-

di-GMP riboswitch, and 23S rRNA test datasets.

Standard errors of the mean are shown by error

bars. The star (*) above the bar for a method indi-

cates that the difference in F1 score between the

method and the new TurboFold II is statistically

significant, as determined by paired t-tests (51).
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than when SHAPE data are not used (Fig. S1 and Table S4).
For tRNA, the lysine riboswitch, and the M-box riboswitch
families, the accuracy performances are the same. In the
SAM I riboswitch and the cyclic-di-GMP riboswitch fam-
ilies, the accuracies decreased when SHAPE data are
used. In tRNA, 5S rRNA, group I intron, lysine riboswitch,
SAM I riboswitch, TPP riboswitch, and 23S rRNA families,
the new version of TurboFold II performed better than
RSample. Only in the hepatitis C virus IRES domain and
cyclic-di-GMP riboswitch families, the new version of
TurboFold II performed worse than RSample. The
TurboFold IIþSHAPE performed better than RNAalifold
using SHAPE data on every family and performed better
than MaxExpect on a majority of families (except the cy-
6 Biophysical Journal 113, 1–9, July 25, 2017
clic-di-GMP riboswitch and the M-box riboswitch) using
SHAPE data.

The alignment predictions by TurboFold II with and
without SHAPE (Fig. S13) are compared with the predicted
alignment by ClustalW (53), a method that is based on pair-
wise dynamic programing alignments, which is the input
alignment for RNAalifold. Because the Rfam database
alignments do not include the sequence with SHAPE data
for all of the families, the alignment accuracy is assessed
only over the sequences without SHAPE data within each
family of homologs. With the exception of the 5S rRNA
and the hepatitis C virus IRES domain, TurboFold II
with SHAPE had higher sensitivity and PPV compared to
ClustalW. Using SHAPE data on one sequence in each
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RNA family also significantly improved the alignment accu-
racy of other homologs without SHAPE in a majority of
RNA families (group I intron, lysine riboswitch, M-box ri-
boswitch, SAM I riboswitch, TPP riboswitch, and cyclic-
di-GMP riboswitch).
DISCUSSION

Secondary structure models are important for understanding
the functions of the RNA structure (54). Using SHAPE data
was shown to improve structure prediction accuracy signif-
icantly for single sequence secondary structure predictions
(7,12). In this work, it is demonstrated that the SHAPE
data can inform the folding of other homologs by combining
information from sequence comparison of RNA homologs.
In particular, it is shown that given SHAPE data for one
sequence out of the multiple sequences used in secondary
structure prediction by comparative analysis, TurboFold
II þ SHAPE can substantially improve the structure predic-
tion accuracies of the sequences that did not have SHAPE
mapping data.

One of the reasons for the improvements of the structure
prediction accuracies of homologs without SHAPE is the
more accurate prediction of the structure of the sequence
with SHAPE reactivity. In three RNA families (5S rRNA,
HCV IRES, and group I intron), TurboFold II improved
the average structure accuracy of both the sequences with
and without SHAPE (Fig. S1). The more accurate structural
information from the sequence with SHAPE is transmitted
to its homologs through the extrinsic information calcula-
tion. Due to the specially designed extrinsic information
calculation from the sequence with SHAPE to other (H�1
total) homologs by introducing the factor (H�1), which en-
sures that the fraction of extrinsic information provided by
sequences with SHAPE is high compared to other homo-
logs, the structure prediction of homologs is improved.

