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ABSTRACT
We propose an approach for upsampling depth information
for RGB color plus depth (RGB-D) images captured with
common acquisition systems, where RGB color information
is available at all pixel locations whereas depth information
is only available at a subset of the pixels. Depth upsam-
pling is formulated as a minimization of an objective func-
tion composed of two additive terms: a data fidelity term that
penalizes disagreement with the low-resolution observed data
and a regularization term that penalizes weighted depth devi-
ations from a local linear model in spatial coordinates, where
the weights are determined to ensure consistency between the
RGB color image and the estimated depth image. Analogous
to techniques used for optimization formulations of image
matting, the upsampled depth image is then obtained by solv-
ing a large sparse linear system of equations. Visual evalua-
tion of results obtained with the proposed algorithm demon-
strate that the method provides high resolution depth maps
that are consistent with the color images. Quantitative com-
parisons demonstrate that the method offers an improvement
in accuracy over current state of the art techniques for depth
upsampling.

Index Terms— depth map upsampling, hole filling,
Laplacian matrix, RGB-D image

1. INTRODUCTION

RGB-D images are widely used for multiple purposes, for ex-
ample segmentation, tracking, image dehazing and 3D scene
reconstruction. A key challenge in using RGB-D images is
that the depth images are limited in resolution compared to
RGB images. Time-of-Flight (ToF) and structured light based
systems are the two prominent methods for capturing depth
data. While ToF based systems provide highly accurate depth
information, they are relatively tedious to use and even af-
ter sophisticated alignment with images [1], typically offer a
lower resolution than typical high resolution color cameras.
For structured light based RGB-D images a significant frac-
tion of the pixels (up to 10%) are not assigned depth values
due to the challenges of these systems. Thus for both ToF
and structured light based RGB-D image capture systems,
some forms of depth upsampling (including hole filling) are
required to generate a complete RGB-D image.

Traditionally depth upsampling is accomplished by bilin-
ear or bicubic interpolation. These methods have difficulty in
preserving the sharp edges in depth maps. Several methods
have been developed to overcome these problems, aiming at
improving the accuracy of depth upsampling problem. One
class of techniques relies on proposing a prior and optimizing
an objective function that combines prior and data fidelity
terms [2, 3, 4, 5, 6, 7, 8]. Diebel and Thrun [2] proposed an
upsampling algorithm based on Markov random field (MRF),
which is defined through depth measure potential, depth
smooth prior and weighting factors. This MRF framework is
further improved by other researchers, such as [9] and [10].
Yang et al. [3] made use of a bilateral filter in an iterative
refinement framework. The refinement is constructed on a
cost volume defined on the current depth map and the RGB
image. This algorithm can also work on two view depth map
refinement with a different cost volume definition. In [4], the
guided filter was designed for edge preserving filter, which
can be viewed as an extension of the bilateral filter. Kopf et
al. [5] proposed joint a bilateral filter which is also similar in
principle. Both filters can be used to upsample the depth map
with a high resolution RGB image. Park et al. [6] gave an al-
gorithm based on a non local mean filter. The low resolution
depth map is pre-processed to detect outliers. These points
are removed and to obtain the high resolution depth map an
objective function consisting of a smooth term, non-local
structure term and data term is optimized. This algorithm is
also suitable for filling large holes in the depth data. Ferstl et
al. [7] gave an algorithm based on total generalization vari-
ance (TGV). A TGV regularization weighted according to
intensity image texture is used in the objective function and
the optimization is solved as a primal-dual problem. Yang
et al. [8] built a color-guided adaptive regression model for
depth map upsampling. Different edge preserving terms in-
cluding non-local mean and bilateral filters are tested and an
analysis is given on the parameter selection and the system
stability.

