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Photography, lithography, xerography, and inkjet printing are the dominant technologies for

color printing. Images produced on these \di®erent media" are often scanned either for the

purpose of copying or creating an electronic representation. For an improved color calibration

during scanning, a media identi¯cation from the scanned image data is desirable. In this paper,
we propose an e±cient algorithm for automated classi¯cation of input media into four major

classes corresponding to photographic, lithographic, xerographic and inkjet. Our technique

exploits the strong correlation between the type of input media and the spatial statistics of

corresponding images, which are observed in the scanned images. We adopt ideas from spatial
statistics literature, and design two spatial statistical measures of dispersion and periodicity,

which are computed over spatial point patterns generated from blocks of the scanned image, and

whose distributions provide the features for making a decision. We utilize extensive training
data and determined well separated decision regions to classify the input media. We validate

and tested our classi¯cation technique results over an independent extensive data set. The

results demonstrate that the proposed method is able to distinguish between the di®erent media

with high reliability.
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1. Introduction

A large number of color hardcopy images are being produced daily using a wide

variety of image production processes. Photography, lithography, xerography and

inkjet printing are the dominant technologies for color printing. Images produced on

these \di®erent media" are often scanned either for the purpose of copying or

creating an electronic representation for use in various applications. Identi¯cation of

the media, i.e. reproduction process that is utilized in order to create the hardcopy

image that was scanned, from the scanned data is bene¯cial. A speci¯c example of

such a bene¯t is improved color calibration of the scanned image.28 Since scanner

responses to the same perceived color on di®erent media are typically di®erent, a

media-dependent color calibration of the scanner is required for accurately mapping

the scanner responses to a standard color space.15,28 Unfortunately, this requires

identi¯cation of the input media type at the time of scanning. The identi¯ed media

class can be utilized for automatically associating a media-speci¯c calibration with

the image data or for identifying a smaller subset of calibration pro¯les for further

manual selection. At present, this is either absent or a cumbersome and error-prone

operator selectable option. Automated identi¯cation of the scanned media type is a

preferable alternative. This paper describes an automated media classi¯cation sys-

tem based on the scanned image data itself with no additional sensors. The identi¯ed

media may be used to appropriately tag the scanned ¯le, and if desired, the suitable

color calibration pro¯le may be embedded in the ¯le.

Our goal of classi¯cation of the marking process on a scanned piece of paper is

similar in spirit, but di®erent in scale, to the document classi¯cation problem.

Document classi¯cation is an important step in information and content retrieval

and analysis. Similar to the document classi¯cation problem, scanned media classi-

¯cation can be thought of as a problem of mapping the space between an input

document and output classes of possible reproduction media. The scale of the latter

though is at a microscopic level because reproduction technology of the document is

to be determined by classifying the pattern of the dots that make up the document.

Pattern recognition and machine learning techniques have been applied to document

classi¯cation.10,11 Di®erent statistical classi¯cation techniques such as naive Bayes

classi¯er, the nearest neighbor classi¯er, and decision trees have been evaluated in

Refs. 19 and 34. Similarly, neural networks have been popular in implementing

document classi¯cation techniques.4,26 An earlier document classi¯cation method by

Pavlidis and Zhou22 utilized the white space to segment a page image followed by

rule-based classi¯cation. To discriminate between text, diagrams and halftones, the

authors used cross-correlation between streams of binary pixels along scan lines.

In Ref. 8, JPEG-compressed documents have been classi¯ed using morphological

operations. O²ine document image processing methods based on arti¯cial neural

networks were reviewed in Ref. 20. For classi¯cation of visual scenes, text modeling

and local invariant features were combined in Ref. 24. A clustering-based technique

is designed for estimating globally matched wavelet ¯lters through a training set, and
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multiple two-class Fisher classi¯ers have been used for document segmentation into

text, background and picture components.16 A knowledge-based hybrid top-down

and bottom-up approach was utilized for layout segmentation of documents into

images, drawings, and tables, as well as text objects.17 For the automatic transfer of

paper documents into electronic documents a geometric layout analysis to segment a

document into text, image, tables, and ruling lines is proposed in Ref. 18 which uses a

pyramidal quadtree structure for multiscale analysis and a periodicity measure. A

survey of document image analysis techniques is given in Ref. 21.

Texture analysis is an important area of machine vision, within which our work

can be categorized. An extensive overview of texture analysis is given in Ref. 29. A

general de¯nition of texture is not straightforward, however, in simple and intuitive

terms texture is described as repetitive local order over a region, or as a spatial

variation in pixel intensities. Statistical methods such as co-occurrence matrices,14

autocorrelation features, Voronoi tessellation29 have been popular in texture anal-

ysis. Model-based approaches like Markov Random Fields, and signal processing

approaches such as the ¯lter-based techniques that use Gabor, Fourier and wavelet

domain analysis have also been successfully used in various texture problems such as

texture segmentation, texture classi¯cation, and texture synthesis.29 Di®erent tex-

tural properties in the graphics part and the text (non-graphics) parts of a document

were captured by wavelets at di®erent bandpass channels and a signature formed

from such feature maps were utilized for document segmentation.1 Most of the

techniques in the texture analysis ¯eld inherit ideas from statistical theory. On the

other hand, the spatial statistics, which is a ¯eld of statistics that deals with spatial

data, has been more widely utilized in geological, environmental, meteorological,

geographical and related sciences in contrast to pattern analysis and computer vision

¯eld. In this work, we apply tools from the spatial statistics ¯eld to a machine vision

problem that arises in printing and scanning industry.

