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ABSTRACT

We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an
optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image
is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local
smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally
requires substantial computation and memory resources. Our algorithm improves the computational performance through
three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly
constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in
terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarse-
to-fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is
upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speed-
up and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf
sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity
computing platforms.

1. INTRODUCTION

Colorization [1] refers to the problem of adding colors to monochrome images and videos. Colorizing is of considerable
interest for the large collection of black-and-white movies, television shows, and photographs that were produced before
color capture became widely prevalent. Also closely related is the re-colorization problem [2] in consumer photography,
where image colors are transformed automatically or according to user inputs. Colorization is traditionally an extremely
time-consuming task that requires a skilled artist to manually add and iteratively adjust the colors and shading in an
image. Recently, promising results have been obtained with optimization based colorization algorithms that require only
a sparse set of colors to be manually specified in an image from which colors are automatically propagated throughout
the image while preserving natural smoothness constraints [1, 3, 4]. One example of the color scribble input and the
colorization output from such an algorithm is shown in Fig. 1. Although the optimization approaches offer impressive
results, efficiency improvements that reduce the computation time and memory requirements for these methods are rather
desirable to allow them to be deployed for high resolution imagery and to allow them to be used interactively in situations
where a user may wish to modify the colors selected for the scribbles iteratively after seeing the results of the colorization.

In this paper, we propose a computation and memory efficient algorithm for image colorization based on the optimiza-
tion formulation for colorization proposed by Levin et. al. [1], where the optimal colorized image minimizes a quadratic
cost function and can be obtained by solving a large sparse linear system of equations. Our improvements to computa-
tional efficiency derive from three innovations: (1) we consider an iterative solver for the sparse linear system based on the
conjugate gradient method and avoid explicitly constructing the large sparse matrix defining the linear system, thereby
significantly reducing the memory requirement, (2) we formulate each iteration in terms of integral images [5] computed
via dynamic programming to reduce computational complexity by reducing repetitive computations, and (3) we accelerate
the convergence of the iterative approach by using a coarse to fine approach where a lower resolution subsampled version
is first colorized and upsampled to initialize the actual higher resolution colorization problem.

Computationally efficient colorization has also been previously addressed in [3] using an alternative geodesic interpo-
lation formulation of the problem that does not use the optimization formulation that we focus on. Instead, each image
pixel is colorized by interpolating the specified colors for the scribbles weighted by geodesic distances to the scribbles.
While the approach achieves complexity linear in the number of pixels, the memory requirements remain high and the
computational cost also increases when larger number of scribbles are required, something that is often necessary for more
complex images. Also, when the image being colorized has fine-grained texture such as hair, the visual quality of the
colorization degrades for the geodesic framework because this texture information is not explicitly modeled [6]. We note
that the optimization formulation of colorization has also previously been accelerated in [3,7] by using a multigrid solver
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for large sparse linear system [8], however, the multigrid approach has also been observed to degrade the colorized image
quality when there are few color scribbles [3,7].

The paper follows the following organization. We present the optimization formulation of the colorization problem in
Section 2 and describe our iterative method in Section 3. Results comparing the colorized images and computation and
memory requirements against prior approaches are presented in Section 4 and concluding remarks in Section 5.

(a) Original grayscale image (b) Input to proposed algo. (c) Colorization (proposed) (d) Colorization of [1]

Figure 1. Colorization example. Images are best viewed electronically on a color display.

2. PROBLEM FORMULATION

We consider the colorization problem in a luminance-chrominance color space. Specifically, using standard stacked nota-
tion, the three image channels are represented as vectors Y, I and Q corresponding, respectively to the luminance (Y)
channel and the two chrominance channels (I & Q). The pixel values of the ith pixel are then denoted by the corre-
sponding subscripted variables Yi, Ii and Qi and the corresponding spatial coordinates are designated by (xi, yi), where
1 ≤ xi ≤ w, 1 ≤ yi ≤ h, with w and h being the width and height, respectively, of the image. N = wh is the total number
of pixels in the image.

