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Abstract

With the increasing use of desktop color scanners for dig-
itizing color images it has become desirable to obtain de-
vice independent color information from these scanners.
In order to achieve this goal the scanner spectral sen-
sitivity needs to be estimated. This paper describes the
application of signal processing techniques to the problem
of estimating the scanner sensitivity. Results obtained by
applying the methods described to an actual commercial
scanner are presented and the performance of two differ-
ent techniques is compared.

1 Introduction

A color scanner outputs a three band image. Mathemat-
ically the process of scanning may be represented by a
linear model, the value of each of the three bands at a
pixel being given by

4 = / T AN PN A + & i=1,2,3 (1)

where fi()), f2(X) and f3()) are the transmittances of
the three color filters, 8()) is the product of the detector
sensitivity and the optical path transmittance (compris-
ing possibly of ultra-violet and infra-red filters), I(}) is
the illuminant spectrum, () is the reflectance spectrum
of the pixel and ¢; is the measurement noise. In practice,
the spectra in the equation above can be represented in
terms of their samples, and the integral may be approx-
imated by a summation. If samples are available at N
equi-spaced wavelengths the scanning process can be ap-
proximated as

(2)

where M is an N x 3 matrix which includes the effect of
the filters, the optical path and the detector sensitivity,
Lis an N x N diagonal matrix representing the spectrum
of the illuminant, r is the vector of reflectance samples, t

t=MTLr+e
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is a 3 x 1 vector of tristimulus values and € is the 3 x 1
noise vector.

Typically in colorimetric work a sampling rate of
10nm has been used but recently [1] it has been noted that
a 10nm sampling rate is inadequate for computations in-
volving fluorescent illuminants which require a sampling
rate of at least 2 nm for accurate colorimetric compu-
tations. Since the scanner in consideration employed a
fluorescent lamp equispaced samples at 2 nm increments
in the range 390 to 730 nm were used for all spectral
quantities!.

In Eqn. (2) the overall spectral sensitivity is given
by the product MT L. The fluorescent illuminant used
in the scanner is shown in Fig. 1. The sharp spectral
peaks make the problem of estimating this net sensitiv-
ity accurately rather difficult [2] and hence it is assumed
that the illuminant spectrum is measured independently
(which can be readily done in most cases). For the treat-
ment in this paper it is convenient to write this equation

in the form
t=MTw+e (3)

where w = L r is radiant spectrum incident on the filters.

In order to characterize the scanner completely, one
needs to know M = [m; mymg). A direct measurement
of M using narrow band reflectances is possible in the-
ory but such a calibration would have a significant im-
pact on the price of these low cost devices and is rarely
done. A straightforward approach to in situ measure-
ment of the scanner sensitivity is to scan a number of
samples with known reflectance spectra and perform a
least squares fit. Such an approach, however, encounters
a serious practical problem since spectra of natural ob-
jects do not have sufficient dimensionality to yield a good
estimate of M. Typically, the matrix of radiant spectra
W = [w; wa...wk]is highly ill-conditioned and has only

1Simulations show that even a 2 nm sampling can give rise to
significant errors in computed tristimulus values and a truly accu-
rate computation would use the summationin Eqn. (2) only for the
continuous part with a pointwise term added for the spectral spikes
in the illuminant.
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seven to eight significant singular values [3, 4, 15]. As a
consequence, the least squares solution is highly sensitive
to noise and yields poor estimates of M at noise levels
typical in desktop scanners[2].

2 Principal Eigenvector Method

One way of reducing the sensitivity of the pseudoinverse
solution to noise is to use only the singular vectors corre-
sponding to the significant singular values in the solution.
Consider the singular value decomposition of W [9]

W = UAV! (4)
X 0

A = rxr rx(K-r) ] 5

[ O(N-r)xr O(N-r)x(K-7) (5)

where r is the rank of W, U and V are orthogonal matri-
ces consisting of the left and right singular vectors respec-
tively, O,nxn is an m x n matrix of all zeros and ¥ is the
diagonal matrix of the non-zero singular values {o;}]_,

¥y =
o 2

(6)
(7)

~ diag (01, 02, ... 07)
022 ...20, 20

In terms of these vectors the “Principal Eigenvector”
(PE) estimate that uses the P (P < r) most significant
singular vectors is given by

i=1,2,3 (8)

This solution, is far less sensitive to noise than the least-
squares solution. However, this method still suffers from
several limitations. The physical situation affords consid-
erable a priori knowledge, which the method fails to take
into account. The quantities we are estimating are non-
negative owing to their physical nature but the estimation
scheme does not use this a priori information. More se-
riously, since the fluorescent lamp has sharp peaks in its
spectrum at fixed locations the principal singular vectors
of W (the matrix of radiant spectra) will also have sharp
peaks at those locations. Since the estimate is a linear
combination of these principal eigenvectors it will also
have sharp spectral peaks at the same locations in spite
of the fact that the true sensitivities would typically be
smoother functions of wavelength.