Our classi¯cation technique relies on the strong correlation among the four main

types of input media — photographic, lithographic, xerographic and inkjet and the

spatial characteristics of the corresponding reproduction processes. Photographic

reproduction is continuous tone (contone), whereas the other media classes employ

halftone printing. Among the halftone systems, for technological reasons inkjet uses

primarily dispersed dot aperiodic halftoning, whereas lithographic and xerographic

reproduction use primarily periodic rotated clustered dot screens.13 Lithographic

reproduction typically uses a higher halftone frequency and has di®erent noise

characteristics from xerography. Analysis of the underlying halftone/contone

spatial characteristics of scanned image data can therefore be used to identify the

input media. Blow-ups of scanned image blocks from photographic, inkjet, xero-

graphic and lithographic media are shown in Fig. 1. Photographic, i.e. contone,

media exhibits very low (ideally no) spatial variance. Clustered halftone dots

produced by xerographic or lithographic printing display more regular and periodic

spatial arrangements whereas dispersed halftone dots produced by inkjet printing
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display high dispersion and no periodicity. Although the inherent spatial structure

can be visually observed and hence be readily identi¯ed by someone familiar with

di®erent reproduction processes, automatic identi¯cation in a computationally

e±cient fashion using an automatic image processing system poses several chal-

lenges. Though classi¯cation based on 2-D power spectra has been proposed ear-

lier,2,27 real-time implementation requires classi¯ers that are much more

computationally e±cient.

Our contribution in this paper, is the development of a new e±cient system for

automatic classi¯cation of reproduction technologies based on spatial analysis of the

scanned images. We generate point patterns from small blocks of scanned data that

are representative of the underlying halftone processes and analyze them using

measures of dispersion and periodicity from the ¯eld of spatial statistics, which are

speci¯cally modi¯ed and tuned for our application. The measures are ¯nally used in a

decision criterion to classify the input media type. Experimental studies show that

the input media, or equivalently the marking process, can be identi¯ed correctly to a

high degree of con¯dence using the proposed method.a

The organization of the paper is as follows. In Sec. 2, we summarize the required

background knowledge on spatial statistics ¯eld. In Sec. 3, the application of two

spatial statistical measures to the problem of media classi¯cation is presented.

Experimental results are given in Sec. 4, and the conclusions are given in Sec. 5.

2. Background on Spatial Statistics

Spatial statistics deal with data that have spatial inter-relations. The locations of

data and attributes at each data point are entities of interest in analyzing spatial

information. Spatial point patterns arise when the important variable to be analyzed

is the location of events. An observed spatial point pattern can be thought of as a

realization of a spatial stochastic process. Mathematically, the spatial point processes

are expressed in terms of the number of events occurring in arbitrary subregions or

areas �, of the whole study region R. Analysis of spatial point patterns implies

Fig. 1. Subregions from images on di®erent media.

aA short and preliminary version of this work was presented at the 2004 IEEE Int. Conf. on Image

Processing.31
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identi¯cation of point pattern structure, inferring the parameters of the point pro-

cess, i.e. the underlying model, from the observed pattern.

The simplest theoretical model for a spatial point pattern is that of Complete

Spatial Randomness (CSR), in which the events are distributed independently

according to a uniform probability distribution over the region R. Formally, the point

process that gives rise to such an arrangement is called a Homogeneous Poisson

Process, which is the only point process equivalent to CSR. The Poisson process serves

as a reference in point pattern analysis, and is usually used as the null hypothesis in

statistical tests on spatial structure. A Poisson process is usually de¯ned by

(1) Counts of events in a ¯nite region � with a Poisson distribution of mean �ð�Þ,
that is: PrðNð�Þ ¼ nÞ ¼ 1

nð�ð�ÞÞne��ð�Þ where Nð�Þ is the number of events in

set �.

(2) Counts in disjoint sets are independent.

CSR is the \white noise" of spatial point processes,6 characterizing absence of

structure in the data. An important question that arises in exploring spatial data is

whether the observed events display any systematic spatial pattern or departure

from randomness. Testing deviations from CSR gives an essential insight in terms of

the structure of a point pattern. In CSR, events do not interact with each other,

either repulsively (regularity of events), or attractively (aggregation) of events.

There are two types of deviations from a random pattern (CSR):

(1) If events at short distances occur more frequently than are expected under CSR,

and the pattern has a more uneven intensity of points with local peaks at

aggregations,33 the pattern is called aggregated.

(2) Patterns that have an evenness in distribution are called regular patterns. They

exhibit more large inter-event distances than a CSR process.

A completely random spatial process, e.g. a realization of Homogeneous Point

Process on the unit square, conditioned on n ¼ 100 events is shown in Fig. 2(a).

Figure 2(b) demonstrates an aggregated point process whereas Fig. 2(c) shows a

realization of a regular point process. Starting with an observed point set, attempting
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Fig. 2. Realizations of spatial point processes: (a) homogeneous Poisson process, (b) aggregated process,

(c) regular process.
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to analyze or identify the spatial pattern, a reasonable approach is to test for CSR

hypothesis against regular or aggregated alternatives.

2.1. Analysis of spatial point patterns

Although full characterization of a stochastic process is not easy, useful aspects can

be characterized in terms of ¯rst-order and second-order properties of a stochastic

process. First-order properties describe the way in which the expected value of

process varies across space, while second-order properties describe the covariance

between values of the process at di®erent regions in space.12 The ¯rst-order prop-

erties, which are described in terms of the intensity of the process, are widely used in

point pattern analysis.

The methods to analyze ¯rst-order properties of spatial point patterns can be

classi¯ed into broadly two groups. The ¯rst group of techniques is area-based, so

called quadrat count methods, relying on frequency distribution of the observed

numbers of events in regularly de¯ned subregions of the study area (quadrats). The

second group of techniques are distance-based, using information on the distances

between events to characterize the pattern.

