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Distributed Estimation and Coding: A Sequential
Framework Based on a Side-Informed Decomposition
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Abstract—We propose a sequential framework for the dis-
tributed multiple-sensor estimation and coding problem that
decomposes the problem into a series of side-informed source
coding problems and enables construction of good codecs. Our
construction relies on a separation result for the simplified sce-
nario where information from one sensor is to be sent to the
CP that already has information regarding the desired signal.
We show that the optimal encoder decoder combination, in this
setting, can be decomposed, without loss in performance, into two
steps: A first preprocessing step to extract relevant information
from the indirect observation with consideration of the side in-
formation, followed by a second step of side-informed encoding
of the preprocessed output. A recursive exploit of the decom-
position coupled with side-informed transform coding allows us
to construct encoders by reusing scalar Wyner–Ziv codecs. We
develop a numerical procedure for obtaining bounds delineating
the best achievable performance for the proposed sequential
framework and construct and demonstrate a practical codec in
the proposed framework that achieves empirical performance
close to the bound. Furthermore, we also compare the bounds for
the sequential scheme against bounds for a number of alternate
schemes—for some of which codec constructions are obvious and
others for which codec constructions are inobvious. Our results
show that, in most cases, our codec exceeds the performance
bound of schemes offering obvious constructions. The achievable
bound for our sequential framework is also shown to be close to a
general nonconstructive distributed bound that does not impose
the sequential constraint indicating that the sequential approach
may not cause a significant performance compromise.

Index Terms—Distributed estimation, Gaussian CEO, side-in-
formed coding, side-informed estimation, Wyner-Ziv coding.

I. INTRODUCTION

T HE increasing popularity of wireless sensor networks
made up of nodes of devices with sensing, communi-

cation, and computation capabilities has recently motivated
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Fig. 1. � sensors collect observations� � � � �� �� � � � � � regarding a desired
signal �. Each observation � is encoded locally and sent to the CP, where an
estimate �� is achieved.

intense research on distributed signal processing techniques [2].
In some sensor network applications, it is desirable to directly
collect the observations recorded by the sensor nodes at a
central processor (CP) for the purposes for archival and further
processing. On the other hand, in other application scenarios,
the CP is not interested in the raw sensor observations but only
an aggregated estimate obtained from them. An example of
this type is a visual sensor network where a CP may wish to
create a desired view of a scene based on a number of images
captured by individual cameras (none of which may be exactly
at the desired viewpoint). In this application, the individual
camera views and the desired view represent lower dimensional
projections of the underlying scene. Motivated by this
scenario, we consider a setup as illustrated in Fig. 1, where a
group of geographically dispersed nodes (sensors) are deployed
to collect observations pertaining to a desired signal, which are
indirect and noisy. Each sensor communicates with the CP via a
shared rate-constrained channel. Individual sensor observations
are processed and encoded locally before being communicated
to the CP in order to meet the channel rate constraint. The
CP utilizes the received data to compute an estimate of the
desired signal. We consider the design of encoders at these
sensors and the decoder at the CP with a view to minimizing
the mean-square error (MSE) for the estimate.

Our investigation is motivated by the fact that direct encoding
of local observations using existing source coding techniques
yields suboptimal performance. The reasons for the failure of
direct encoding are twofold. First, the observations are indirect
and contain irrelevant data and noise. Second, observations col-
lected by different sensors are often correlated in a dense net-
work, resulting in redundancy among these sensor observations.
In this paper, we develop a decomposition and an encoder imple-
mentation that addresses these two sources of inefficiency. First,
under Gaussian statistics and the MSE distortion metric, we es-
tablish that without incurring a rate-distortion penalty, the op-
timal encoder can be decomposed into two stages comprising of
a first preprocessing step that extracts relevant information from
local observations, referred to as a “side-informed estimation”,
followed by side-informed coding of the preprocessed data. The
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processing at the CP is also correspondingly decomposed into
two steps: a first side-informed decoding step followed by esti-
mation of the desired signal using the side information and the
received data. Next, we consider the general scenario involving
multiple sensors, and develop a sequential approach that recur-
sively exploits our decomposition, each sensor preprocesses and
encodes its observation for transmission considering as side-in-
formation the information already available at the CP from the
sensors preceding it, thereby reducing the distributed estima-
tion and coding problem into a sequence of preprocessing and
side-informed coding problems.

The decomposition paves the way for the development of con-
structive encoders for transmission of indirect observations with
side information, by leveraging source coding techniques devel-
oped for scenarios where the desired signal is available at the
encoder in its pristine form. To demonstrate the utility of this ap-
proach, we develop a side-informed codec in a transform coding
framework [3], using the conditional Karhunen–Loéve trans-
form (KLT) [4], followed by scalar side-informed codes [5], [6],
i.e., Wyner–Ziv codes. We also compute an achievable rate-dis-
tortion (R-D) bound for our proposed sequential approach and
demonstrate, via simulations, that our codec construction offers
performance close to this R-D bound. The codec’s R-D per-
formance in simulations exceeds bounds delineating the best
R-D performance achievable with a number of alternate side-
informed and non-side-informed codec constructions, thereby
validating the proposed methodology. Compared to a more gen-
eral distributed achievable R-D bound [7] that does not impose
the sequential constraint, only a small compromise in perfor-
mance is seen for the sequential bound, further indicating that
the overall approach is effective and that the sequential approach
may not incur a significant R-D penalty.

Related work exists in several contexts. For the non-side-in-
formed scenario, a separation result analogous to ours was
established by Sakrison [8]. This part of our work can be
considered a generalization of the result of Sakrison. Although
derived for the case of rate-constrained channels, our decompo-
sition is readily applicable for reduced-dimensionality channels
considered in [9]–[12]. The optimal linear preprocessing in
these cases can be obtained from the decomposition and the
conditional KLT [4]. Our work extends this body of research in
distributed estimation to address more realistic rate-constrained
channels. For rate constrained channels, an achievable rate
distortion bound for the distributed estimation and coding
problem is obtained in [7]. The analysis therein (particularly in
Section IV of [7]), arrives at conclusions analogous to, though
not identical to, our proposed decomposition. Our analysis
methodology and outcome also differ from [6] because of the
difference in our motivation. Particularly, the decomposition at
the decoder side required for our construction is unnecessary
for computing R-D bounds and therefore missing from [7].