3 The Method of Projections
onto Convex Sets (POCS)

The problem of estimating the scanner sensitivity can al-
ternately be formulated using set theory. Based on each
constraint that the scanner sensitivity must satisfy, a con-
straint set may be defined in which the true value of the
sensitivity must lie. Any element in the intersection of
the constraint sets is called a feasible solution and may
be used as an estimate of the sensitivity. Based on the
physical nature of the problem, it can be said that the
sensitivity function m; (for each j) probably lies in the
following constraint sets:

1. The set of non-negative vectors

An={yeRN|yi20: VISiSN}

(9)

2. The noise variance set

Ac={yeRV|||t; - WTy |P<v}  (10)
where the value of v is usually set to N o2
3. The noise outlier sets
A= R Wy IS = b K

where £ = 3 o is used for Gaussian noise.

Additionally, it is known that the sensitivities
{m;}}_, are continuous (smooth) functions of wave-
length. This can be incorporated in the estimation pro-
cess by placing a bound on the second order difference of
the components of m; (for each j). Let h = (1,-2,1)T
represent the Laplacian filter impulse response. The fil-
tered output can then be represented as [14]

f i= H mj (12)
where H represents the convolution operator for convo-
lution kernel h. The set of smooth spectra can then be
defined in terms of an upper bound on the energy in the
filtered output

A, ={yeR"|||Hy |*< u} (13)

where g > 0 is suitably chosen so as to impose the desired
degree of smoothness.

The sets defined here are all closed, convex sets.
Hence, a point in the intersection can be found by the
method of successive projections, i.e., starting from any
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arbitrary point in R" a point in the intersection of these
sets can be determined by successively projecting onto
each of them. This is called the method of Projections
Onto Convex Sets (POCS). Since the sets are closed and
convex, the iterative process of successive projections is
guaranteed to converge to a point in the intersection pro-
vided the intersection is non-empty [10, 11]. If the sets
have been defined properly and the model is accurate,
the fact that the measurements arise from a physical ex-
periment implies that to a high degree of probability the
intersection of the constraint sets is non-empty and hence
the algorithm will converge.

POCS is a powerful estimation technique that com-
bines a priori information with the measurements to ob-
tain the estimates. Since estimates obtained using POCS
conform to all the known constraints that the true vector
obeys it is expected that the estimates will be better than
those obtained by other methods. It may also be noted
that if the intersection of the constraint sets is non-empty
it will rarely be a singleton and hence the POCS estimate
is non-unique. In particular, the POCS estimate can de-
pend considerably on the initial point chosen to start the
iterations.

4 Experimental Results

The two estimation techniques described above were ap-
plied to the calibration of an HP ScanjetIlc scanner. The
spectrum of the fluorescent illuminant was measured di-
rectly by taking the lid off. This is shown is shown in
Fig. 1

For making measurements a Kodak Q60 target hav-
ing 228 different color patches was used. The spectra
of these were measured using a spectraphotometer. The
target was then scanned on the scanner? and the values
of pixels within each patch were averaged to obtain the
device tristimuli.

For POCS it was assumed that the filter function
under consideration is known to be red, green or blue.
Accordingly, the initial estimates were taken to be nearly
rectangular functions with transmittance windows posi-
tioned approximately in the red, green or blue region.

For the reflectance vectors corresponding to the Q60

3The scanner employs an internal matrixing of the data to obtain
tristimulus values corresponding to the NTSC primaries. However,
such a matrixing would invalidate the positivity constraint that we
employ in POCS and hence raw device data was used in this work.
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Figure 1: Spectrum of Mluminant used in Simulations

target, the singular values of the reflectance matrix drop
sharply after the first few singular values and values be-
yond the 6** are negligibly small as compared to the
first singular value3. Hence, in the principal eigenvector
method P = 6 was used.