Given the grayscale image Y, in addition to a sparse scribble image provided by the user, denoted by Is and Qs, our
colorization algorithm obtains estimates (I∗,Q∗) for the true chrominance channels (I,Q). The two chrominance channels
are estimated separately. We describe the estimation process for the I channel; the Q channel is treated similarly. The
colorization is formulated as an optimization problem [1]:

I
∗ = argmin

I

λ(IT − I
T
s )D(I− Is) + I

T
LI, (1)

where D is N ×N diagonal matrix with D(i, i) = 1 if the color scribble Is is defined at pixel i, otherwise D(i, i) = 0. λ
is a large constant, and the first term on the right hand side of (1) enforces the colorization output to follow the color
scribble input constraint. The second term in the right hand side enforces the local smoothness of colorization output,
and L is an N ×N matrix and referred to as the affinity matrix [1], whose construction we introduce next.

The relation between I and Y is modeled by a locally linear model

Ii = aYi + b, (2)

where a and b are constants within a neighborhood window ωi around (xi, yi). We use a square window of size (2r + 1),

so that ωi
def
= {(xj , yj)|xi − r ≤ xj ≤ xi + r, yi − r ≤ yj ≤ yi + r}. The locally linear model between I and Y has the

intuitive interpretation that I has an edge only when Y has an edge, since the gradients for I and Y are identical except
for a scaling factor a.

The effectiveness of the local linear model (2) can be evaluated by a quadratic cost function

J(I, a,b) =
∑

k

∑

i∈ωk

(Ii − (akYi + bk))
2 + ǫa2

k, (3)

where k ∈ [1, N ], ak, bk denotes the linear fitting parameter for the window around Ik, and the regularization parameter
ǫ avoids overfitting for Ii.

The cost function (3) derived from the local linear model (2) has been studied in the image matting problem [7]. It
is shown in [7] that a,b in (3) can be eliminated by obtaining each individual optimal ak, bk for each window ωk, and (3)
can be reduced to

J(I) = argmin
a,b

J(I,a,b) = I
T
LI. (4)
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Algorithm 1 Solve the sparse linear system AI = b using conjugate-gradient algorithm [9]

Input: Initial guess I0, convergence threshold τ

Output: Ĩ: estimate for I
1: Initialize: Ĩ← I0, r0 ← b−AĨ0, p0 ← r0, j ← 0
2: while rTj rj > τ |I| do

3: αj ←
rTj rj

pT
j
Apj

4: Ĩ← Ĩ+ αjpj

5: rj+1 ← rj − αjApj

6: βj ←
rTj+1rj+1

rT
j
rj

7: pj+1 ← rj+1 + βjpj

8: end while

The element L(i, j) is obtained as

∑

k|(i,j)∈ωk

(

δij −
1

|wk|

(

1 +
1

ǫ

|wk|
+ σ2

k

(Ii − µk)(Ij − µk)

))

, (5)

where δij is the Kronecker delta function, µk and σ2
k denotes the mean and variation of pixel intensities in the window

ωk, and |ωk|
def
= (2r + 1)2 denotes the number of pixels in ωk.

The solution to the quadratic optimization problem (1) is readily seen from the first order optimality condition to
corresponds to the solution of the large linear system

(L+ λD)I = λIs (6)

However, the N ×N matrices L and D are quite large for practical image sizes, e.g., 106 ×106 for a mega-pixel image.
The fact that these matrices are sparse, can, however, be advantageously exploited, an approach that has been adopted
in prior work on colorization where the sparsity based on direct solution of (6).