Another category of depth map upsampling utilizes seg-
mentation techniques to extract depth information. Krishna-
murthy and Ramakrishnan [11] and Uruma et al. [12] start
from an upsampled depth map using standard interpolation
methods and refine the result by image segmentation tech-
niques. The segmentation process serves a similar function in
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preserving edges as the afore-mentioned filters.
A common theme of prior algorithms, also adopted in our

work, is to ”fix” edges of upsampled depth map for better con-
sistency with the color image. Our work is inspired by Levin
et al.’s optimization formulation of matting [13], in which the
alpha value for the matting mask is modeled as a linear com-
bination of neighboring color values. Analogous to the mat-
ting problem, we formulate depth upsampling as an optimiza-
tion problem. Specifically, the upsampled image is estimated
by minimizing an objective function comprising two additive
terms. The first term ensures that the estimated depth map
is locally smooth consistent with the color image and the sec-
ond term ensures consistency of the estimated upsampled data
with the low resolution observed data at the corresponding lo-
cations. Depth map upsampling is then achieved by solving
a large sparse linear system following a similar approach as
was done for matting in [13]. A key difference between the
matting problem and our approach is that we model the depth
as a linear function of the local spatial coordinates and not as
a linear function of the image intensity values.

The paper is organized as follows: Section 2 describes the
scheme of our algorithm. We present both the quantitative and
the qualitative results in Section 3, and conclude the paper in
Section 4.

2. PROPOSED ALGORITHM

2.1. Problem Formulation

Our proposed method is motivated by the fact that regions
of the image that correspond to a smooth 3D surface, can be
locally approximated by a plane (for example, via a Taylor
series expansion). Thus, over each small patch in the image
in regions corresponding to smooth surfaces, a local linear fit
(in spatial coordinates) provides a good approximation to the
depth. To account for edges, where the assumption breaks
down, adaptive nonnegative weights are introduced for the
linear fitting. The weighting seeks to effectively concentrate
the linear fit at each point on the neighboring pixel locations
that are hypothesized, based on their color similarity to the
pixel of interest, to be on the same side of the edge. The
weights can be obtained from one of several edge preserv-
ing techniques, for example, non local mean or bilateral filter.
The upsampled depth map is obtained by minimizing an over-
all objective function that combines a term corresponding to
the weighted deviation from the local linear fitting with a data
fidelity term that penalizes deviations from observations at the
locations where the low resolution depth map is available.

To formally describe our algorithm we use the simplified
1D representation in Fig. 1 that illustrates the contribution of
one pixel to the objective function. The axis G represents the
relative pixel positions of points in local pixel neighborhood
of the target pixel which is located at G = 0. The low resolu-
tion depth map, denoted by DL, is available at a subset of the
pixel locations in the neighborhood as indicated in the figure
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Fig. 1. The illustration of problem formulation in 1D. The
magenta and cyan points show different color pixels in the
patch of color image, and the circles around data points indi-
cate the available low resolution depth values. The filled and
un-filled circles mean the desired upsampled depth map and
the input depth map, respectively, and the line is the fitting
result on the example area. The weights are illustrated by the
size of filled circles.

and color values, denoted by I , form the high resolution RGB
image. The goal is to estimate a high resolution depth map
DH . Our objective function is formulated as

Q =

N∑
j=1

∑
i∈N (j)

||wi,j(di,j −DH,i)||2+
M∑
j=1

λ(DL,j −DH,j)
2,

(1)
where j indexes the pixel locations in the upsampled image,
N is the number of pixels in the upsampled image, M is the
number of pixels in the low resolution depth map, di,j is the
value of linear fitting of pixel i in the neighbor of pixel j,DH,i

is the estimated depth at pixel i in the neighbor of pixel j, and
DL,j is the depth value at the pixel j of the low resolution
depth map, wi,j is the similarity metric of pixel i and j, and
λ is the free parameter to control the relation of fidelity and
smoothness. The local linear fit is defined as

di,j = AjGi,j +Bj , (2)

where Aj and Bj are the parameters for linear fitting at pixel
DH,j , Aj is a 1-by-2 vector and Bj is a scalar, and Gi,j is a
2-by-1 vector denoting the relative coordinate of pixel i in the

neighbor window of pixel j. We define Gi,j
def
= {(x, y)| −

ws < x < ws,−ws < y < ws}, where ws is the size of
the window. The first term in (1) is the regularization term
and the second term is the data fidelity. The formulation is
readily extended to the hole filling problem by adding, to the
fidelity penalty term, a product with the indicator function of
non-missing points and pixel values.