2.1.1. Quadrat methods

Quadrat sampling refers to collecting counts of events in small subregions of a study

region �. Subregions are generally rectangular in shape, and their placement can be

either at random or contiguously over �. Under a hypothesis of complete spatial

randomness, the distribution of number of points per quadrat is Poisson with

mean �, which is the intensity of the process given by � ¼ n=j�j, where j � j denotes
the cardinality of set �. A �2 test can be carried out by calculating X 2 ¼P ðObs:� Exp:Þ2=Exp:, where \Obs." and \Exp." correspond to observed and

expected number of quadrats with a given number of events. A great number of

variations of this statistic, X 2, motivated by the equality of mean and variance of

Poisson distribution have appeared in literature.6 A popular one is by David and

Moore7 who suggested using an index

D ¼ s2

�x
� 1; ð1Þ

where s2 is the sample variance, and �x is the sample mean. The expected value of the

index is 0 for a random pattern or equivalently a homogeneous Poisson process. We

are interested in using this index as a dispersion measure to distinguish two types of

departures from a Homogeneous Poisson Process (HPP): Regular processes show less

dispersion than a HPP, and aggregated processes show more dispersion than a HPP.

2.1.2. Distance methods

Second popular group of tests for analysis of spatial point patterns is based on

distances between events. Most of these techniques also use the Poisson distribution
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as the underlying model for inferences about the pattern. Widely used distances are

nearest-neighbor (nearest-event) and event-to-event distances. A nearest-event

distance is the distance from any given event to the closest event in the study region

�. An earlier test is by Clark and Evans5 which uses mean nearest-event distance �y.

Intuitively, with respect to the range of the histogram of the data, small values of �y

indicate aggregation, whereas large values of �y indicates regularity. Diggle9 suggested

that a test based on the entire empirical distribution function of nearest-event dis-

tances, are more powerful. He referred to such techniques as re¯ned nearest-neighbor

analysis. Once, the empirical distribution function ĜðyÞ of the distance measure is

calculated, it will be compared against the theoretical distribution function GðyÞ
under Homogeneous Poisson Process. The signi¯cance of the test can be evaluated

using Monte Carlo (MC) simulations.

Calculating all event-to-event distances in a large observation region will have a

high computational load. Doing MC tests in addition would increase the load.

Therefore, tests based on nearest neighbors, which involve only n nearest-event

distances, are more popular and are quite powerful. Also tests that do not require

Monte Carlo simulations are more appealing due to computational and practical

considerations.

For periodic halftones obtained by clustered dot dithered screens (such as those in

Lithography and Xerography observed in Fig. 1), the noise in the halftones also

impacts observable spatial statistics, as brie°y discussed in Appendix A.

2.2. Statistic selection

We are interested in classi¯cation of spatial point patterns by testing departures

from CSR. For this purpose, the dispersion measure based on quadrat counts is well

suited since this is a strongly established statistic, which is asymptotically known to

follow a �2 distribution. However, the choice of quadrat size is important. If a scale at

which the structure of the pattern is detectable can be found, then index of dispersion

is an e®ective measure for testing two-way departures from CSR. Index of dispersion

provides a global test to detect heterogeneity, which usually manifests itself in terms

of aggregation. Thus, quadrat-based analysis is powerful for aggregation, however,

weak for regularity.

For distance-based methods requiring MC simulations, a choice of which statistic

to use is not that straightforward. These methods emphasize local characteristics

(as opposed to the global dispersion index), thus are more sensitive to aggregation

and regularity, and they are sensitive to the choice of scale. A combination of these

two techniques modi¯ed and tuned for our application to the classi¯cation of the

marking processes will be utilized as outlined in the following section.

3. Halftone/Contone Patterns

The decision tree which is depicted in Fig. 3, explains the sequential decisions that

are made for the media identi¯cation problem.
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3.1. Contone media

The ¯rst step in decision making is to di®erentiate between the two major types of

processes, namely the contone process and the halftone process. Contone, i.e.

photographic images have a much smaller variation than the halftone images. Hence,

a front end processing is to look at local variation of the scanned data in order to

detect photographic media. For locality, the scanned image is processed in a block-

by-block fashion, and initially, mean intensity and standard deviation of the inten-

sity over each block is calculated. If the standard deviation of the block is less than

some predetermined threshold value, which is to be selected through experiments,

then the block is a candidate constant block with very small spatial variation. The

remaining blocks are labeled as varying. Irrespective of the media, there exist scanned

image blocks that contain almost no information about the underlying process. For

example, no halftone structure is present in white regions or solid regions where each

of the colorants is either absent or fully covers the print. Thus saturated blocks of an

image are one of the examples of such unusable regions. Given a scanned image

I ¼ ðIR; IG; IBÞ, I : � ! R3, with three channels corresponding to red, green, and

blue, we de¯ne a measure of saturation as

S ¼ 1� minf�IR; �IG; �IBg
maxf�IR; �IG; �IBg

; ð2Þ

where �I refers to themean intensity of I. Hence, a blockwith an S value close to 1will be

highly saturated, and this implies that there is almost no information to be gained from

processing this block. Similarly, if the luminance of the block is close to darker end, i.e.

close to black, then again, no information is present in such a block hence it is not

usable. The blackness and whiteness can be de¯ned as the closeness of the quantities

maxfIR; IG; IBg and minfIR; IG; IBg to zero and the maximum value, respectively.

XEROGRAPHY LITHOGRAPHYINKJET

line screen cross-line screen

Input
Image

Local Variation

Spatial Statistics

CONTONE PHOTO

Spatial  Statistics

HALFTONE

and

Fig. 3. Decision tree for the media classi¯cation problem.
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As a result, the saturated and black blocks are labeled as non-informative. Using the

remaining informative blocks a decision is then made whether the media is photo-

graphic by evaluating the fraction of the informative blocks that are varying and

declaring the media to be photographic if this fraction is below a preset threshold.

Next, the spatial statistics of varying blocks are utilized to distinguish between

the di®erent halftone media using the spatial point pattern analysis methods which

are adapted speci¯cally to the problem of media classi¯cation.