Also related is the problem of distributed estimation using
quantized observations under a rate constraint for estimating un-
known deterministic parameters [13], [14] and for random sig-
nals [15]–[17]. For these problems, it has been observed that
the strong statistical dependency among sensor observations,
once taken into account, can significantly reduce the data rate
required to communicate the local observation. For this pur-

pose, either a feedback channel from the CP to sensors is used
[18] or inter-sensor communications are utilized [15], [16], so
that the sensor can calculate the innovation in its local observa-
tion, and only the quantized innovation is sent to the CP, where
the quantizer enforces the rate constraint. Nested quantizers are
used as a simple form of side-informed coding technique to ex-
ploit the side information at the CP [17] without feedback of
the side information. Under the assumption of high rate quan-
tization, a separative structure is also suggested in [19] for the
asymptotically optimal quantization of noisy sources with side
information.

The general distributed estimation problem, without the se-
quential constraints that we consider in our framework, is a
vector version of the Gaussian CEO problem [20]. A complete
characterization of the rate-distortion region for this general sce-
nario remains an open problem though several papers have ad-
dressed this in the past for the Gaussian CEO problem [21],
[22] . Alternate related work [23] establishes that, a succes-
sive-refinement scheme can achieve any point in the achievable
rate-distortion region of the quadratic Gaussian CEO problem.
The proof however, is nonconstructive, relying on random bin-
ning, and does not lead to practical coding schemes.

The rest of the paper is organized as follows. Section II
presents the decomposed structure for the optimal encoder of
a local observation when the CP has side information. The
sequential approach for the multisensor setup is considered
in Section III. We next briefly present in Section IV our
Wyner–Ziv codec design. Simulation results are presented in
Section V. Sections VI and VII conclude the paper with a
discussion and a summary of the conclusions.

II. OPTIMAL SIDE-INFORMED ESTIMATION UNDER

A RATE CONSTRAINT: A DECOMPOSITION

Fig. 1 illustrates the general setup, where a set of sensors
are deployed to estimate the real-valued random vector .
The sensor collects a dimensional ob-
servation pertaining to this desired signal . Each
observation is separately encoded and transmitted to the CP,
over a channel that is constrained to a total rate (over all sen-
sors) but is otherwise error-free. The CP utilizes the messages
received from the sensors to obtain an estimate of . We focus
on the scenario where the desired signal and measurements

are jointly Gaussian, and assume the joint statistics of
these vector random variables are available at the CP and at each
of the sensors. For notational simplicity, we assume all signals
are zero mean, and denote by the cross-co-
variance of random vectors and by the
autocovariance of vector .

In this section, we consider a simplified setup as illustrated
in Fig. 2(a), where an observation needs to be encoded and
transmitted to the CP that already has information avail-
able from other sensor nodes and possibly from direct local
observations. The sensor encodes as a message
where denotes the output space of the en-
coder—defined so as to meet the channel rate constraint. The
CP utilizes the local information and the message that it
receives from the sensor in a “decoder” to obtain an estimate



YU AND SHARMA: DISTRIBUTED ESTIMATION AND CODING: A SEQUENTIAL FRAMEWORK BASED ON A SIDE-INFORMED DECOMPOSITION 761

Fig. 2. Transmission of an indirect observation with side information. (a) Single-stage encoder and decoder. (b) Encoder and decoder are decomposed into side-
informed estimation and side-informed coding stages.

of the signal . The resulting MSE distortion for the
decoder is , where represents the
expectation operator, and upper-case symbols represent random
variables (r.v.s) for which the corresponding lower-case sym-
bols are sample realizations, both being bold when these cor-
respond to vectors. The MSE depends on the encoder map-
ping , and the decoder mapping defined by

. Our overall objective is to construct
encoder and decoder mappings for an indirect observation
using as side information, i.e., and , that
minimize the MSE distortion .

In this section, we establish an equivalence that allows us to
decompose the above problem of encoding and decoding from
indirect observations into a preprocessing and postprocessing
step combined with the problem of encoding and decoding di-
rect observations. The latter problem has been extensively ad-
dressed in literature and good codes have been developed for
the scalar observation scenario [5], [6], [24]. Note also that our
objective is to develop a constructive algorithm by exploiting
the equivalence we obtain, and not the determination of approx-
imate or exact rate-distortion bounds.

We begin by considering the distortion . Denoting by
the MMSE estimate of obtained from ,

where [25], we obtain (1),
shown at the bottom of the page, where in the final step
we have used the orthogonality property of the MMSE esti-
mators that ensures the prediction error
is orthogonal to any function of the predictor inputs

, hence

and . Observing
that the first term in (1) is a constant independent of the
encoder and decoder mappings, we see that the optimal map-
pings can be designed to only minimize the second term, viz.

, without any loss of
rate-distortion performance. Now, rewriting as

(2)

where denotes the probability density function (p.d.f)
of r.v. , we see that for a fixed decoder mapping , the
optimal encoding for the observation is

(3)

We assume without loss of generality that this encoder is uti-
lized at the sensor in the system of Fig. 2(a) and show next that
we can construct a corresponding partitioned encoder–decoder
pair in the structure of Fig. 2(b), where the latter has an expected
distortion that is no larger than .

We define as the innovation in given
, where , and obtain

(4)

Equation (4) relies on the additive property of the MMSE esti-
mates for zero-mean jointly Gaussian signals [25, Sec. 11.4]: the
MMSE estimate of a signal from two uncorrelated observations
can be obtained as the sum of the two MMSE estimates obtained
from each of these two observations, respectively. Equation (4)

(1)



762 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 2, FEBRUARY 2011

can also be interpreted as a two-stage sequential MMSE estima-
tion: an initial estimate is first obtained from , which
is further refined by the innovation contained in .

Under the assumption of joint Gaussian statistics, the MMSE
estimator is a linear operator. We denote by
the MMSE estimator of from , where

and . can
also be viewed as a “side-informed” estimator of from
given . We further rewrite .
Next, we rewrite the objective function in (3) as

(5)

where , denotes the MMSE
estimate of from , and

(6)

The decoding rule can be viewed as a side-informed
decoder for , using as side information, induced by the
corresponding side-informed decoding rule of . Conversely,
any decoding rule for the (side-informed) decoding

of induces the corresponding decoding rule
for the decoding of which also

satisfies (5). Since (5) establishes that the error criteria for the
optimal encoding rules for these two scenarios, viz. encoding of

with as side information and encoding of with as side
information, are identical, we see that the optimum encoding
rule for also defines an optimal encoding rule for , both
with as side information. Equation (6) also defines a decom-
posed structure for realizing the encoder–decoder pair where
is obtained at the remote sensor and encoded, and correspond-
ingly at the decoder, first the decoder for recovers ,
which is then transformed into a decoded value for using (6).