To take the advantage of SHAPE data on one of the ho-
mologs, the new method ignores pairwise sequence identity
during the calculation of extrinsic information from the
a b
sequence with SHAPE to other sequences. To understand
the nature of improvements in structure prediction accuracies
of sequenceswithout SHAPE, the relationship between struc-
ture prediction accuracy and sequence identity is studied
(Fig. S14). Sequence identity is defined as the ratio of the
number of columns with same pairwise aligned nucleotides
at the output alignment between the sequence with SHAPE
and other homologs from theTurboFold IIþSHAPEmethod.
One observed trend is that the sequenceswithmore accurately
predicted structure (higher F1 score) generally with had
higher sequence identity to the sequencewith SHAPE.More-
over, the F1 score improvementswere distributed in a roughly
Gaussian shape along the sequence identity (Fig. S14). For the
sequences with relatively high sequence identity, the room to
improve accuracy was limited. The Gaussian shape is also
partially due to the effects of improvements in structure pre-
diction because of a more accurate alignment. This is
observed in some of the RNA families (tRNA, group I intron,
lysine riboswitch, and SAM I riboswitch) (Fig. S13). The
5S rRNA, hepatitis C virus IRES domain, and cyclic-di-
GMP riboswitch RNA families showed improvements on
structure prediction accuracy although little or no improve-
ment on alignment prediction accuracy, because the align-
ment accuracies of these RNA families were already
relatively high (�90% in sensitivity and PPV).

The other reason for the improvements of the structure
prediction accuracies of homologs without SHAPE is the
more accurate coincidence probability as compared to the
case without SHAPE data on any of the input sequences.
The coincidence is important to map the basepairing proba-
bilities of other homologous sequences to the sequence of
interest and it is also helpful to estimate the final multiple
sequence alignment (Fig. S13).

One remaining challenge of structure prediction using
experimental probing data on one of the homologs is the dif-
ficulty to determine the balance of information from thermo-
dynamics of the sequence and extrinsic information from
the sequence using experimental data. In Fig. 3, an example
from the TPP riboswitch family shows that the structure of
FIGURE 3 Representative secondary structure

prediction for TPP riboswitch (BA000043) with

(a) and without (b) SHAPE data on a homolo-

gous RNA. Basepair predictions are illustrated

by colored lines (green, red, and black denoting

correct, incorrect, and missing basepairs, respec-

tively) on circle plots. The circular plots were

generated using the CircleCompare program in

RNAstructure (55).
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one homologous sequence BA000043 was incorrectly pre-
dicted to form three extra basepairs between 50 and 30

ends when SHAPE was used as compared to when SHAPE
was not used, although the longer helix contributes to a
more stable structure.

RNAalifold showed lower accuracies for predicted struc-
tures than those of TurboFold II þ SHAPE in most of the
RNA families. A contributing factor to this inaccuracy
was the lower accuracy of the input sequence alignment
(Fig. S13). Although pseudo free energies obtained from
the SHAPE reactivity data at nucleotides might be helpful
for estimating the structure, an inaccurate alignment be-
tween the sequence with SHAPE data and homologs can
disturb the consensus structure for the set of aligned se-
quences and can cause loss of basepairs in the consensus
structure. For the group I intron, lysine riboswitch, SAM I
riboswitch, TPP riboswitch, and cyclic-di-GMP riboswitch
RNA families, the sensitivity and PPV of the predicted
ClustalW alignment for sequences without SHAPE are
�10% lower than those of TurboFold II þ SHAPE and
the F1 score of structure prediction on these RNA families
is �20% lower than TurboFold II þ SHAPE.

Another contributing factor for the worse performance of
RNAalifold is the integration of SHAPE data. There is a
weakening of the information from experimental data with
increasing number of homologs, because the pseudo energy
from SHAPE reactivity is only applied to the free energy
calculation of the particular sequence.

TurboFold II using SHAPE data on one or more
sequences maintains a computation speed comparable to
TurboFold II (with complexity O(H2N2 þ HN3) for H
sequences of average length N). The time performance on
select sequence families is provided in Table S6.
CONCLUSION

A new version of TurboFold II with the ability to include
SHAPE mapping data for one or more of the RNA sequence
homologs can substantially improve the structure prediction
accuracies of the sequences that do not have SHAPE data.
TurboFold II with the capability to include SHAPE mapping
data for one or more sequences is available under the GNU
license as part of the RNAstructure software package at:
http://rna.urmc.rochester.edu/RNAstructure.html.
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Supporting Materials and Methods, fifteen figures, and six tables are avail-
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Section 1. Dataset information: 

 