3.2. Point pattern generation

Each scanned image block is processed to extract a point pattern. Close investigation

of halftone dot patterns in Fig. 1 reveals the fact that a group of dots with a certain

color value when viewed separately from dots with other colors, represents the

underlying spatial halftone pattern. This is equivalent to viewing a color level set of

the color block. Suppose our study region � � R2 corresponds to the spatial domain

of a small block image I de¯ned as: I : � ! R3. If we denote a color vector in R3 as ci,

a color level set , say LSðx; yÞ, is given by

LSðx; yÞ ¼ 1; fðx; yÞ : Iðx; yÞ 2 cig
0; fðx; yÞ : Iðx; yÞ 62 cig;

�
ð3Þ

Selection of a representative color value can be carried out by examining the color

histogram Hc : R
3 ! N, (N: natural numbers), of the block. The scanned output

produced by the scanner has three separate channels, of which red channel corre-

sponds to cyan dots, green channel corresponds to magenta dots, and blue channel

corresponds to yellow dots of the input media placed on the platen. Each channel's

gray values in ½0; 255� of the color space ½0; 255�3 � ½0; 255� � ½0; 255� � ½0; 255� is
binned into N intervals, then an N 3 number of color cubes whose sides are of length

� ¼ 255=N can be used to ¯nd the color histogram Hc of the image block.

For example, in Fig. 4(a) at the top left, a color block from an inkjet media, and its

color histogram in the middle are depicted. The horizontal axis on this plot serves as

an index into the color palette (indicated by arrows). Suppose colors in the block

image fall into nc number of color cubes that are in R3. They can be depicted by nc

vertical color strips on a color palette, and each color strip represents a color cube

ci; i ¼ 1; . . . ;nc. On the right, two sample level sets which are extracted out of the

block using a speci¯c color from the histogram are given. If we select the color cube

c3, whose frequency is closest to the mean frequency of present colors (marked by

letter m on the color histograms), the level set at top right is obtained. The level set

at the bottom right corresponds to the color cube c2 with maximum frequency.

Similar plots are given in Figs. 4(b) and 4(c) for sample xerographic and lithographic

blocks. In these ¯gures, the level sets shown on the right serve as the point patterns

which clearly display the regular and periodic structure of spatial dot arrangements

resulting from xerographic and lithographic printing process and the dispersed and

aperiodic structure of dots from inkjet printing process.
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Fig. 4. Color point pattern generation. (a) Point pattern generation from color histogram of an Inkjet

media (binsize� ¼ 50). (b) Point pattern generation from color histogram of a xerographic media (binsize
� ¼ 50). (c) Point pattern generation from color histogram of a lithographic media (binsize � ¼ 50).
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Another way to obtain point sets from a color image block is to work with image

channels, and generate level sets from each channel separately as shown in Fig. 5. In

(a), the point patterns clearly show a dispersed structure in which there are some

regions which do not contain events (events are denoted by light pixels), and there

are some regions with an aggregation of events. Evenness in distribution of events or

regularity with clear periodicity of dot patterns can be observed in (b) and (c) which

correspond to xerographic and lithographic media, respectively.

3.3. Dispersion measure

In order to quantify the extent of dispersion, an appropriate measure, D, was given in

Eq. (1), which can be calculated from the sample variance s2, and sample mean �x of

event counts in randomly or contiguously placed quadrats over the study region. For

a completely random pattern, the observed point set would be a realization from

HPP (homogeneous Poisson process), hence the sample variance s2 and the sample

mean �x of the event counts in quadrats would be equal. This implies that the dis-

persion measure D calculated for each block would be close to 0 (with high prob-

ability). Complete spatial randomness is generally unattainable in practice. The

point patterns generated from inkjet media closely resemble aggregated patterns.

(a) inkjet

(b) xero

(c) litho

Fig. 5. Level sets obtained from image channels of di®erent media. First column: red channel, second

column: green channel, third column: blue channel.
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This is an expected result because the inkjet printing produce dot patterns that have

uneven distribution of events over space, and are dispersed in nature. As a result, the

dispersion measure D for a point pattern that belongs to inkjet media will be posi-

tive, i.e. D > 0. On the other hand, the point patterns generated from either xero-

graphic or lithographic media fall into the second class of departures from completely

spatial randomness, i.e. the regular patterns.

For real data, it is not feasible to expect that all point patterns extracted from the

image produce a single D value. Hence, a symmetric density function of D which is

peaked at 0 with small tails at both sides would result for a random pattern. With the

same reasoning, for a scanned image on inkjet media, the density of D over blocks of

the image will be positively skewed with a peak on the positive side. Xerographic and

lithographic media, on the other hand will result in a positively skewed D distri-

bution with a peak at the negative side.

Histograms of the dispersion measure D, (HD : ½�1;1Þ � R ! N), calculated for

three di®erent reproductions of a sample composition image, which is reproduced in

all four di®erent media and then scanned, are given in Fig. 6. The plots on the left

column show D histograms computed from the point patterns generated via color

level set extraction whereas the plots on the right column show D histograms for red,

green and blue channels computed from the point patterns extracted via gray level
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Fig. 6. Histograms of dispersion measure D calculated over the image on three di®erent media shown on

three di®erent rows. Column 1: from a point pattern via a color level set; Column 2: from point patterns via

gray level sets, hence plotted as red, green and blue plots.
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sets. A few sample blocks from the image on inkjet, xerographic and lithographic

media along with the point patterns generated through color level sets are shown in

Fig. 7 for visualization of dispersion and regularity. The blocks here are from a

sample composite/collage image that is a combination of several natural images with

both busy and homogeneous regions, hence it constitutes a representative example of

scanned documents. It can be observed on plots of the ¯rst row in Fig. 6 that the

inkjet media produces a dispersion measure density which is skewed away from zero

to the right, i.e. in the positive direction. Plots for the density of the dispersion

measure for xerographic input media (on the second row) show that point patterns

generated from this technology have dispersion density with a peak to the left of zero,

i.e. toward negative values. Similarly, density of the dispersion measure D for

lithographic media (on the third row), exhibits a negatively-skewed behavior. It can

be observed that tail of the density function over negative values is small whereas the

positive side of the density is heavy-tailed for all types of media. The heavy tail on

the positive side of the density plots is due to noise inevitably present in real life

image data and the point sets generated from such data. Another reason is the fact

that dispersion measureD takes values in the real interval ½�1;1Þ, therefore, there is
an inherent bias towards positive side — even for a perfectly regular pattern the

lowest value that D can attain is �1 whereas the maximum value is unbounded.