Therefore, for the problem of Fig. 2(a), we can equivalently
consider the problem of side-informed encoding of with
as side information. Now is trivially a sufficient
statistic of for estimating , thus given the encoding rule,
the optimal decoder for utilizing , has exactly the same
distortion as the optimal decoder for utilizing . Defining,

and noting that for
we have , we see that the right-

hand side of (5) can also be written as

(7)

As a result, the optimal encoding and decoding rules for en-
coding of with as side information also define optimal en-
coding and decoding rules for with as side information.
This establishes that for the optimal encoder–decoder instantia-
tion, Fig. 2(a) can be decomposed as shown in Fig. 2(b) without
incurring any rate distortion penalty.

Remark 1: The preprocessing is useful for two reasons.
First, the preprocessing successfully extracts relevant infor-
mation from . Second, the preprocessing reduces an

indirect encoding problem into a direct encoding problem.
Using our decomposition, in (7) is directly computable at
the encoder, and a codec can be designed correspondingly
to minimize . In contrast, is not available at
the encoder, thus we can not readily design a codec to min-
imize . Practical code constructions with good
performance have been demonstrated recently for the direct
observation scalar scenario with side information, where the
receiver seeks to reconstruct the one-dimensional observation
“itself” [6], [26], [27]. The decomposition presented here
allows us to directly exploit these existing coding schemes for
our indirect vector observation situation1.

Note also that the side informed estimation stage can operate
on individual observation vectors and does not introduce delay,
unlike the side-informed coding codec which requires that the
encoding be performed over arbitrarily long blocks of i.i.d. ob-
servations for better R-D performance.

Remark 2: Combining the decomposition of Fig. 2(b), with
the Wyner–Ziv result [28], [29] for the Gaussian case, which
states that the rate-distortion (R-D) function for the side-in-
formed coding of with as side information is identical to
the R-D function when is available at both the encoder and
decoder, we can obtain the R-D function for the side-informed
estimation as

otherwise
(8)

where denotes the R-D boundary for a multivariate
Gaussian signal with covariance matrix at a distortion value

[30] , and denotes the covariance ma-

trix of , and . Achieving the
bound of (8), however, requires infinite length codes.

Remark 3: Mirroring the development of the decomposition
in (1), we can readily obtain the following (matrix) decomposi-
tion, by utilizing the orthogonality principle:

(9)

Similarly, we can obtain the matrix analog of (5) as

(10)

Equations (9) and (10) indicate that the covariance matrix of the
estimation error in Fig. 2(b) is the summation of two parts, the
first part corresponds to the covariance matrix of the estimation
error when the remote observation is also available at the CP,
and the second part corresponds to the covariance matrix of the
reconstruction error of the preprocessed signal. We shall find
these versions useful in the sequential estimation problem de-
scribed in Section III.

1The decomposition of Fig. 2(b) is in fact a specific instance of the general
side-informed encoder in Fig. 2(a), the former cannot offer an improvement
in rate-distortion performance over the latter. Good practical coding methods,
however, have not been previously explored for the situation of Fig. 2(a).
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Fig. 3. Transmission of an indirect observation without side information.
(a) Single-stage encoder and decoder. (b) Encoder is decomposed into an
MMSE estimator and an encoder for the estimate.

A. Special Case: No Side Information

If the CP does not have any side information, the system of
Fig. 2(a) reduces to the one in Fig. 3(a), a problem studied by
Sakrison [8]. In this setting, (1) simplifies as

(11)

where denotes the decoding rule for without side
information. Equation (11) immediately implies a decomposed
structure for the optimal encoder–decoder chain, as shown
in Fig. 3(b): At the encoder, first an MMSE estimate
is computed, which is then transmitted to the decoder over
the rate-constrained channel. In this scenario, the innovation

reduces to the observation itself, and the preprocessing
reduces into the MMSE estimator .

Thus, Sakrison’s result can be viewed as a special case of the
separation presented here for the case when no side information
is available. We note the Gaussian statistics are not required
for the decomposition of Fig. 3(b), and the MMSE estimate

represents a sufficient statistic for estimating
.

B. Dimensionality Constrained Channels: A Strong Parallel

The decomposition of Fig. 2(b) is obtained for a rate-con-
strained channel under the joint Gaussian assumption. An iden-
tical decomposition can also be obtained for a dimensionality-
constrained channel [9], [10] where the observations
vector is preprocessed at the encoder via a matrix

, where . The resulting vector is uti-
lized, along with the side information , by a linear decoder
to obtain for , where is a
matrix and is a matrix. In this scenario, the MSE
optimal encoder–decoder pair can be obtained as the
concatenation of the side-informed estimation followed by
the optimal side-informed encoding of this estimate. The latter
is obtained via the recently developed conditional KLT [4].

This decomposition result can be obtained by utilizing the or-
thogonality property for linear MMSE (LMMSE) estimators by
which the estimation error is orthogonal to any linear function
of the predictor inputs and does not require the assumption of
joint Gaussianity. The problem of distributed estimation using
reduced-dimensionality observations has been formulated and
addressed in [9] and [10], where (among other results) the op-
timal linear pre and postprocessing matrices were de-
rived. We illustrate in Appendix I how these optimal matrices

may also be alternatively obtained by combining our separation
result with the conditional KLT.

III. MULTI-SENSOR SCENARIO: A SEQUENTIAL APPROACH

In this section, we return to the multisensor network of
Fig. 1 and consider a sequential approach for distributed es-
timation and coding. We assume without loss of generality,
that the sensors are indexed such that the CP receives the
message transmitted from sensors in the index order, thus
the information received from the lower-ordered sensors may
be considered as part of the side information for subsequent
(higher-ordered) sensors. The estimation and coding at these
sensors can therefore be performed sequentially through a
recursive exploit of the decomposition of Fig. 2(b), reducing
the estimation and coding problem into a sequence of side-in-
formed estimation and side-informed coding problems. In this
section, we consider the side-informed estimation component
of this framework, deferring discussions of the side-informed
encoding to Section IV. In practice, the transmission order
may be determined by other considerations or may be ar-
bitrarily selected. In the latter scenario, we assume that the
sensors are ordered in decreasing order of the conditional
mutual information between the current sensor observation
and the desired signal given the preceding observations, i.e.,

, for
.

A. Sequential Estimation and Coding

For our specific development, we assume all observations
are modeled as linear measurements corrupted by additive
noise , where
represents a linear observation matrix, and is the
additive noise. At the sensor, denoted by , the noise
vectors are assumed to be independent of each other
and of the signal vector , and each of these vectors is as-
sumed to be a zero-mean multivariate Gaussian. We denote the
allocation of the total rate among the sensors by a vector

, where represents the rate allocated for
sensor , and . Rate allocation is described in
Section III-B, here we consider the sequential preprocessing
given an allocation vector.