Family H 
Average 
sequenc
e length 

Standard 
deviation 

Average 
MEA 

sensitivity 

Standard 
deviation 

Average 
MEA PPV 

Standard 
deviation 

tRNA 
5 sequences 75.7 3.5 0.76 0.23 0.75 0.24

10 sequences 76.2 4.7 0.77 0.23 0.74 0.25

20 sequences 76.3 4.8 0.77 0.21 0.74 0.23

cGMP 
riboswi
tch 

5 sequences 89.0 8.3 0.86 0.19 0.33 0.12

10 sequences 87.9 6.9 0.81 0.26 0.31 0.13

20 sequences 87.5 6.5 0.81 0.25 0.31 0.13

TPP 
riboswi
tch 

5 sequences 101.5 16.8 0.54 0.29 0.43 0.28

10 sequences 104.4 13.9 0.55 0.29 0.44 0.27

20 sequences 106.1 13.1 0.55 0.29 0.43 0.27

SAM I 
riboswi
tch 

5 sequences 111.3 13.9 0.83 0.18 0.68 0.17

10 sequences 111.9 14.1 0.82 0.17 0.67 0.16

20 sequences 111.9 15.3 0.84 0.16 0.68 0.15

5S 
rRNA 

5 sequences 117.7 4.6 0.64 0.24 0.62 0.24

10 sequences 117.8 3.2 0.56 0.25 0.55 0.25

20 sequences 117.8 4.2 0.57 0.27 0.54 0.26

M‐box 
riboswi
tch 

5 sequences 164.7 8.5 0.64 0.15 0.61 0.15

10 sequences 167.1 8.5 0.66 0.17 0.62 0.16

20 sequences 167.8 7.3 0.66 0.15 0.63 0.14

lysine 
riboswi
tch 

5 sequences 179.1 6.8 0.76 0.17 0.71 0.15

10 sequences 183.5 12.6 0.65 0.22 0.60 0.20

20 sequences 182.7 10.7 0.68 0.22 0.63 0.21

HCV 
5 sequences 267.4 66.1 0.50 0.16 0.46 0.16

10 sequences 250.7 62.9 0.47 0.17 0.43 0.17

20 sequences 251.0 60.5 0.48 0.18 0.43 0.17

Group I 
intron 

5 sequences 431.1 51.0 0.61 0.16 0.58 0.15

10 sequences 433.3 52.7 0.60 0.16 0.59 0.16

20 sequences 433.8 54.0 0.61 0.16 0.59 0.16

23S 
rRNA 

5 sequences 2919.4 51.8 0.52 0.53 0.08 0.07

10 sequences 2928.8 62.6 0.51 0.52 0.02 0.04

20 sequences  2924.3  56.4  0.52  0.51  0.01  0.06 

 

Table S1. Summary statistics on the sets of sequences selected for testing. Mean and standard 
deviation of sequence length, sensitivity and PPV of MEA structure prediction are shown for 
sequences from each RNA family in the test sets of homologs used. 

 

   



Family Total number of distinct sequences Total number of sequences in database

tRNA 627 9245

cGMP riboswitch 150 155

TPP riboswitch 97 109

SAM I riboswitch 272 433

5S rRNA 429 710

M‐box riboswitch 138 157

Lysine riboswitch 45 47

HCV 74 79

Group I intron 437 816

23S rRNA 35 35

 

Table S2. Number of distinct sequences on the sets of sequences selected for testing. Number 
of distinct sequences from each RNA family in test sets and the total number of sequences 
available in database are shown.  

 

 

 

Family Sequence with SHAPE reactivity data 

tRNA E. coli 

cGMP riboswitch V. cholerae 

TPP riboswitch E. coli 

SAM I riboswitch T. tencongensis 

5S rRNA E. coli 

M‐box riboswitch B. subtilis 

Lysine riboswitch T. maritime 

HCV Hepatitis C virus IRES domain 

Group I intron T. thermophila 

23S rRNA E. coli 
 

Table S3. List of sequences with SHAPE reactivity data for each family.  