Recall that a front-end processing separates the blocks of an image into two

classes, namely constant blocks, and varying blocks. For photographic scanned

images, ideally, the intensity variation should be close to zero. However, the real

images scanned may have variations that can specify a considerable number of blocks

of a photo image in the class of varying blocks. Moreover, the blocks are taken in a

raster scan fashion, and some blocks will be naturally on boundaries of di®erent

homogeneous regions over an image. Point patterns that are generated from these

two types of photographic blocks will have large solid white regions, and large solid

black regions. The point patterns of sample blocks from two images on photographic

media are shown in Fig. 8.

Dispersion analysis on such blocks results in very high dispersion values. Density

of dispersion D over these two photographic images are given in Fig. 9. The density

Point sets on xerographic comp1Point sets on inkjet comp1 Point sets on lithographic comp1

Fig. 7. Sample point sets for the image.

E±cient Classi¯cation of Scanned Media Using Spatial Statistics 929



for both images are skewed towards positive values much higher than 0. This result is

expected because the randomly sampled quadrat counts produce a very high var-

iance when compared to their mean, hence the dispersion will attain a large positive

value.

To account for the noise e®ects of real data and the positive-biasedness of the

dispersion measure, the decision to distinguish regular patterns from Poisson or

aggregated patterns is based on the areas under the histogram AH��
¼ R 0

��
HDðxÞdx,

and AHþ�
¼ R �

0
HDðxÞdx, where � 2 ð0; 1Þ is a parameter which is chosen as 0:5 in

this work. Point patterns obtained from photographic images in our training set

Point sets from Jill Photo Image Point sets from WetGirl Photo Image

Fig. 8. Point patterns generated via color level set extraction from two photographic images.
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Fig. 9. Histograms of dispersion measure D calculated over natural images on two photographic media.

Both plots are produced from point patterns extracted via a color level set.
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result in a dispersion density that is peaked in D 2 ð2; 3Þ interval. Hence, the area

under dispersion density, AH2:5
¼ R 2:5þ�

2:5��
HDðxÞdx, can also be calculated as a

measure in detecting photographic media (in case it has not already been classi¯ed as

photo by initial variance calculations). Hence, we have the following rules according

to Amax ¼ maxðAH��
;AHþ�

;AH2:5
Þ:

Decision ¼
Regular ðXero=LithoÞ if Amax ¼ AH��

Aggregated ðInkjetÞ if Amax ¼ AHþ�

Photo if Amax ¼ AH2:5

8><
>: ð4Þ

This decision provides a ¯rst broad classi¯cation of the underlying halftone/contone

process into three classes, namely photo media, inkjet media and xerographic/

lithographic media.

3.4. Periodicity measure

To classify between the two types of media: xerography and lithography, a promi-

nent characteristic of both, which is the periodicity, can be easily traced in the point

patterns. A critical distinguishing factor between xerographic and lithographic

media is the low frequency exhibited by xerographic printing process against the high

frequency exhibited by lithographic printing process. Hence, utilizing a distance-

based spatial statistical measure can help distinguish between xerography and

lithography by detecting stronger large-distance neighbor events for a regular point

process which is expected to come from a lithographic media. Xerographic printing

process produces a noisier signal, and halftone screen frequency in xerography is

lower. This causes weak periodicities at larger distances when compared to those of

lithography.

One of the distance methods, i.e. re¯ned nearest-neighbor analysis, explained in

Sec. 2.1.2, considers empirical distribution function of nearest-event distances. For a

completely random pattern, theoretically the distribution function is GðyÞ ¼ 1

�e���y 2
, which gives the probability of having at least one additional event at distance

y. The empirical distribution function of nearest-event distances, ĜðyÞ, can be com-

puted from a point pattern and compared against the theoretical distribution.

In this study, due to computational considerations, for example, the high com-

putational load involved in searching for a nearest event in the two-dimensional

plane, we utilize a modi¯ed one-dimensional (1-D) version of the nearest-event dis-

tance. Each block is scanned in two 1-D directions, the distance between consecutive

events are computed, and histograms of the nearest-event distances in two 1-D

directions, x and y, are calculated. In 1-D case, we use the term nearest-event dis-

tance interchangeably with inter-event distance, which gives the distance from one

event to the next neighbor event in the direction of scanning.

Histograms of inter-event distances in 1-D are calculated and accumulated over

blocks of the image. Hence an estimate of the average probability density function for

inter-event distances in two directions of the overall image is obtained. These density
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functions are used to test against the null hypothesis of complete spatial randomness

or even for further classi¯cation. As mentioned in Sec. 2.1.2, Monte Carlo (MC)

simulations are carried out for distance methods to assess the signi¯cance of the test.

Although we utilize a large number of blocks whose point patterns can be viewed as

realizations from the underlying point process, the number of events in each realiz-

ation, i.e. in point patterns of each block, is not the same due to the variation in

image content. Therefore, MC simulations, which require same statistical parameters

for all simulated realizations used in testing are not suitable here. Instead, over the

whole image, we ¯nd a sample average of the empirical distribution function of 1-D

inter-event distances. This provides a global estimate of the distribution of halftone

dot patterns generated by the speci¯c reproduction technology.

Sample average of the histograms of inter-event distances for the same sample

image on inkjet media in Fig. 10 show that inkjet printing produces dot patterns with

no periodicity, and inter-event distances decrease roughly exponentially as distances

get larger. A single peak is detected at a short inter-event distance which is marked

by a vertical (cyan) line on each plot. Aggregated processes have an excess of short-

distance neighbor events. This is compatible with underlying aggregated character.

Thus the distribution of inter-event distances is peaked at a short distance y, and has

decreasing behavior with no further peaks at larger distances. This agrees with what
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Fig. 10. Inter-event distance histograms for the image on inkjet media, where left (right) column depicts

densities in x (y) direction for red, green and blue channels, respectively.