The estimates obtained for the sensitivity functions
of the three color bands are shown in Figure 2 for the
PE method and in Figure 3 for POCS. The parts (a),
(b) and (c) of each of these figures show the results for
the red, green and blue filters respectively. It is inter-
esting to note the differences between the PE and POCS
estimates. Since the illuminant has sharp peaks in its
spectrum the left singular vectors of W(= L R) are
not smooth. Therefore, the estimates of {m;}}_, ob-
tained by the PE method (see Eqn. (8) ) also exhibit
sharp peaks. However, since POCS imposes an explicit
smoothness constraint the POCS estimates are smooth.
Since the POCS estimates also meet the other known con-
straints on the sensitivity, from a physical validity stand-
point they are much better than the PE estimates. The
PE method provides no natural way for incorporating the
fact that the sensitivity functions are smooth into the es-
timation process and therefore yields poor estimates. Us-
ing a smooth basis set and attempting to estimate the
filter sensitivities in the span of the smooth set also does
not yield good results. It can also be seen that the PE
estimates fail to meet other physical criteria required of

3The nature of the results does not change if any integer between
5 and 8 is used instead of 6.



transmittances as they becomes negative in certain region
of the spectrum.

In order to quantify the accuracy of the estimates,
mean squared tristimulus errors between the actual model
tristimuli and the tristimuli resulting from the estimated
sensitivity functions were computed. For the computa-
tion two different sets of reflectances were used. The first
set consisted of 120 Dupont paint chips with relatively
smooth spectra and the second used 12 Color and In-
terchange (CNI) standard color chips, which have rather
sharp spectral curves. Note that the test reflectance sets
are different from the reflectances used for determining
the sensitivity.These reflectances were used in the model
of Eqn. (2) with the noise term set to zero. For each
data set, mean squared error (MSE) between the values
predicted by the model of Eqn. (2) and the measured
values was obtained by averaging over the entire set of
reflectances. This was done for each of the three filters
for both the POCS and PE estimates. The resulting mean
squared errors are summarized in Table 1 and Table 2 for
the two sets of test spectra. From the tabulation it can
be seen that the two estimates give nearly the same per-
formance as far as prediction of device tristimulus values
is (concerned for both data sets).

One can also note that the estimates do reasonably
well over the first data set since the principal eigenvectors
of the Q60 reflectances cover this set well. The sharp spec-
tral transitions in the reflectances of the CNI chips make
them lie well outside the span of the principal eigenvec-
tors of the Q60 reflectances and hence this data set gives
much poorer performance.

Overall the MSE values tend to be on the higher side.
The average measurement variance over uniform patches
was found to be around 36 dB for each of the tristimulus
values. Hence the high MSE values cannot be explained
in terms of the device variation alone. Possible causes
for this poor performance include scanner nonlinearity [8]
and noise in the measured reflectance spectra. Evidence
of scanner non-linearity was seen in the regions in which
the device tristimuli were high in the form of unduly high
variation over uniform patches. Simulations carried out
using a fluorescent illuminant model with measured re-
flectances indicate that noise in the measured reflectance
can be greatly amplified by the sharp spikes in the fluores-
cent illuminant (consider the scale of the peaks in Fig. 1
in relation to the continuous background) and this would
partly explain why the estimates of tristimulus values are
poor. Additionally, one can see that the estimated sensi-
tivities do not drop down to zero beyond the range over
which they have been estimated. Thus the truncation of

Table 1: Mean Squared Error for the Tristimulus Val-
ues Obtained from the PE and POCS estimates over the
Dupont data set.

Mean Squared Error (dB)
Estimate | Red | Green | Blue
PE -25.97 | -25.63 | -20.60
POCS | -26.44 | -23.73 | -22.86

Table 2: Mean Squared Error for the Tristimulus Values
Obtained from the PE and POCS estimates over the CNI
chip data set.

Mean Squared Error (dB)
Estimate | Red | Green Blue
PE -19.75 | -14.77 | -11.98
POCS | -19.78 | -13.09 | -14.79

the end regions of the blue and red channel sensitivities
would also contribute to the error.

5 Conclusions

This paper looked at the performance of two estimation
methods, viz., PE and POCS, applied to the problem of
color scanner characterization. The two methods were
applied to the calibration of a scanner and the result-
ing estimates were evaluated from a physical validity and
prediction accuracy standpoint. The method of POCS
exploits the a priori information to give better estimates
of the scanner sensitivities than the PE method.
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