  



Section 2. Structure prediction accuracy: 
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Figure S1. Average F1 score of structure predictions of sequences that did not have SHAPE 
mapping data. F1 score of structures predictions obtained by running the methods with 5, 10, or 
20 input sequences on (A) tRNA, (B) 5S rRNA, (C) hepatitis C virus IRES domain, (D) group I 
intron, (E) lysine riboswitch, (F) M-box riboswitch, (G) SAM I riboswitch, (H) TPP riboswitch, 

23S rRNA, E. colicyclic-di-GMP riboswitch, V. cholerae

Lysine riboswitch, T. maritime M-box riboswitch, B. subtilis

SAM I riboswitch, T. tencongensis TPP riboswitch, E. coli
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(I) cyclic-di-GMP riboswitch, and (J) 23S rRNA test datasets. The star (*) above the bar for a 
method indicates that the difference in F1 score between the method and TurboFold II+SHAPE 
is statistically significant, as determined by paired t-tests. 

  



 

 

 

Figure S2. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on tRNA test datasets. Sensitivity and PPV of structures predictions obtained by running the 
methods with H = 5, 10, or 20 input sequences on tRNA test datasets. The star (*) above the bar 
for a method indicates that the difference in sensitivity or PPV between the method and 
TurboFold II+SHAPE is statistically significant, as determined by paired t-tests. 
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Figure S3. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on 5S rRNA test datasets. Sensitivity and PPV of structures predictions obtained by running the 
methods with H = 5, 10, or 20 input sequences on 5S rRNA test datasets. The star (*) above the 
bar for a method indicates that the difference in sensitivity or PPV between the method and 
TurboFold II+SHAPE is statistically significant, as determined by paired t-tests. 
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Figure S4. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on hepatitis C virus (HCV) IRES domain test datasets. Sensitivity and PPV of structures 
predictions obtained by running the methods with 5, 10, or 20 input sequences on hepatitis C 
virus (HCV) IRES domain test datasets. The star (*) above the bar for a method indicates that the 
difference in sensitivity or PPV between the method and TurboFold II+SHAPE is statistically 
significant, as determined by paired t-tests. 
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Figure S5. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on group I intron test datasets. Sensitivity and PPV of structures predictions obtained by 
running the methods with H = 5, 10, or 20 input sequences on group I intron test datasets. The 
star (*) above the bar for a method indicates that the difference in sensitivity or PPV between the 
method and TurboFold II+SHAPE is statistically significant, as determined by paired t-tests. 
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Figure S6. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on lysine riboswitch test datasets. Sensitivity and PPV of structures predictions obtained by 
running the methods with 5, 10, or 20 input sequences on lysine riboswitch test datasets. The star 
(*) above the bar for a method indicates that the difference in sensitivity or PPV between the 
method and TurboFold II+SHAPE is statistically significant, as determined by paired t-tests. 

*

*

* *

*

*

* *

*
*

* *

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*
*

*
*

*

*

*
*

*

*

*

*
*

Sensitivity PPV

5seq 10seq 20seq 5seq 10seq 20seq

5seq 10seq 20seq 5seq 10seq 20seq
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
* * * *

*

*



 