We next determine the preprocessing matrix at sensor
, when the encoded observation from sensors

are available as side information at the CP. We denote by the
estimate of obtained by the CP utilizing the messages from
sensors , and by the covariance matrix for the cor-
responding estimation error . We will also find it nota-
tionally convenient to denote and , the
“initial values” of these quantities. The first sensor observation

is preprocessed by , and yields .
This preprocessing matrix is obtained from Sakrison’s re-
sult in Section II-B since no side information pertaining to
is available. Next, is transmitted using rate to the CP
which obtains an (approximate) MMSE estimate of using
the coded message that it received from the first sensor. As
indicated earlier, we defer discussion of the specifics of the
coding method to Section IV. To account for the rate restric-
tion on the coding, we model the CP’s reconstruction of as
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, where denotes the error which we assume
is zero-mean Gaussian and independent of . The separation2

represented by (11) indicates that is also the MMSE estimate
of , thus and the estimation error covariance matrix

. Using the matrix decomposition
result in (9) and (10), we obtain , where

(12)

denotes the covariance matrix of which repre-
sents the MMSE estimation error when is available at the
CP without any distortion. The covariance matrix , and also
covariance matrices that we require subse-
quently, are obtained from the codec as described in Section IV.

Next we consider the processing for the observation
at the sensor. We observe that, for the estimation of

, is a sufficient statistic of all the information available
at the CP from sensors . The innovation in can
be represented as , where

is the MMSE estimate of at the CP before is
encoded and transmitted. The decomposition of Fig. 2(b) indi-
cates that the preprocessing for is , it
can be verified that

(13)

This preprocessed signal is encoded at rate
using a side-informed codec where

is available as side information at the CP. The CP’s reconstruc-
tion of via the side-informed decoder is modeled as

, where, as before, we assume is zero-mean
Gaussian and independent of . Next, the CP refines its es-
timate of by using in the second stage of the decompo-
sition, represented by a variant of (6),

(14)

The estimation error covariance matrix is updated as
, where

(15)

Equation (15) corresponds to a simplified version of the recur-
sion in the Kalman filter [25, p. 448]. Now, combining the ini-
tialization with the iteration, the recursive processing for the se-
quentially received sensor observations at the CP is summarized
in Algorithm 1 , where for clarity of description we have in-
cluded the coding and decoding steps which will be described in
Section IV. Note that the recursive preprocessing in Algorithm
1 only requires the statistical characterization of the codec in

2We note that the separation assumes that the encoder–decoder combination
is optimal and therefore, strictly speaking, holds only asymptotically for codes
operating at the rate distortion bound. The consequence also follows when the
rate is high and ��� can be approximated as uncorrelated with � .

terms of the covariances which, for a given rate allo-
cation vector, can be obtained as described in Section III-B.

Algorithm 1: Recursive Estimation and Coding for Multiple
Sensor Observations

Input: Statistics and a rate vector .
Available at all sensors and CP.

1: Initialize: At CP and each Sensor, set ,

2: for to do

3: Sensor records the observation and processes and
transmits as follows:

4:

5:

6: Transmit with rate

7: At CP the reconstruction is updated using information
from as follows:

8: The decoder obtains .

9:

10: At CP and update the estimation error covariance
matrix:

11: , calculated by (15) and the
evaluation of is described in Section III-B.

12: end for

For comparison, we also consider the scenario where each
sensor directly encodes its observation using a KLT codec
without applying the side-informed estimator and the CP esti-
mates the desired signal recursively from the received values.
The processing is obtained via a minor modification of Algo-
rithm 1, where the sensor observations are transmitted
directly at each sensor without exploiting side information and
the CP reconstructs an estimate of from these received values.
A corresponding test channel provides the required statistics.

B. An Achievable Rate-Distortion Bound and Rate Allocation
for Sequential Estimation and Coding

We develop a numerical algorithm to jointly determine the
rate allocation among the sensors under the total rate constraint,
and an achievable rate-distortion bound under the sequential es-
timation and coding framework.

For a prescribed rate allocation , where
, an achievable R-D bound can be calculated in a

procedure identical to Algorithm 1 with the actual encoding/de-
coding steps omitted and the statistics of reconstruction distor-
tion computed under the assumption that the side informa-
tion is available at both the encoder and decoder3. Under this
assumption for the channel, the forward test channel model
[31, p. 479] specifies the reconstruction distortion ,
where and represents the reconstruction
of obtained from an optimal encoder–decoder combination
with rate .

3This is justified by the Wyner–Ziv rate-distortion result for the Gaussian
setting.
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Fig. 4. Test channel model for transmitting a vector signal � under rate
constraint.

Denoting , the vector Gaussian test channel
(for the sensor) is obtained by using the eigendecom-
position , where represents a diagonal
matrix whose entries are the eigenvalues of , arranged
in decreasing order, and is the corresponding matrix of
eigenvectors. The test channel parameters are then obtained
via the reverse water-filling procedure on the diagonal en-
tries in [30]. First, the number of transform channels
with nonzero rate allocation and the corresponding La-
grange parameter that defines the per-channel distortion for
these channels is obtained as the solution to the constraints

and , where
and by conven-

tion. The corresponding test channel is then depicted in Fig. 4,
where is the submatrix obtained by truncating to its
first columns, is a zero mean multivariate Gaussian
independent of , with diagonal covariance matrix where

,) and is a diagonal matrix with
diagonal entries . The covariance
matrix of is obtained from the test channel as

(16)

Using the achievable R-D bound for a prescribed rate alloca-
tion, we develop an algorithm to allocate the total rate among
the multiple sensors as summarized in Algorithm 2. All sen-
sors are initialized with a 0 bit allocation. Available bits, up to
the total rate , are then allocated by sequentially assigning
each successive bit to the sensor where this additional alloca-
tion would result in the largest reduction in distortion. We note
the achievable R-D bound we calculate is limited to the sce-
nario where allocated rates are integers, facilitating practical im-
plementation. The R-D bound corresponding to the optimized
allocation is then used as a sequential achievable bound for
our problem4. For the chosen rate allocation vector, the corre-
sponding test channel of Fig. 4 also provides an estimate of
for Algorithm 1.

Algorithm 2: Rate Allocation for Sequential Distributed
Estimation and Coding

Input: , total rate .

Output: : rate allocation vector (across
sensors)

1: Initialize , for all

2: for to do

3: for to do

4:

4The achievable bound we define can be shown to be attainable under random
coding—though practical codecs attaining the corresponding performance have
not been demonstrated yet.

Fig. 5. The decomposition with a side-informed transform codec.

5: if or then

6: , {tentatively assign the
bit to sensor }

7: calculate the sequential R-D bound with
allocated rate vector using Algorithm 1

8: end if

9: end for

10: , {allocate the bit to
the sensor which results in largest reduction in
distortion using this bit.}

11: end for

IV. SIDE-INFORMED CODEC DESIGN

In order to encode the preprocessed sensor observations
within the corresponding channel rate constraints,

we consider a practical side-informed codec construction in
a transform coding framework [3], leveraging prior work on
scalar side-informed codes for the direct observation setting [5],
[6], [24]. An overview of the codec is illustrated in Fig. 5 using
the notation of the previous section.