Despite the sparse structure of L, the memory and computation requirements of direct approaches for solving (6) can
be quite large, severely limiting the size of images for which the colorization can be performed on typical computers. In
this paper, we develop an efficient iterative solution for (6). Compared with typical iterative methods for solving sparse
linear-systems [9] we introduce three novel improvements exploiting the specific structure of our problem: the matrix L

is not explicitly constructed or stored, integral images [5] are used with dynamic programming to eliminate repetitive
computation, and a coarse to fine approach is used to provide a good initialization. Together, these improvements provide
a significant improvement in both computational and memory efficiency over the prior approaches.

3. CONJUGATE GRADIENT SOLUTION USING DYNAMIC PROGRAMMING

We solve the linear systems (6) using the conjugate-gradient (CG) algorithm [9], incorporating in the process two inno-
vations developed for the image matting problem [10], which is closely related to our colorization problem. Algorithm 1
summarizes the CG iterative procedure, where we define A = (L + λD) and b = λIs. The first important observation
is that we do not need to explicitly construct the matrix A, since only AI0 and Apj need to be evaluated at each iter-
ation, where I0 is the initial guess and pj is the conjugate direction in the jth iteration. Our algorithm obtains AI0 and
Apj directly, without constructing A explicitly, therefore only requires a fraction of the memory required by alternative

methods.

The ith element (Lp)i of the vector Lp can be obtained as [10]:

a∗
k =

1
ǫ

|wk|
+ σ2

k

(
1

|ωk|

∑

i∈ωk

Iipi − µkp̄k), (7)

b∗k = p̄k − a∗
kµk, (8)

(Lp)i = |ωi|pi − (
∑

k∈ωi

a∗
k)Ii − (

∑

k∈ωi

b∗k), (9)
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(a) Original color image (b) Input to the proposed
algo.

(c) Colorization (proposed) (d) Colorization [1]

Figure 2. Additional colorization result.

where µk and p̄k denotes the average value of I and p in the window ωk respectively. Equations (7)- (9) correspond
to a scalar version of the analysis in [10], since the I channel being estimated is a greyscale signal. For the matrix

A
def
= (L+ λD), the vector Ap can then be obtained by (Ap)i = (Lp)i + λD(i, i)pi.

Equations (7)- (9) suggest that in order to calculate Ap, for each local window, we need to calculate the summations
for several quantities,

∑

k∈ωi
a∗
k,
∑

k∈ωi
b∗k,
∑

i∈ωk
Iipi, µk and p̄k

∗. Fortunately, the summations of a variable within a

neighboring window can be calculated using the integral images construct [5], a.k.a. the summed area table. The integral
images are calculated using dynamic programming with O(N) computational complexity irrespective of the window size
r. Therefore, each iteration in our algorithm has O(N) computational complexity irrespective of the value of r.

A naive calculation of Ap has a computational complexity and memory of O(N2) as well as much higher memory
cost. An improvement over the naive method used in prior work on colorization [7] exploits the sparse structure of A,
and reduces the computation and memory cost of computing Ap, both becoming proportional to (2r+ 1)2 because total
number of non-zero elements in A is (2r + 1)2N . Aggregated over the N pixels in the images, prior approaches for
colorization in this optimization formulations have a per iteration cost of O(N(2r + 1)2). Neither the computation nor

the memory requirement of our method depends on r, and the per iteration cost is O(N). The lack of dependence on r
also allows us to use large value of r to accelerate convergence of the iterations.

For r = 1, the computation cost for each iteration in standard linear system solvers is comparable to our method. In
these cases, our method still offers significant computation and memory saving because large values of r allow our method
converge quicker and because we do not require the O(N(2r + 1)2) memory to represent the sparse matrix A for the
prior implementations. Specifically, the conventional methods requires O(N(2r + 1)2) storage elements for representing
the matrix A, which are entirely eliminated in our algorithm.