Figure S7. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on M-box riboswitch test datasets. Sensitivity and PPV of structures predictions obtained by 
running the methods with 5, 10, or 20 input sequences on M-box riboswitch test datasets. The 
star (*) above the bar for a method indicates that the difference in sensitivity or PPV between the 
method and TurboFold II+SHAPE is statistically significant, as determined by paired t-tests. 
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Figure S8. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that d0 not have SHAPE mapping data (bottom) 
on SAM I riboswitch test datasets. Sensitivity and PPV of structures predictions obtained by 
running the methods with H = 5, 10, or 20 input sequences on SAM I riboswitch test datasets. 
The star (*) above the bar for a method indicates that the difference in sensitivity or PPV 
between the method and TurboFold II+SHAPE is statistically significant, as determined by 
paired t-tests. 
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Figure S9. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on TPP riboswitch test datasets. Sensitivity and PPV of structures predictions obtained by 
running the methods with H = 5, 10, or 20 input sequences on TPP riboswitch test datasets. The 
star (*) above the bar for a method indicates that the difference in sensitivity or PPV between the 
method and TurboFold II+SHAPE is statistically significant, as determined by paired t-tests. 
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Figure S10. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on cyclic-di-GMP riboswitch test datasets. Sensitivity and PPV of structures predictions 
obtained by running the methods with H = 5, 10, or 20 input sequences on cyclic-di-GMP 
riboswitch test datasets. The star (*) above the bar for a method indicates that the difference in 
sensitivity or PPV between the method and TurboFold II+SHAPE is statistically significant, as 
determined by paired t-tests. 
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Figure S11. Average Sensitivity and PPV of structure predictions of sequences that have 
SHAPE mapping data (top) and sequences that do not have SHAPE mapping data (bottom) 
on 23S rRNA test datasets. Sensitivity and PPV of structures predictions obtained by running 
the methods with H = 5, 10, or 20 input sequences on 23S rRNA test datasets. The star (*) above 
the bar for a method indicates that the difference in sensitivity or PPV between the method and 
TurboFold II+SHAPE is statistically significant, as determined by paired t-tests. 
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Figure S12. Scatter plots of F1 score of structure predictions obtained with TurboFold II 
and TurboFold II + SHAPE for sequences (20 sequence groups) that did not have SHAPE 
mapping data. The F1 scores of structures predictions are obtained by running the methods with 
H = 20 input sequences on tRNA, 5S rRNA, hepatitis C virus IRES domain, and group I intron 
RNA test datasets. Each point represents the F1 scores by TurboFold II and TurboFold II + 
SHAPE for one sequence.   
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Figure S12. Scatter plots of F1 score of structure predictions obtained with TurboFold II 
and TurboFold II+SHAPE for sequences (20 sequence groups) that do not have SHAPE 
mapping data. F1 score of structures predictions obtained by running the methods with H = 20 
input sequences on lysine riboswitch, M-box riboswitch, SAM I riboswitch, and cyclic-di-GMP 
riboswitch test datasets. Each dot represents the F1 scores by TurboFold II and TurboFold 
II+SHAPE.   
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Figure S12. Scatter plots of F1 score of structure predictions obtained with TurboFold II 
and TurboFold II+SHAPE for sequences (20 sequence groups) that do not have SHAPE 
mapping data. F1 score of structures predictions obtained by running the methods with 5 input 
sequences (left) and H = 20 input sequences (right) on (A) tRNA, (B) 5S rRNA, (C) hepatitis C 
virus IRES domain, (D) group I intron, (E) lysine riboswitch, (F) M-box riboswitch, (G) SAM I 
riboswitch, (H) cyclic-di-GMP riboswitch, (I) 23S rRNA (5 sequences), and (J) 23S rRNA (20 
sequences)  test datasets. Each dot represents the F1 scores by TurboFold II and TurboFold II + 
SHAPE.   
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Table S4.  Average structure prediction sensitivity and PPV on sequences without SHAPE data 
for each method on each dataset: 

 

 5S rRNA 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.880 0.927 0.871 0.913 0.873 0.903 

TurboFold II 0.861 0.888 0.864 0.883 0.869 0.873 

RNAalifold + SHAPE 0.914 0.900 0.823 0.921 0.782 0.932 

RNAalifold 0.912 0.914 0.815 0.928 0.776 0.932 

MaxExpect 0.636 0.619 0.564 0.551 0.569 0.544 

 

 Group I intron 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.749 0.797 0.754 0.800 0.763 0.807 

TurboFold II 0.735 0.769 0.742 0.774 0.750 0.775 

RNAalifold + SHAPE 0.163 0.375 0.092 0.554 0.052 0.537 

RNAalifold 0.160 0.398 0.095 0.547 0.054 0.558 

MaxExpect 0.608 0.584 0.604 0.585 0.612 0.594 

 

  HCV 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.705 0.676 0.710 0.686 0.717 0.685 

TurboFold II 0.581 0.547 0.586 0.555 0.592 0.557 

RNAalifold + SHAPE 0.510 0.510 0.493 0.579 0.549 0.737 

RNAalifold 0.496 0.540 0.481 0.570 0.534 0.715 

MaxExpect 0.504 0.456 0.469 0.426 0.480 0.431 

 