At the sensor node, the preprocessed observation is
transformed to obtain a transform vector and cor-
respondingly, at the CP, first an estimate is obtained for ,
from which, is estimated as . Our transform codec
corresponds to the conditional KLT [4], which ensures that the

transform coefficients forming the vector are conditionally
independent (given the side information at the CP). Note that the
conditional KLT represents the optimal transform coding in the
presence of receiver side information [4] , much like the KLT
represents the optimal transform coding in the absence of side
information [32].5

At the CP, the side information is transformed to obtain
. Each of the coefficients in

is then encoded using a scalar Wyner–Ziv codec, where the
coefficient uses the corresponding side information in
the decoding process. The side information is modeled as

, where is assumed to be a zero mean Gaussian in-
dependent of with variance ,
which corresponds to the conditional variance of the given
the side information . The available rate at the sensor

5The general optimal vector quantization problem is known to be NP com-
plete [33].
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Fig. 6. The bit-plane sequential scalar Wyner–Ziv codec obtained by concatenating TCQ with a bit plane sequential Slepian–Wolf code [6].

node is distributed among the coefficients in using the re-
verse water-filling algorithm as described in Section III-B to
obtain rates where is the rate allocated for coef-
ficient . Next, without loss of generality, we consider this
scalar Wyner–Ziv encoding for the coefficient with as
the CP side information. Furthermore for notational simplicity,
we drop the subscripts and denote , , , and , respec-
tively, by , , , and in the remainder of this description.

The scalar side-informed codec for is implemented as a
trellis-coded quantizer (TCQ) [34], followed by a bit-plane se-
quential Slepian–Wolf [5], [35] codec,6 which closely follows
[6] and represents the current state-of-the-art in scalar Gaussian
Wyner–Ziv coding. Because of space constraints, we include
only a brief overview here and refer the reader to [6] and ref-
erences therein for further details.

The codec operates on a block of i.i.d observations
at the sensor node. First, the samples are quan-

tized using a bit TCQ with representation points and
then a Slepian–Wolf codec is utilized for communicating the bit
planes sequentially where prior bit planes and side information
is utilized for the decoding of each bit plane at the receiver, typi-
cally requiring fewer than bits per sample for the transmission
because of both the side information and correlations between
the bit planes. We describe each of these components next and
later in this Section, we describe how is selected according to
the allocated rate .

For TCQ, we assume a specific configuration7 wherein a
quantized representation of the observations, using bits
per sample, is obtained by using an underlying configuration
of representation points, which are organized as
cosets with points each. The sequence of representation
points for the samples are constrained so that at each time
instant, a 2-bit output from a rate 1/2 feedforward binary con-
volutional code [36] determines the coset of the representation
point. As a consequence of this constraint, the coset indexes of
the representation points can be encoded as the corresponding
sequence of input bits for the convolutional encoder using 1 bit
per sample, leaving free the remaining bits at each time
instant for the selection of the representation point closest to the
observed sample, from the points within the coset. At the

6Slepian–Wolf coding refers to side-informed coding for discrete alphabet
sources as opposed to side-informed coding for continuous valued sources con-
sidered in Wyner–Ziv coding.

7Using alphabet constrained rate-distortion theory, [34] demonstrates that this
configuration suffices for obtaining performance close to the R-D bound in the
Gaussian setting.

encoder, a Viterbi [37], [38] search on the convolutional code
trellis allows efficient determination of the best convolutional
code input sequence and coset member
identifiers for the representation of the block of samples, the
latter of which we represent by blocks of bit planes
proceeding from most significant bit (MSB) to least significant
bit (LSB) as , where
represents the bit-plane and the bits
indicate the selection of a representation point at time instant ,
within the coset determined by the convolutional code output
at time in response to the input sequence .

The TCQ module is coupled with a bit-plane sequential
Slepian–Wolf codec to obtain our overall scalar Wyner–Ziv
codec shown in Fig. 6, which, as previously indicated, is closely
based on the construction in [6]. Because incorporates the
convolutional code trellis memory, it is directly transmitted to
the decoder. Given , using the TCQ convolutional encoder,
the decoder obtains the sequence of 2-bit
(or 4-valued) coset index vectors, where identifies the coset
of representation points used at time . This simplifies the
side-informed coding and decoding of remaining bit planes
because given and the side information , the bit planes
1 through at time instant are conditionally inde-
pendent of corresponding planes and the side information at
other time instants. This allows computation of the conditional
likelihoods required for the Slepian–Wolf decoding in a mem-
oryless fashion. To provide rate adaptability, we implement
the individual bit-plane Slepian–Wolf codecs using low-den-
sity parity-check accumulate (LDPCA) codes [27], where
the decoder for the bit-plane utilizes as side information
the coset index , the side information at the decoder, and
previous bit-planes . The LDPCA code
represents a rate adaptive version of the LDPC codes [39], [40]
that have been used in side-informed coding [26], [27]. Parity
information is generated by the LDPCA encoder and sent to the
CP, where the coset index vector , the parity information and
the side information are used by an iterative message-passing
decoding [41] to estimate the encoded bit values. Appendix II
describes how the side information is used in the decoding
algorithm.

The LDPCA encoder provides rate scalability [27] by first
transmitting a fraction of the computed parity bits, and progres-
sively transmitting more bits at the request of the decoder if the
decoding fails. Given the allocated rate-constraint , is first
transmitted with rate 1 bit per sample, and the bit-plane is
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transmitted next, a fractional bit rate is consumed in this
process. The codec continues to transmit additional bit-planes

consuming corresponding rates , re-
spectively. The bit rate actually consumed is

.
Once the decoded bit-planes are available from the LDPCA

Slepian–Wolf decoder, it computes an estimate for . The op-
timal estimate can be obtained, by using for each time instant

the conditional mean as
the estimate for . While this nonlinear estimate can be evalu-
ated empirically [6], it offers only a minor improvement over a
suboptimal linear estimator8 which first uses the TCQ decoder
to obtain an estimate for and then uses
a linear MMSE estimator to obtain [6], [24]

(17)

where is the variance of the TCQ quan-
tizer error, which is observed to be time invariant except for the
trellis initialization phase. is empirically estimated for a

-bit TCQ using a unit variance i.i.d. zero mean Gaussian input
and scaled by the standard deviation of to obtain .

The variance of the estimation error for the LMMSE esti-
mator is [25]

(18)

In our codec implementation, for each coefficient, bit-plane
, we select this TCQ bit depth

for which is closest to the target rate
, where the expression is obtained by considering the R-D

function for a scalar Gaussian with variance and distortion
given by the right-hand side of (18).