The weights wi,j are defined as

wi,j = exp−||Ii − Ij ||
2

2σ2
, (3)

where Ii and Ij are pixel values of the RGB image I at cor-
responding position, and σ controls the relative emphasis of
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pixel similarity in the allocation of weights. Alternative, for-
mulations of the weights such as those used in non local mean
or bilateral filter can also be used in the proposed framework.
Unlike the typical bilateral filter, we do not use the distance
decay term in (3) because the window we use is quite small
comparing to the high resolution images.

Our problem formulation and the algorithmic approach
we use for the solution (described in the next section) are
inspired by Levin’s formulation of matting as an optimiza-
tion problem [13], where the alpha channel is formulated as a
weighted linear combination of neighboring color values. A
key difference in our formulation is that the our weighted lo-
cal linear fit is formulated in terms of the local relative spatial
position for the neighborhood, whereas in [13] the weighted
linear fit is performed on the color values for the neighbor-
hood pixels.

2.2. Optimization Solution
Rewriting (1) in the matrix form, we obtain

Q =

N∑
j=1

(Wj(DH,Nj
−GPT

j ))2 + λFj , (4)

where G = [Gj , 1] and Pj = [Aj , Bj ]
T . Wj is a diago-

nal matrix with wi,j being its diagonal entries. DH,Nj
is the

depth value in the patch1. The matrix Pj can be eliminated by
replacing it in (4) by its optimal value

Pj = argmin
Pj

((Wj(DH,Nj −GPT
j ))2)

= (GTWT
0,jG)

−1GTWT
0,jDH,Nj

,
(5)

where W0,j is the diagonal matrix W0,j =WT
j Wj .

Replacing Pj in (1) by (5), we obtain,

Q =

N∑
j=1

DT
H,Nj

(Gj
T
W0,jGj)DH,Nj

+

M∑
j=1

λ(DL,j −DH,j)
2,

(6)
where Gj = E −G(GTWT

0,jG)
−1GTW0,j , with E denoting

the identity matrix.
The minimizer for the quadratic objective function Q is

readily obtained, specifically, as the solution to the linear
equation,

LD + λA(D − d) = 0, (7)

where L =
∑N

j=1Gj
T
W0,jGj is the Laplacian matrix [14],

and A is a diagonal matrix indicating the correspondence of
pixels in low resolution map to the upsampled map.

3. EXPERIMENTAL RESULTS

We test our algorithm on the Middlebury (stereo) dataset [15,
16, 17, 18], which provides high resolution RGB images of
multiple views and corresponding disparity maps, which are

1We pad the image to represent G consistently at all positions.

used as the ground truth in our experiment. We use a window
size of 7× 7 (≡ N = 49), and λ = 105. The RGB-D images
are zero-padded for consistent use of (4), and the padded area
is cropped out in the final results. The parameter σ2 in (3)
for computation of the weights wi,j is set to one third of the
local variance in each window. In each patch, the weight of
the center pixel is set to 10−5. We use the built-in Matlab
conjugate gradient solver (cgs) for solving (7) (a tolerance of
10−10 and maximum number of iteration 104 were used).

3.1. Qualitative and Quantitative Results
The proposed algorithm is both suitable for hole filling for
single disparity map and depth map upsampling, as indicated
earlier. In this part, we first visually examine the performance
of filling holes in depth map, as shown in Fig. 2. From the
images in the last column, we can find that the holes, which
correspond to the occluded area in the disparity map, are well
filled. Unlike traditional interpolation methods, our algorithm
is able to fix the holes in the depth images, so as to keep the
consistency of depth map edges with those in the RGB images
and avoid smoothing in such areas. For example, see the third
row of Fig. 2. The missing points along the wall are well fitted
to the two sides, and not blurred as a large patch.