  



 

  tRNA 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.945 0.981 0.949 0.973 0.948 0.968 

TurboFold II 0.916 0.944 0.930 0.939 0.922 0.933 

RNAalifold + SHAPE 0.786 0.853 0.840 0.905 0.833 0.920 

RNAalifold 0.837 0.856 0.833 0.910 0.833 0.920 

MaxExpect 0.763 0.752 0.768 0.742 0.771 0.742 

 

  TPP riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.744 0.773 0.819 0.829 0.816 0.812 

TurboFold II 0.752 0.775 0.820 0.833 0.816 0.801 

RNAalifold + SHAPE 0.382 0.808 0.335 0.952 0.288 0.980 

RNAalifold 0.379 0.917 0.332 0.953 0.294 0.980 

MaxExpect 0.535 0.428 0.547 0.436 0.552 0.431 

 

  SAM I riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.905 0.784 0.908 0.768 0.910 0.772 

TurboFold II 0.911 0.785 0.908 0.762 0.908 0.762 

RNAalifold + SHAPE 0.206 0.552 0.430 0.902 0.464 0.945 

RNAalifold 0.671 0.824 0.604 0.886 0.510 0.937 

MaxExpect 0.826 0.680 0.822 0.667 0.840 0.681 

 

  



 

  M-box riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.727 0.734 0.734 0.724 0.738 0.733 

TurboFold II 0.730 0.729 0.743 0.720 0.744 0.729 

RNAalifold + SHAPE 0.630 0.722 0.502 0.774 0.536 0.826 

RNAalifold 0.660 0.721 0.556 0.767 0.565 0.814 

MaxExpect 0.636 0.608 0.658 0.615 0.663 0.626 

 

  Lysine riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.885 0.862 0.873 0.834 0.878 0.838 

TurboFold II 0.880 0.842 0.871 0.819 0.875 0.823 

RNAalifold + SHAPE 0.494 0.733 0.394 0.794 0.274 0.762 

RNAalifold 0.670 0.796 0.440 0.799 0.294 0.779 

MaxExpect 0.760 0.709 0.651 0.604 0.677 0.627 

 

  Cyclic-di-GMP riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.874 0.887 0.902 0.897 0.900 0.901 

TurboFold II 0.884 0.876 0.882 0.871 0.889 0.874 

RNAalifold + SHAPE 0.624 0.759 0.626 0.902 0.511 0.974 

RNAalifold 0.665 0.881 0.623 0.904 0.498 0.974 

MaxExpect 0.865 0.329 0.809 0.306 0.810 0.313 

 

  



 

  23S rRNA 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.823 0.868 0.834 0.876 0.803 0.848 

TurboFold II 0.788 0.834 0.817 0.858 0.826 0.865 

RNAalifold + SHAPE 0.699 0.793 0.693 0.867 0.696 0.895 

RNAalifold 0.764 0.828 0.746 0.885 0.718 0.902 

MaxExpect 0.520 0.533 0.511 0.521 0.515 0.507 

 

 

 

  



Table S5.  Average structure prediction sensitivity and PPV on sequences with SHAPE data for 
each method on each dataset: 

 

  5S rRNA 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.950 0.917 0.966 0.918 0.971 0.919 

TurboFold II 0.850 0.859 0.901 0.913 0.909 0.914 

RNAalifold + SHAPE 0.871 0.896 0.803 0.945 0.764 0.964 

RNAalifold 0.876 0.914 0.797 0.955 0.761 0.967 

Rsample 0.857 0.833 0.857 0.833 0.857 0.833 

MaxExpect 0.286 0.263 0.286 0.263 0.286 0.263 

 

  Group I intron 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.968 0.889 0.962 0.877 0.963 0.874 