We note this codec introduces delay and requires a binary
feedback channel.9 The delay constraint can be avoided by using
weaker side-informed codec, e.g., the nested quantizer, at the ex-
pense of (practical) rate-distortion performance. The feedback
requirement can be eliminated, albeit at prohibitive computa-
tional cost, by specifically designing irregular LDPC codes for
each individual bit plane customized for the corresponding con-
ditional variance.

V. SIMULATION

In order to demonstrate the benefit of the decomposition we
propose, and to investigate the effect of side-informed codecs,
we simulate the sequential estimation and coding setup devel-
oped in Sections II and III. All sensor observations are modeled
as for , where the desired signal
is a multivariate Gaussian generated according to a covariance
matrix . Several different choices of the measure-
ment matrices and the signal covariance matrix

are explored in the simulations. Each of the coefficients
in the vector noise is generated (independently) according

8This is demonstrated in [6] and also independently verified by us.
9The binary feedback channel enables rate adaptability by indicating de-

coding failures for the LDPCA code to the sensor, which serves as a signal for
the encoder to send additional parity bits for the scalable LDPCA code.

to the distribution . The value of is obtained ac-
cording to a prescribed signal-noise-ratio (SNR) defined as

SNR

SNR values of 10 and 0 dB are utilized in the simulations in
order to illustrate system performance in the high and low SNR
regime, respectively.

Our Wyner–Ziv code constructions described in Section IV
make use of 256 state TCQ using the optimized convolutional
code polynomials listed in [6] that are specified by the pair
of polynomials with coefficients (515, 362) in hexadecimal
format. The representation points used in TCQ are chosen
as the representation points for a bit Lloyd-Max
quantizer [42].10 For the LDPCA codes, we use the implemen-
tation of [27], which allow block lengths that are multiples
of 66. We choose an encoder block length of for
compatibility with this constraint while providing long enough
blocks to allow both the TCQ and the LDPCA codecs to
function efficiently.

We compare the proposed encoder construction, denoted by
P-WZ, against the bounds for achievable performance obtained
in Section III-B for our construction and against bounds delin-
eating the best achievable performance for six other alternative
scenarios. In total, we have seven scenarios.

1) Sequential preprocessing with side-informed
coding (SEQ-WZ) as described in Section III: As
we propose, the encoder applies the side-informed
estimator as a preprocessing and uses our side-informed
codec. This setting exactly matches our proposed
construction. The bound derived in Section III-B, which
we denote (SEQ-BD) represents the best performance
achievable that practical constructions of SEQ-WZ, in
particular, P-WZ, can attain.

2) Preprocessing with conventional transform coding (PTC):
The encoder applies the side-informed estimator of
Sections II and III as a preprocessing and uses a transform
codec without exploiting the side information. The overall
coding procedure to transmit a vector signal is similar
as the transmission of described in Section III-B. The
codec first applies the orthogonal transform matrix
which is specified by the eigendecomposition of ,
i.e., . The codec next allocates the
available rate among the coefficients of using the
reverse water-filling algorithm. Attainable performance
bounds are then obtained in a manner similar to the cal-
culation of the achievable rate-distortion bound for the
proposed sequential estimation and coding as described
in Section III-B. We denote this bound by PTC-BD and
it represents the best attainable performance for practical
constructions of PTC.

3) Direct side-informed coding (DWZ): Sensor observa-
tions are encoded directly using our side-informed codec
without the preprocessing but with a transform codec that

10In our bit-plane sequential side-informed codec, inter bit-plane correlations
are exploited in the side-informed decoding at the receiver and negligible perfor-
mance gain is obtained by using a codebook of representation points optimized
specifically for TCQ (for instance, with the methods described in [34] and [43]).
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uses a KL transform for mirroring the description in
Part 2 above. Attainable performance bounds are also
obtained similarly and denoted by (DWZ-BD).

4) Direct transform coding (DTC): Sensor observations are
encoded directly using a conventional transform codec
and a corresponding achievable bound (DTC-BD) is com-
puted. The direct coding operation for both DTC-BD and
DWZ-BD was outlined at the end of Section III-A.

5) Local MMSE estimation with transform coding (ETC-
BD): The encoder obtains a local MMSE estimate ,
which is sent to the CP. The CP obtains an estimate

. The achievable bound
ETC-BD for this setting coincides with the decoupled
estimate-compress scheme in [7].

6) General distributed estimation without requiring the se-
quential constraint (DST): Both preprocessing and side-in-
formed coding can be used in DST and since the sequen-
tial constraint is not imposed, the performance at least as
good as or better than SEQ-WZ is assured. No practical
codec constructions are available as yet for DST, though a
computational method for evaluating an achievable bound,
which we denote DST-BD, is presented in [7]. We extend
the two-sensor case described in [7] to the multisensor case
relevant to our simulation settings.

7) Joint estimation from all sensor observations (JNT): JNT is
infeasible in practice because it requires all sensor observa-
tions at one location. However, for comparison, it is useful
to include the rate-distortion function for the transmission
of the joint MMSE estimate represents an
absolute lower bound of the rate-distortion function for the
distributed estimation problem, which we refer to as the
joint lower bound (JNT-BD).

Both options 1) and 2) operate according to Algorithm. 1, thus
lie within the framework of the decomposition that we propose.
In all our plots (unless otherwise specified), the abscissa is the
average bit rate at each sensor and the ordinate is the decoder
MSE distortion, expressed in decibels as .
All results presented represent an average over ten Monte Carlo
simulations. Due to the long block length of our codec, the stan-
dard deviation across simulations is quite small and is negligible
on the scale of our plots and therefore not included.

A. Two-Sensor Case

We first simulate the two-sensor scenario as illustrated in
Fig. 2(a), i.e., . The signal covariance matrix is set
as , where, prior to commencing the Monte Carlo
runs, and the measurement matrices
are generated with i.i.d. random coefficients each distributed as

. In this scenario, the information-theoretic rate-distor-
tion function is given by (8), and we benchmark our simulations
against this theoretical lower bound (RD-BD), which also coin-
cides with SEQ-BD, DST-BD, and JNT-BD, thereby reducing
us to 5 additional scenarios characterized by bounds in addition
to the practical P-WZ scheme.