To further accelerate the colorization process, we use a coarse-to-fine framework. We first obtain an estimate Ĩsub for
a subsampled image using the subsampled color scribbles. The estimation in the subsampled image also produces the
coefficients (asub,bsub) defined in (2). Next, (asub,bsub) are upsampled to the original image size to obtain (aup,bup), and
an initial guess for the I channel is calculated by Ĩinit = aupY+bup. The Lanczos filters [11] are used in the downsampling
and upsampling process to avoid aliasing. In the coarse level, we use a larger window radius rsub to accelerate convergence
of the conjugate gradient algorithm. In the fine level, a smaller window radius rup is used to improve the accuracy of
colorization since the linear model (2) is more accurate for smaller r. The estimate Ĩinit at the coarse level serves as a
good initial guess, therefore accelerates the convergence of the refinement step.

4. RESULTS

We evaluate the proposed algorithm and benchmark it against the previously published algorithm for optimization-based
colorization [1]; comparing the computation and memory requirements and the resulting colorized images. Because the
method for defining the user specified colors for the scribbles is not the focus of our (or prior) work, this process is
simplified and partly automated by beginning with a color image, which is converted to grayscale to obtain the input
monochrome image. The user provides scribbles by marking up corresponding regions of the image using a suitable tool,
specifically in our experiments we use the paintbrush tool in the GIMP [12] toolkit. The individual scribbles are then
identified by using connected component analysis and for each specified scribble, a single user specified color value is
obtained as the most saturated (having the largest mean squared sum for the I and Q chrominance channels) color in
this region in the original image.

∗the average value in a local window is obtained from the summation after normalization.
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Parameters
Time (secs) Memory (MB)

Proposed Direct Proposed Direct
Children r = 1 2.24 6.62 32 92
265× 320 r = 2 2.19 6.65 33 220

Hats r = 1 18.4 40.3 160 791
512× 768 r = 2 18.3 39.9 165 1970
Woman r = 1 237 681 2071 12502

2560× 2048 r = 2 233 - 2072 -

Table 1. Comparison of computation time and memory requirement for the proposed colorization algorithm against the
conventional optimization based approach [1]. Estimates of memory are approximate, see accompanying text for details.

The proposed colorization algorithm is implemented in a coarse-to-fine framework as described in Section 3, where
the coarse level uses a downsampling factor of 2 along each dimension and a window size rsub = min(w,h)

2×50
. At the fine

level, we explore different values for the window size parameter r. For both levels, we set the regularization parameter
ǫ = 10−5 and λ = 103, and terminate the iterations when either residual per pixel goes below a threshold of τ = 10−4 or
when a maximum of 50 iterations are completed. The conventional optimization-based colorization approach [1], which
uses a direct solver for the sparse linear system (6) and the proposed method are both implemented in Matlab†.

Table 1 summarizes the run times required and estimated memory‡ requirements for three differently-sized images
used in our experiments. The proposed algorithm achieves a significant speed-up over the conventional optimization-based
colorization approach. In particular, when using r = 1, the woman image with a size of 2560 × 2048 pixels, requires 237
seconds to colorize using our proposed algorithm in contrast with 681 seconds for the conventional optimization based
approach. The run time requirements for the conventional approach are approximately 2.5× those for the proposed
method, consistently across the different image sizes.

The reduction in memory requirement is even more significant and, importantly, grows with increase in the size of the
image being colorized. For the 2560× 2048 pixel woman image, with r = 1 the proposed algorithm uses 2071 Megabytes
(MB) as opposed to 12502 MB required for the conventional optimization algorithm. For these 2560× 2048 pixel images,
with r = 2, the computation time and memory for the proposed algorithm remain approximately the same as those for the
r = 1 cases, whereas the conventional approach fails to complete because the memory requirement exceeds the available
main memory of 6GB, resulting in disk thrashing. The corresponding values for time and memory are therefore indicated
by “−” in Table 1. This particularly illustrates the benefit of the proposed method: the significant reduction in memory
(and time) requirements for the proposed method allows commodity hardware to be used for colorizing larger-sized
high-resolution images encountered in realistic applications.