TurboFold II 0.884 0.837 0.903 0.853 0.907 0.858 

RNAalifold + SHAPE 0.124 0.294 0.072 0.433 0.042 0.379 

RNAalifold 0.116 0.288 0.073 0.425 0.046 0.425 

Rsample 0.924 0.816 0.924 0.816 0.924 0.816 

MaxExpect 0.849 0.766 0.849 0.766 0.849 0.766 

 

  HCV 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.586 0.648 0.576 0.634 0.631 0.694 

TurboFold II 0.473 0.527 0.474 0.519 0.469 0.513 

RNAalifold + SHAPE 0.354 0.568 0.328 0.592 0.353 0.740 

RNAalifold 0.311 0.534 0.313 0.572 0.339 0.715 

Rsample 0.798 0.864 0.798 0.864 0.798 0.864 

MaxExpect 0.548 0.612 0.548 0.612 0.548 0.612 

 

  



 

  tRNA 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 1.000 1.000 1.000 1.000 1.000 1.000 

TurboFold II 0.990 1.000 1.000 1.000 1.000 1.000 

RNAalifold + SHAPE 0.852 0.936 0.883 0.951 0.836 0.938 

RNAalifold 0.926 0.944 0.871 0.951 0.836 0.938 

Rsample 0.952 0.952 0.952 0.952 0.952 0.952 

MaxExpect 0.619 0.684 0.619 0.684 0.619 0.684 

 

  TPP riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 
 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.843 0.925 0.900 0.947 0.875 0.936 

TurboFold II 0.766 0.903 0.770 0.925 0.770 0.925 

RNAalifold + SHAPE 0.423 0.763 0.398 0.937 0.348 0.982 

RNAalifold 0.395 0.831 0.395 0.937 0.348 0.982 

Rsample 0.636 0.608 0.636 0.608 0.636 0.608 

MaxExpect 0.773 0.850 0.773 0.850 0.773 0.850 

 

  SAM I riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.756 0.926 0.763 0.944 0.768 0.962 

TurboFold II 0.769 0.959 0.769 0.962 0.769 0.959 

RNAalifold + SHAPE 0.158 0.574 0.310 0.946 0.322 0.920 

RNAalifold 0.158 0.574 0.106 0.485 0.115 0.435 

Rsample 0.718 0.800 0.718 0.800 0.718 0.800 

MaxExpect 0.718 0.800 0.718 0.800 0.718 0.800 

 

  



 

  M-box riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.874 0.916 0.875 0.913 0.875 0.913 

TurboFold II 0.874 0.917 0.875 0.913 0.875 0.913 

RNAalifold + SHAPE 0.733 0.876 0.550 0.875 0.616 0.971 

RNAalifold 0.768 0.869 0.615 0.881 0.655 0.965 

Rsample 0.875 0.913 0.875 0.913 0.875 0.913 

MaxExpect 0.875 0.913 0.875 0.913 0.875 0.913 

 

  Lysine riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.840 0.985 0.840 0.984 0.841 0.988 

TurboFold II 0.839 0.981 0.841 0.977 0.841 0.980 

RNAalifold + SHAPE 0.417 0.774 0.356 0.886 0.244 0.849 

RNAalifold 0.540 0.801 0.401 0.893 0.262 0.866 

Rsample 0.810 0.894 0.810 0.894 0.810 0.894 

MaxExpect 0.810 0.864 0.810 0.864 0.810 0.864 

 

  Cyclic-di-GMP riboswitch 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.802 0.860 0.761 0.824 0.788 0.821 

TurboFold II 0.755 0.914 0.750 0.913 0.750 0.913 

RNAalifold + SHAPE 0.498 0.792 0.492 0.937 0.395 0.964 

RNAalifold 0.521 0.910 0.485 0.928 0.385 0.968 

Rsample 0.929 0.928 0.929 0.928 0.929 0.928 

MaxExpect 0.929 0.928 0.929 0.928 0.929 0.928 

 

  



 