For our first set of simulations, we set , (for
) and obtain the results shown in Fig. 7(a) and (b) for

the low and high noise regime, respectively. Our first obser-
vation from these figures is that our practical codec construc-

Fig. 7. Comparison of rate-distortion performances of different encoding
schemes for the two-sensor case �� � �� � � ��. (a) Low noise regime
SNR � 10 dB. (b) High noise regime, SNR � 0 dB.

tion (P-WZ) does quite well and offers an RD performance ap-
proaching the RD-BD except for the very low rate case in the
low noise regime.11 In fact, in the region of interest where the
bounds diverge, P-WZ’s empirical performance exceeds even
the bounds that mark the best attainable performance for all the
4 other alternative encoding scenarios.

A further comparison of the bounds is also instructive. In
both the high and low noise regimes, PTC-BD and ETC-BD are
quite close. Furthermore, Fig. 7(a) indicates that in a low noise
regime the distortion corresponding to DTC-BD is larger com-
pared to PTC-BD and ETC-BD. PTC-BD slightly outperforms
ETC-BD. DWZ-BD also significantly outperforms DTC-BD,
indicating the effectiveness of Wyner–Ziv coding in the low
noise regime, although the cross-over between PTC-BD and
DWZ-BD indicates that at high rates the preprocessing is more
helpful whereas at low rates the side-informed coding is more

11At low rates, the direct transmission of the trellis path encoding bit plane
introduces inefficiency causing this loss in performance [6].
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effective. Fig. 7(b) presents results for the high noise regime.
In this setting, DTC-BD yields poor performance as compared
to PTC-BD, SEQ-BD and ETC-BD. We observe that PTC-BD
has similar performance as ETC-BD. Comparing Fig. 7(a) and
(b), we observe that under the low noise regime, the advantage
of Wyner–Ziv coding is more significant, and the degradation
of side information at high noise regime also decreases the effi-
ciency of side-informed coding.

B. Multi-Sensor Scenario: A Special Case

Next, we consider a special case of the multisensor scenario
that is synthesized to highlight the benefit of the proposed de-
composition. The signal of interest and the sensor measure-
ments are all derived via linear, potentially noisy, observations
of an 6 1 zero-mean multivariate Gaussian vector whose
elements are i.i.d. with zero mean and unit variance. Specifi-
cally, we assume , where ,
and the sensor observations are , where the
measurement matrices are12 ,

, and . Thus, we
have , , and for all . In this special case,
we allocate the total available rate equally among these sensors.

The rate distortion performance obtained in the simulations
is summarized in Fig. 8(a) and (b) for the low and high noise
regime, respectively. Once again, we see that our P-WZ codec
construction offers performance close to the corresponding
SEQ-BD. Though the gap between P-WZ and SEQ-BD is larger
than the gap in the two sensor case,13 the P-WZ construction
outperforms all other bounds with the exception of the PTC
bound in the high noise regime, where the noise makes the
side-information ineffective for coding and local preprocessing
component common to PTC and SEQ provides most of the
gain. We also observe that the SEQ-BD is close to the DST-BD
in both scenarios, despite the absence of the sequential con-
straint for DST. This once again demonstrates the effectiveness
of the sequential approach. The three best achievable bounds
are DST-BD, SEQ-BD, and PTC-BD in that order and these
outperform other achievable bounds by a significant margin
in either high or low noise scenarios. Furthermore, PTC-BD
significantly outperforms ETC-BD and DTC-BD in both cases
by using the preprocessing we propose. DWZ-BD also out-
performs DTC-BD in both scenarios, and more significantly
in the low noise regime where the Wyner–Ziv coding is more
effective.

This special case clearly highlights the effectiveness of the
proposed sequential approach, the preprocessing effectively ex-
tracts relevant information from the local sensor observation,
and the Wyner–Ziv coding explores the side information at the
CP to send the preprocessed signal.

12If the measurement model formulation is assumed to be in the frequency do-
main, these measurement matrices correspond to sensors with increasing band-
width in the order 1, 2, 3, 4 with each of the sensors also covering a band of
frequencies that is not of interest for estimation of the vector � desired at the
CP.

13With the multiple sensors and channels the low rate inefficiencies of the
TCQ codec and the scalable LDPCA codes are encountered more frequently.

Fig. 8. Comparison of rate-distortion performances of different encoding
schemes for the multisensor case with the measurement matrices of Section V-B.
(a) Low noise regime SNR � 10 dB. (b) High noise regime, SNR � 0 dB.

C. Multi-Sensor Scenario: The General Case

We next simulate a “generic” multisensor scenario. We con-
sider , , and for all . In this simula-
tion, the autocovariance matrix , where, prior to the
commencing the Monte Carlo runs, and the mea-
surement matrices are generated with i.i.d random
coefficients each distributed as .

The simulation results are illustrated in Fig. 9 and similar
trends are observed as in Fig. 8. Among the achievable bounds,
in both high and low noise scenarios, DST-BD, SEQ-BD repre-
sent the best performance in that order with a small compromise
in performance for SEQ-BD over DST-BD. Our practical codec
construction P-WZ offers performance close to SEQ-BD ex-
cept for low rate scenarios. P-WZ also outperforms the achiev-
able bounds of other alternative encoding schemes except for
low rate scenarios. We also observe that PTC-BD slightly out-
performs ETC-BD, both clearly outperform DTC-BD. Further-
more, as expected, in the low noise regime side information
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Fig. 9. Comparison of rate-distortion performances of different encoding
schemes for the generic multisensor case. (a) Low noise regime SNR � 10 dB.
(b) High noise regime, SNR � 0 dB.

is more effective than preprocessing so DWZ-BD outperforms
PTC-BD and in the high noise regime the situation is reversed.

VI. DISCUSSION

Our problem setup assumes a distributed setting where the
sensors communicate only with the CP and the CP does not
transmit any of the information it receives from the sensors.
However, signaling from the CP to the sensors is required to
establish the network transmissions. Specifically, binary feed-
back enables rate adaptability for our DSC codes by indicating
whether the DSC decoding is successful or not. Note that this is
consistent with other DSC schemes [27], [44]. When the block
length for the Wyner–Ziv codec is large, this rate for feedback
signaling is negligible, when compared to the rate used for data
transmission at the sensors, e.g., for our LDPCA codec, trans-
mitting a block of 6336 bits requires at most 66 (on average
around 30) bits of binary feedback. The rates consumed in

the feedback change the rate-distortion plots by imperceptible
amounts and are therefore not included in the plots.

Our formulation imposes a sequential constraint on the en-
coding and decoding procedures. For the scenarios we com-
pared in Figs. 8 and 9, we see interestingly that the achiev-
able bounds for the sequential approach (SEQ-BD) and for the
general distributed approach (DST-BD) are close. This suggests
that the sequential approach may in fact be quite effective and
may not levy a significant R-D penalty in a number of scenarios.