932 G. Unal, G. Sharma & R. Eschbach



is observed in our experiments, i.e. a distinctively unimodal character for inter-event

distance histograms of inkjet media. Therefore, the characteristic feature of the inter-

event (or nearest-event) distributions classi¯es inkjet input media in the class of

aggregated patterns.

Inter-event distance histograms for the same image reproduced on xerographic

media are given in Fig. 11. Peaks detected on the histograms are also marked by

vertical (cyan) lines. The presence of a second and even a third peak in these plots,

although weak, is an indication of a global periodicity in the point patterns. A

generally trimodal characteristic of the inter-event distance histograms is noted in

this case.

Figure 12 shows the point patterns generated from a subregion of size 100� 100 of

the sample composition image on xerographic media whose distance histograms are

given in Fig. 11. Regular arrangements of the events in these point patterns are

transparent to the eye as well as to the dispersion measure and to the ¯nal criteria we

will obtain from the distance measures.

For a scan of an image reproduced on lithographic media, inter-event distance

histograms in x and y directions display a distinctively trimodal character as shown

in Fig. 13. Existence of a strong second peak in addition to a relatively strong third

peak when compared to those of xerographic media is an indication of stronger
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Fig. 11. Inter-event distance histograms for the image on xerographic media, where left (right) column

depicts densities in x (y) direction for red, green and blue channels, respectively.
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periodicity characteristics. This is expected for lithographic printing process, which is

less noisy and the screen patterns have higher frequency. We observe that the signal

is the cleanest in red channel in nearly all experimentally tested images, hence

strength of the larger-distance peaks can be better observed in this channel.

Another scan of a natural image, which is reproduced via a common xerographic

line screen, results in the histogram plots as shown in Fig. 15. Distance histograms of

consecutive events in one of the directions, here x direction, does not display

periodicity whereas histograms in the other direction, here y direction, show the

detection of weak second and third peaks at larger distances. This is in agreement

Point patterns on a xerographic medium 

Fig. 12. Point sets extracted from a xerographic media of rotated screens.
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Fig. 13. Inter-event distance histograms for comp1 image on lithographic media, where left (right)

column depicts densities in x (y) direction for red, green and blue channels, respectively.
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with the halftone dot patterns generated by a line screen in xerography. Typical

point patterns generated in a region of size 100� 100 from a scanned image on such

xerographic media are given in Fig. 14, where the regular feature of the patterns is

easily discernible. As a result, the distance histogram we utilize can also detect line

screen xerography as can be observed from the asymmetry of the densities in two

orthogonal directions in Fig. 15.

3.4.1. A ¯nal distance-method-based measure

Observations over an extensive data set (on the order of hundreds of representative

blocks from images) lead to the following rules. There was only one single peak for

Fig. 14. Point sets extracted from a xerographic media of line screens.
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Fig. 15. Inter-event distance histograms for a natural image on a xerographic line media.
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inkjet media, there was a weak second peak and a weaker third peak for xerographic

media, and there was either a very strong second peak or a stronger third peak for

lithographic media. These observations are all compatible with what is expected in

theory from regular and aggregated process, and even further classi¯cation of regular

processes into high and low frequency classes. This lead us to use 2-D decision planes

which summarizes the information obtained from the inter-event distance histo-

grams of an image in two directions, namely x and y. The ¯nal test for a three-way

classi¯cation of the input media follows by plotting the value at Peak 3, the third

detected peak, over the value at Peak 2, the second detected peak, versus the value at

Peak 2 over the value at Peak 1. The strength of Peaks 3 and 2 produced by

lithographic media provides good means of its identi¯cation. Thus, the quantities

Peak2/Peak1 (strengths) and Peak3/Peak2 (strengths), evaluated along both x and

y directions, are obtained as the distance measures to be used in the ¯nal decision

phase.

4. Experimental Results

In this section, we present the experimental results and the implementation details

including the decision phase. The training set included scanned pages, which were

representative of color image documents encountered in typical o±ce settings. Often

a large percentage of the document scans are black and white where the current

methodology is not required. However, as we indicate in the introduction, the pro-

blem of accurate media identi¯cation is critical in color scanning in order to obtain

more accurate color reproduction.

4.1. Implementation and parameters

Several parameters that are used in implementation of both techniques are set after

experimenting with the training set, which included images that were scanned at 600

dpi resolution and digitized with eight bits per sample corresponding to a pixel value

range from 0 through 255. The quadrat size should be chosen so as to resolve the

di®erences in structure between the di®erent types of halftones and therefore

depends on the scan resolutions. For our 600 dpi scans quadrats of size 2� 2 and

3� 3 were found to be reasonable choices to capture point pattern structure over

small blocks of size 20� 20. With a change in resolution, the quadrat sizes should be

scaled appropriately and 4� 4 or 5� 5 quadrats may be needed for higher resolution

scans in order to capture the larger apparent pattern of the halftone dots in the scans.

The method is, however, not unduly sensitive to the choice of quadrat size since a

wide range of quadrat sizes will capture the strong di®erences in the structure of the

point processes corresponding to our di®erent media. We use random quadrat

sampling method in calculation of the dispersion measure D for each block.

We found that a standard deviation value of STD ¼ 8 to be an upper limit for

labeling constant blocks. For generating point patterns in order to calculate dispersion
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measure over 20� 20 blocks, in a color level set extraction, with binsize � ¼ 10, and

the color chosen is the maximum frequency color from the color distribution.

After the dispersion measure is calculated over all varying blocks of an input

image, the three distinct areas under the dispersion histograms are calculated as

explained in Sec. 3.3. The parameter � was experimentally set to a value of 0:5 based

on a training data set of representative patches derived from images that included

multiple examples of each of the di®erent media under consideration.