We also compared the output colorized images from our proposed approach with those obtained with the conventional
optimization based approach and established that the approaches offer visually identical results. Three examples are
shown in Figs 1, 2, and 3 which compare the colorization results using the proposed algorithm against those obtained
with the conventional optimization based approach for three different input images labeled children, hats and woman.
For all three examples, the colorized images appear are very similar for the proposed and conventional approaches: the
colorized versions of children and hats images appear natural and artifact free where as the colorized woman image exhibits
similar artifacts for both approaches. These artifacts can be overcome by using more color scribbles as inputs, which
would raise the computational complexity of the conventional approach, though not for the proposed method. Thus the
fact that that the computational complexity is largely independent of the number of color scribbles is also beneficial in
practice. These examples and results on other images indicate that our proposed approach provides visually identical

results while requiring significantly less memory and computation time.

We also empirically examined the convergence of the proposed algorithm. The mean squared residual
∥

∥

∥(L+ λD)Ĩ− λIs

∥

∥

∥

2

/N for the linear system (6) evaluated for the (current) iterate Ĩ in Algorithm 1 is plotted as a

†For the conventional approach, the Matlab backslash operator is used to invoke the direct solver, which is based on
the highly optimized LAPACK package [13]

‡Unfortunately, the Matlab scripting environment does not directly provide an accurate estimate of memory require-
ments. The memory usage for the colorization process is therefore estimated as the difference between the peak memory
requirements during the colorization process and the peak memory requirements for an idle Matlab process, both of which
are estimated under Linux by running the “top” utility every 0.1 second and recording the peak value.
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(a) Original color image (b) Input to the proposed
algo

(c) Colorization (proposed) (d) Colorization [1]

Figure 3. Colorization for a large image with sparse color scribble input.

function of the iteration number in Fig. 4 in two separate plots for the coarse and fine levels§. In these plots, in order to
examine the convergence, we have deliberately used a larger number of iterations than required. We see that the algorithm
exhibits the correct behavior; the mean squared residual converges toward 0 with increasing iterations. Additionally, we
make the important observation that the convergence for the coarse level is faster because it uses a larger value of r.
This behavior is consistent with our expectation that the coarse level estimate enables fast estimation of a good initial
estimate.
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Figure 4. The mean-squared residue in (6) for the iterative estimate Ĩ in Algorithm 1 as a function of iteration count.
Separate plots are shown for the coarse level and the fine level, identified by the legends. The specific plots correspond to
the example of Fig. 2, other examples exhibit similar behavior.

5. CONCLUSION

In this paper, we develop a computationally efficient algorithm for image colorization that significantly reduces the
computation and memory requirements compared with prior implementations of optimization-based colorization. The
efficiency improvements result from three innovations: avoiding explicit construction of the large sparse matrix defining
the linear system for the optimal solution, using integral images along with dynamic programming to reduce repetitive
computation during the iterations required for obtaining the solution, and adopting a multiscale approach that first
colorizes a coarse smaller version of the image from which information is propagated to the finer scale to speed up

§The residue at the first iteration in the fine level does not match that in the last iteration at the coarse level because
different values of r are used in these cases and because upsampling alters the underlying image sizes.
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convergence. For colorization of an image with N pixels using a linear model with window size (2r + 1) along each
dimension, our method requires only O(N) computations per iteration compared with the O(N(2r + 1)2) computations
required in prior implementations and also requires fewer iterations. The computation and memory savings allow us
to perform the optimization-based colorization on typical commodity hardware for larger image sizes where the prior
implementations become challenging due to their heavier demands for computation and memory. The algorithm we
propose also has the advantage that the memory and computation cost are (largely) independent of the texture content
in the image and of the number of regions for which the user specifies the approximate color via scribbles. In contrast, for
prior algorithms developed for this problem, the computation/memory requirements increase with user inputs or amount
of image texture and are therefore less predictable.
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