Fig. 2. Qualitative results of the hole filling ability of our al-
gorithm, tested on Middlebury stereo dataset 2014 [18]. The
first column shows the input high resolution color images and
the second column shows the corresponding depth maps. The
results are shown in the last column. The images are pro-
cessed at a low resolution of approximate 60k to 80k pixels.

Quantitative results comparing the proposed algorithm
against prior work are obtained on the Middlebury stereo
dataset 2005 [15]. We first downsample the input depth map
to obtain the low resolution version, and then run different
algorithms on these images to obtain the upsampled versions.
We use mean absolute error (MAE) as the metric to evaluate
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Fig. 3. Visual comparison of different algorithm tested on Middlebury dataset [15] at 4× upsampling rate. Column from left to
right: RGB images, ground truth, and the results of: bilinear, bicubic, IBL [8], TGV [7] and proposed; row from top to bottom:
Art, Books, and Moebius.

Images
Art Books Moebius

Methods

Sample Rate
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

bicubic 0.8965 1.4298 2.4363 4.3456 0.7911 1.0842 1.7031 2.5419 0.6855 1.0287 1.5821 2.5527
bilinear 0.7642 1.2300 2.1495 3.9500 0.6620 0.8993 1.4183 2.1174 0.5685 0.8578 1.3347 2.1942
IBL [3] 0.5016 0.8934 1.7028 4.2324 0.2790 0.7361 1.4056 2.4561 0.3987 0.7071 1.1289 2.5885
TGV [7] 0.6457 0.8926 3.2633 7.6490 0.5980 0.7507 2.3091 6.324 0.4722 0.5627 2.0375 6.6210
Proposed 0.4423 0.8765 1.7616 3.6033 0.1986 0.3594 0.6655 1.1888 0.1864 0.3426 0.6478 1.2393

Table 1. Quantitative comparison of different algorithms tested on Middlebury dataset [15]. The results is evaluated as MAE
(the smaller the better) for four different sample rates, as listed in the second row. All values are computed based on the disparity
maps. The best result in each situation is in bold font.

the performance of different algorithms. Table 1 summarizes
the results2. Fig. 3 shows the corresponding visual results at
the upsampling rate of 4. The results show that our algorithm
is particularly suitable for depth map upsampling, and our
algorithm provides a better result compared with the other
algorithms.

3.2. Discussion

Table 1 illustrates that the depth map upsampling obtained
with the proposed algorithm is accurate and achieves the state
of the art results on the common benchmarking dataset, pro-
viding a better performance compared with other algorithms.
The proposed algorithm, however, still suffers from two limi-
tations. First, there are a few outlier points where the method
yields a large error. Second, the edges are not sharply de-
fined, especially under high upsampling rate, which is typical
in most depth upsampling algorithms. The computational re-
quirements are an additional challenge: to process a 1088 ×
1296 pixel image, our algorithm takes about 40min. While the
time requirement is analogous for several other upsampling
algorithms, a speed-up is desirable for many applications. In
our future work, we aim at alleviating these limitations by

2Code for IBL implementation is provided by Chunhua Shen:
https://bitbucket.org/chhshen/depth-enhancement.

implementing some post processing using segmentation tech-
niques, and by adopting computational speed-up techniques
that have already been successfully applied in other very sim-
ilarly structured optimization problems [19]. Although desir-
able, quantitative assessment of the impact of the improved
depth map on subsequent processing is not considered in this
paper because of the challenges of application and content
dependence.

4. CONCLUSION

The algorithm proposed in this paper provides an effective
method for depth map upsampling and hole filling. Quanti-
tative results on test data indicates that the method offers an
improvement over current state of the art methods and visual
assessment shows that the depth map estimated by the pro-
posed technique is consistent with the color images.
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