After we have found peaks in averages of 1D inter-event distance histograms, we

plot Peak3/Peak2 versus Peak2/Peak1 for both x and y directions for all the images

in the training set as shown in Fig. 16. As can be observed from these scatter plots,

there is a distinct separation between di®erent halftone media. Lithographic images

either have high Peak2/Peak1 or Peak3/Peak2 ratios whereas Xerographic images
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Fig. 16. Scatter plots for Peak3/Peak2 versus Peak2/Peak1 for images in the training set.
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cluster together at smaller but postive values for both these peak ratios. Inkjet

images on the other hand are all tightly clustered close to the origin (since only the

¯rst peak could be detected for this media, the peak ratios are taken to be zero).

Scatter plots are in agreement for both x and y directions.

Using the results of the training set, we ¯nd parameters to separate the decision

regions. The absence of a secondary and tertiary peak, which maps to the origin

(Region 0 in Fig. 17) de¯nes the decision region corresponding to the Inkjet classi-

¯cation. The decision region corresponding to Xerographic media is the rectangular

region between 0 < Peak2/Peak1 < 0:5 and 0 < Peak3/Peak2 < 0:7 (Region 1 in

Fig. 17). The decision region for Lithographic media is then set as all the remaining

areas on the 2-D plane (Regions f2; 3; 4g) in Fig. 17. The manner in which we arrange

the axes of the scatter plots reveals the high frequency characteristics of the litho-

graphic patterns (low noise, and stronger periodicity features), thus lithographic

images reside at the larger valued regions of at least one of the two ratios.

4.2. Final decision

Final decision criteria proceeds by giving precedence to distance method which

enables a three-way classi¯cation. Hence if the image marking process falls into any

one of the three regions, i.e. regions ð0; 1; f2; 3; 4gÞ in Fig. 17, in both x and y

directions, then the image is classi¯ed as the corresponding media. If there is a

discrepancy between the results of these two distance measures, then dispersion

measure, AH , i.e. the area under HD is checked. If that gives xero/litho (regular

patterns) decision, we can do a further classi¯cation as follows. If the periodicity

measure of an image in one of the directions results in Region 1, and in the other

direction results in Region 3, this implies that there is a strong third peak, i.e. a high

frequency in one of the directions, hence the media can be classi¯ed as lithographic.

In contrast, if the periodicity measure of the image in one of the directions results in

Region 1, and the other in Region 2, this implies a still weak third peak, and a little

stronger second peak. This is selected to come from a xerographic media, hence the
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Fig. 17. Decision regions obtained at the end of the training phase.
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classi¯cation. If no classi¯cation could be made up to this point, by periodicity

measure, and the dispersion measure has classi¯ed as aggregated patterns, i.e. inkjet,

then this result is accepted, i.e. decision is made in favor of inkjet media.

4.3. Testing phase

Test 1: In order to test our decision criterion and to see how default parameters

work on previously unobserved images, we tested the classi¯cation method with a

small test set of 30 scanned images which are reproduced on one of the media: inkjet,

xerography, lithography and photo. The scatter plots for periodicity measure are

given in Fig. 18. With the decision boundaries obtained from the training set, only

one lithographic image from the test set (a lithographic image from a scanned
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Fig. 18. Scatter plots for Peak3/Peak2 versus Peak2/Peak1 for images in the test set.
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advertisement for furniture upholstery), results in its periodicity data in y direction

falling into xerographic decision region. However, with the convention as explained

in the previous paragraph, that is its other direction periodicity being in Region 2,

can correctly classify it also as lithographic. The test set included one line screen

xerographic image. Although it is classi¯ed as xerographic correctly, line screen

information was lost due to a small additional peak very close to being shallow

but not labeled as such by the threshold we have set for shallowness. Nevertheless,

except for these two cases, all images in the test set are classi¯ed correctly. A col-

lection of photographic images from an image repository at Xerox were also correctly

identi¯ed.

Test 2: An extensive testing is performed using a number of print-outs from Xerox

and HP printers. This test set consisted of 315 scanned documents printed from the

following: Xerox 4925, Xerox Phaser440, Xerox DC-12, Hakuba400, and HP1200c.

Three Xerox Scanners 705968, 708585 and 710350 were used. The original data

printed on each of the di®erent printers were taken from a photograph original, one

from a newspaper, and also printing of same image by di®erent print technologies.

The dataset consisted of 66 inkjet, 123 xerographic, 97 lithographic, 29 photographic

images of varying colors and content.

The confusion matrix in Table 1 summarizes the results for the second test

dataset. We see that the confusion for photographic media was 9% towards litho-

graphic media, with a correct classi¯cation rate of 91%. The inkjet classi¯cation was

correct 88% of the time with the errors distributed among the other three media. For

xerography, correct classi¯cation was 87% and confusion was mostly for inkjet.

Lithographic media was confused with photographic with a 17% with a correct

classi¯cation of 83%.

Since the test results reported above were conducted on actual scans, these

included various forms of noise (scanner noise, printing process noise, etc). Therefore,

the confusion matrix summarizes results that are representative of actual noisy

images. We expect that better results may be obtained on synthetically generated

images but these would not be representative of the actual performance in practice.

In this extensive dataset of Test 2, there were a larger number of di®erent printer

technologies and models on which the media were produced. In addition, three

di®erent scanners were used for the evaluation. This resulted in a minor increase in

the classi¯cation errors compared to Test 1 that included one scanner and one

representative printer of each type. We observed a few systematic sources for the

Table 1. Confusion matrix for the test set 2.

Photo Inkjet Xero Litho

Photo 0.9091 0 0 0.0909
Inkjet 0.0407 0.878 0.0163 0.0650

Xero 0 0.1237 0.8660 0.0103

Litho 0.1724 0 0 0.8276
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misclassi¯cations in this dataset. In particular, there were newspaper images, which

were detected as photographic although they were truly lithographic. The primary

reason for this misclassi¯cation is that the newspaper images consisted mainly of text

whereas the algorithm was designed for the classi¯cation of pictorial images. In

addition, errors were observed for tests where images were rotated on the scanner

platen in the scanning process by angles of 30, 45, and 60 degrees. In this rotated scan

scenario, the scan consisted of a rectangular region including the image and a rela-

tively large portion of the scanner backing — which was close to black or white.