The gap between our codec performance and the sequential
R-D bound (SEQ-BD) indicates that further improvements are
feasible within the proposed sequential framework. In partic-
ular, optimized irregular LDPC codes would improve upon our
LDPCA code, which provides rate adaptability but levies a mod-
erate rate loss [27]. Such an approach is quite inflexible be-
cause individually optimized codes are necessary for specific
bit planes and side-information statistics. The low rate perfor-
mance can also be improved by using trellis coded vector quan-
tization (TCVQ). Minor gains are also feasible by enlarging
the number of TCQ states. Each of these approaches further
increases computational complexity, which is already signifi-
cant for our proposed construction. It is worth noting that in the
multisensor scenario, deviations of the practical codec from the
ideal codec assumptions at a given sensor, create a mismatch
with the modeling assumptions for subsequent sensors which
also partly explain the greater inefficiency in these scenarios in
Figs. 8 and 9.

VII. CONCLUSION

In a sequential framework, the problem of distributed esti-
mation and coding under rate constraints reduces to a sequence
of subproblems of side-informed transmission of an indirect
(noisy) observation. We show that under jointly Gaussian
statistics and for a MSE metric, the optimal encoder–decoder
design for indirect observations with side information can be
decomposed into a preprocessing “side-informed” estimation
step followed by “side-informed” coding of the estimate,
without any degradation in rate-distortion performance. The
decomposed structure enables the development of practical
codec constructions with performance close to the numerical
achievable bound for the sequential framework. Furthermore,
the achievable bound of our sequential approach is close to the
achievable distributed bound without the sequential constraint,
implying that the sequential approach, which enables practical
codec constructions, may not incur significant performance
loss.

APPENDIX I
DISTRIBUTED ESTIMATION FROM

DIMENSIONALITY-CONSTRAINED OBSERVATIONS

In this appendix, we consider an alternate instantiation of the
distributed estimation and coding problem of Fig. 1 considering
dimensionality constrained channels. This alternative instanti-
ation was previously considered in [9], [10], and [12] and is
shown in Fig. 10. Here the rate constraints on the channels are
replaced by dimensionality constraints and the encoders and
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Fig. 10. Dimensionality constrained channels. The CP receives reduced-di-
mensionality observations and utilizes them in a linear estimator to estimate the
desired signal �.

Fig. 11. (a) Estimation of� from indirect observation� with side information
� under dimensionality constraint. (b) A decomposed structure of (a).

decoders are replaced by pre and postprocessing matrices, re-
spectively. Let denotes the dimensionality constraint for the
channel connecting and the CP, matrix denotes
the linear processing for , where thus imposes the
dimensionality constraint. At the CP, the preprocessed observa-
tion is postprocessed by matrix . The final
estimate is obtained by combining the postprocessed outputs
as . The optimization of the linear pre and
postprocessing matrices under a MSE distortion
metric can be written as

(19)

We note Gaussian statistics are not required in this setup when
only linear processing and linear channels are concerned. We
first note in (19) that can be obtained as the corre-
sponding partitions of the LMMSE estimator once are
known, thus we focus on the optimization of . The ana-
lytical solution for the joint optimization of is believed
to be intractable [11]. We thus proceed as in prior literature and
consider the optimization of , assuming are known.
An approximate solution for the joint optimization of
can be obtained by using this in an alternating maximization
technique [9], where each of is optimized iteratively
until convergence. We next consider the optimization of in
the setup of Fig. 11(a) where denotes all the preprocessed
observations available at the CP.

Fig. 12. (a) Estimation of � from single indirect observation � under dimen-
sionality constraint. (b) A decomposed structure of (a).

A decomposition similar14 to the one illustrated in Fig. 2(b)
applies to the system of Fig. 11(a), and indicates a separative
structure illustrated in Fig. 11(b). The processing for consists
of a first side-informed estimation preprocessing and side-in-
formed “coding”, the preprocessing is represented by which
is identical with that in Fig. 2(b), the side-informed “coding”
is dimensionality-reduced approximation of with

as the side information. This approximation is obtained by
the conditional KLT [4], which indicates ,

and

where represents the unity matrix,
denotes the innovation and represents the matrix of the

eigenvectors of corresponding to the largest eigen-
values. can be interpreted as the MMSE estimator of

from . The CP processing is decomposed sim-
ilarly, first an approximation of is obtained as

, and then is obtained from by using a variant of (7),
i.e., , indicating

Comparing Fig. 11(a) and (b), we conclude

(20)

(21)

(22)

where we substitute and reorganize re-
sulting terms. These results are identical with those in [9], how-
ever obtained by applying our decomposition and the condi-
tional KLT, both of which are also applicable to other channel
models such as rate-constrained channel for jointly Gaussian
signals considered in our main development.

Fig. 12(a) illustrates the scenario where no side-infor-
mation is available (but the channel dimensionality is con-
strained to a positive integer ). The decomposition in
Fig. 3(b) applies and establishes the separative structure in
Fig. 12(b) [45]. The encoder first obtains the LMMSE estimate

, followed by dimensionality-reduced
approximation of . The latter problem can be reduced to a
classic matrix approximation problem, which is readily ob-
tained by the truncated Singular Value Decomposition (SVD)

14The decomposition here is slightly different from the one in Section II but
can be obtained in an analogous fashion by utilizing the orthogonality property
for the LMMSE estimator, that the estimation error is orthogonal to any linear
function of the predictor inputs.
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[46]: , . Comparing Fig. 12(a) and
(b), we further obtain

(23)

The decomposition of the preprocessing matrix as an
LMMSE estimator followed by dimensionality reduction has
been observed in [9], [10], and [47] after obtaining the ex-
pression of through matrix decomposition or canonical
correlation analysis [48]. In contrast, we first establish this
decomposition and the solution follows in a straightforward
manner.

APPENDIX II
DECODING WITH SIDE INFORMATION

Our side-informed codec uses the iterative message-passing
decoding algorithm [41] which has been adapted for side-in-
formed coding [26]. Here, we briefly summarize how the de-
coder inputs are computed and refer the reader to [27] for de-
tails of the Wyner–Ziv codec. This decoding algorithm relies
on the parity information sent from the encoder, and the initial
log-likelihood ratios (LLR) which are obtained at the decoder
from the side information.

After the trellis path selector bit-plane is received, we
obtain the coset index vector which is used for decoding
the subsequent bit-planes. The decoding of the bit-plane

use already decoded bit-planes
, together with and , as side information,

and requires as input the initial LLRs,

(24)

The conditional probabilities in (24) are obtained by marginal-
ization. For example,

(25)

We note that the side information is not quantized at
the decoder and the probability term in the summation on
the right-hand side of (25) is obtained by empirical estima-
tion. Specifically, the conditional probability mass function

is empirically characterized for the TCQ encoder by
assuming time invariance, and the Markov chain relationship

is used to obtain the probability
in (25). Details can be found in [6].
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