  23S rRNA 

Prediction Method H = 5 sequences H = 10 sequences H = 20 sequences 

 sensitivity PPV sensitivity PPV sensitivity PPV 

TurboFold II + SHAPE 0.879 0.866 0.888 0.869 0.863 0.849 

TurboFold II 0.834 0.831 0.867 0.862 0.878 0.869 

RNAalifold + SHAPE 0.730 0.789 0.732 0.870 0.737 0.901 

RNAalifold 0.797 0.823 0.786 0.887 0.758 0.905 

Rsample 0.713 0.692 0.713 0.692 0.713 0.692 

MaxExpect 0.605 0.576 0.605 0.576 0.605 0.576 
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Figure S13. Sensitivity and PPV of multiple sequence alignment of sequences that without 
SHAPE mapping data. Sensitivity and PPV of multiple sequence alignment obtained by 
running the methods with 5, 10, or 20 input sequences on (A) tRNA, (B) 5S rRNA, (C) hepatitis 
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C virus IRES domain, (D) group I intron, (E) lysine riboswitch, (F) M-box riboswitch, (G) SAM 
I riboswitch, (H) TPP riboswitch, and (I) cyclic-di-GMP riboswitch RNA test datasets. The star 
(*) above the bar for a method indicates that the difference in sensitivity (left) and PPV (right) 
between the method and TurboFold II+SHAPE is statistically significant, as determined by 
paired t-tests. 
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Figure S14. Scatter plots of F1 score of structure prediction obtained with TurboFold II + 
SHAPE prediction as a function on sequence similarity (left). Difference between F1 scores 
of structure prediction obtained with TurboFold II + SHAPE and TurboFold II as a 
function on sequence similarity (right). Sequences from (A) 5S rRNA, (B) Hepatitis C Virus 
(HCV) IRES domain, (C) SAM I riboswitch, (D) cyclic-di-GMP riboswitch and (E) 23S rRNA 
datasets. 
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Section 2. Parameter optimization methods 

The extrinsic information for nucleotides i and j in sequence  is represented as 

P → ,  ∑

∑ , ~ , ~ 1,

∈ ,

∈ ,

	

∑ , ~ , ~ 1 ,,

∈ ,

∈ ,

																																																								
 (1) 

 

To train the parameter λ, 20 groups of input sequences formed by 10 homologous sequences 
(including the sequence with SHAPE data) were randomly chosen from the small subunit 
ribosomal RNA in the database RNAStralign. The range for parameter λ is from 0 to 2.0 (0, 0.02, 
0.1, 0.2, 0.4, 1.0, 1.6, 2.0). The resulting optimal parameters (λ =1.0) was then used as the default 
for the method. 

 

 

 

 

Figure S15. Grid search plots for parameters λ in extrinsic information calculation. The 
scale of heat map shows that the grids with higher values are represented in lighter color. 

  



Section 3. Software efficiency test 

 

Table S6. Run time of the program over the selected families and different number of input 
sequences.  The calculations were run on one core on a machine with an Intel® Core™ i7-4790 
CPU @ 3.60GHz. Except the tests of 23S rRNA were run by parallel using 6 cores, other tests 
were on single core.  

Family  H=5 sequences  H=10 sequences  H=20 sequences 

 
TurboFold 
II+SHAPE 

TurboFold 
II 

TurboFold 
II+SHAPE 

TurboFold 
II 

TurboFold 
II+SHAPE 

TurboFold 
II 

tRNA  13.00s  8.65s  29.17s  24.12s  1m28s  1m24s 
Group I 
intron 

3m50s  3m4s  12m51s  12m9s  35m4s  32m41s 

23S rRNA  3h47m  3h46m  7h46m  7h45m  21h4m  20h6m 
 

 

Section 4. Sequences used in parameter optimization and benchmarking 

16S ribosomal RNA sequences were separated into groups of 10 input sequences for each family 
for parameter optimization.  Sequences were also separated in 5, 10 and 20 input sequences for 
benchmarking: 5S ribosome RNA, 23S ribosome RNA, tRNA, hepatitis C virus (HCV) IRES 
domain, group I intron, lysine riboswitch, M-box riboswitch, SAM I riboswitch, TPP riboswitch, 
and cyclic-di-GMP riboswitch. Specific sequences lists are provided in 
“TurboFoldII_SHAPE_SelectedSequenceLists.zip”.  
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