These large background regions caused problems for the classi¯cation algorithm and

in some cases, lithographic media were classi¯ed as photographic. Both these pro-

blems are, however, not fundamental to the algorithm and are readily remedied when

the proposed algorithm is used within a larger system � as would typically be the

case. In these situations, typically scan document analysis techniques are utilized to

¯rst segment the page into a number of di®erent regions corresponding respectively

to text, pictorial, and graphics content (See for example34). The proposed algorithm

would then be applied, without incurring these parasitic problems, to the individual

pictorial regions.

The computational performance of the algorithm was also evaluated. For the

images in Test Set 2, using a C language implementation on a 2:0GHz Pentium

processor, the average, median, maximum, and minimum computation times for the

classi¯cation of a scanned image were 1.34, 1.4, 2.54, and 0.08 seconds, respectively.

5. Conclusions

The four primary color image reproduction technologies, viz. photography, litho-

graphy, xerography and inkjet printing, employ processes with clearly distinguish-

able spatial statistics. In this paper, we exploit this fact to develop a fully automated

and computationally e±cient approach for the classi¯cation of input media type

based on the spatial statistics of the scanned image.32 These spatial statistics are

founded on the mathematical tools provided by the spatial statistics literature such

as the dispersion measure which models the global ¯rst order properties of a spatial

point process and the periodicity measure, i.e. the inter-event distance measure,

which models the local ¯rst order properties of a spatial point process. The point

patterns are extracted from small color blocks and utilized as samples from a sto-

chastic spatial point process. The system allows classi¯cation of scanned images into

the four main categories based on scanned image data alone without the use of any

additional sensors. Experimental results demonstrated that the proposed classi¯er is

e±cient and achieves reasonable and acceptable accuracy.

Appendix A: Impact of Noise on Periodicity

In order to gain additional insight into how noise can lead to di®ering observable

spatial statistics, we consider a simple stochastic model for halftones where the
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halftone (representative of a constant image region) is generated by the convolution

of a \spot" function with a periodic lattice representative of the halftone. This model

has been extensively used for the analysis of halftone periodicity.3,23,25,30,32 In order

to illustrate the concept, we consider a simple one-dimensional version of the model

illustrated in Fig. 19, where a periodic function representing a halftone with period T

and area coverage � < T
2 is represented as a convolution of a pulse gðtÞ with a

periodic impulse train. The noiseless halftone signal is thus represented by a con-

volution as

xðtÞ ¼ gðtÞH
X1
n¼�1

�ðt� nT Þ ¼
X1
n¼�1

gðt� nT Þ ðA:1Þ

where H denotes convolution and in Fig. 19, gðtÞ ¼ rect t
�

� �
with rectðtÞ de¯ned as the

standard \rect" function:

rectðtÞ ¼
1 if � 1

2
� t � 1

2

0 otherwise

8><
>: ðA:2Þ

In the presence of noise, each of the halftone spots will be di®erent and the

observed halftone function will therefore not be strictly periodic. The model of (A.1)

may appropriately be modi¯ed to represent the noisy halftone as

xðtÞ ¼
X1
n¼�1

gnðt� nT Þ ðA:3Þ

where gnð�Þ represents the stochastically varying halftone pulses that are di®erent

from realization to realization. Signals of this form have been extensively studied in

digital communications. Under the assumption of stationarity, the power spectrum

of the signal consists of a discrete line spectrum and a continuous spectrum. It can

be shown that (see, for example [Ref. 23, pp. 202�205]), the discrete spectrum is

determined entirely by the mean �gðtÞ ¼ EfgnðtÞg as

S d
xðfÞ ¼

1

T

X1
n¼�1

�G
n

T

� ���� ���2� f � n

T

� �
ðA:4Þ

where �Gð�Þ denotes the Fourier transform of �gðtÞ.
We next compare the two scenarios for halftones with an area coverage �, where

we assume � < T
2 : noiseless and noisy halftones. The ¯rst clean noiseless halftone

Fig. 19. Model for a halftone (one dimensional illustration, noiseless case).
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case is illustrated in Fig. 20(a). In this case, we have �gðtÞ ¼ h1ðtÞ ¼ rect t
�

� �
. For the

second, we assume that halftone noise in the periphery of the printed regions (such as

is typical for xerographic printing systems) causes the spreading of gnðtÞ from the

ideal shape Fig. 20(b). For simplicity of analysis, we further assume that the net

e®ect of the spreading produces a mean value

�gðtÞ ¼ h2ðtÞ ¼ rect
t

�

� �
H rect

t

�

� �
: ðA:5Þ

The mean �gðtÞ of halftone pulses for our two idealized situations is illustrated in

Fig. 20. Note that our assumption ensures that the two halftones have the same

spatial average value of �
T in the two cases. Using (A.4), we now obtain the discrete

component of the power spectrum (in our idealized scenario) for the noiseless case as

S 1;d
x ðfÞ ¼ 1

T

X1
n¼�1

sinc2
n�

T

� �
� f � n

T

� �
ðA:6Þ

and for the noisy case as

S 2;d
x ðfÞ ¼ 1

T

X1
n¼�1

sinc4
n�

T

� �
� f � n

T

� �
ðA:7Þ

Note that the fall-o® in the discrete spectrum is more rapid for the noisy case than

for the noiseless case (as sinc4ð�Þ instead of sinc2ð�Þ). It can be observed that the noise

leads to faster fall-o® in higher order spectral lines therefore causing weaker

periodicities at higher frequencies. Motivated by the di®erence in spectral charac-

teristics induced by the noise, we adopted the discriminating statistic presented in

Secs 3.4 and 3.4.1, which uses the ratio of the second peak strength to the ¯rst peak

strength in order to distinguish between the noise characteristics of the halftones.
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