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ABSTRACT

In this paper, a new dataset, HazeRD, is proposed for benchmarking
dehazing algorithms under more realistic haze conditions. HazeRD
contains fifteen real outdoor scenes, for each of which five differ-
ent weather conditions are simulated. As opposed to prior datasets
that made use of synthetically generated images or indoor images
with unrealistic parameters for haze simulation, our outdoor dataset
allows for more realistic simulation of haze with parameters that
are physically realistic and justified by scattering theory. All im-
ages are of high resolution, typically six to eight megapixels. We
test the performance of several state-of-the-art dehazing techniques
on HazeRD. The results exhibit a significant difference among al-
gorithms across the different datasets, reiterating the need for more
realistic datasets such as ours and for more careful benchmarking of
the methods.

Index Terms— dehazing, dataset, benchmark, depth

1. INTRODUCTION

Haze is a common degradation encountered in outdoor images,
where image contrast is reduced due to light scattered by parti-
cles suspended in the air. Koschmieder [1, 2] proposed a classical
physical model to explain haze, in which horizontal airlight from
scattering and light reflected by objects, transmitted and attenuated
in the propagation through the hazy air, both contribute to the final
images and the ratio of their contributions are controlled by the opti-
cal thickness of the media between the camera sensor and the object
being imaged. The loss of detail caused by haze makes images aes-
thetically unappealing and also poses challenges for both human and
machine vision, making it difficult to recognize and track objects
and to navigate.

To mitigate the impact of haze, physics-based algorithms have
been proposed for haze removal or dehazing. We focus on single im-
age dehazing methods that typically seek to estimate both the airlight
and the transmission from a single hazy image, which is an ill-posed
problem. To address the problem most algorithms impose additional
constraints or assumptions to obtain solutions. In [3, 4, 5], color-line
or haze-line has been used for modeling the spatial variance of sim-
ilar color objects. In [6], constraints on air veil are imposed based
on the physical model. In [7], the assumption of higher contrast
and local smoothness are introduced. In [8], a dark channel prior is
proposed that postulates that the color channel with lowest intensity
represents airlight. The dark prior is extended in [9] to accommodate
color boundary constraints. An alternative color attenuation prior is
used with supervised learning in [10] and image fusion based ap-
proaches are proposed in [11, 12]. In [13], a Bayesian framework
for haze estimation is described. In [14, 15], deep learning networks
are designed for estimating the transmission map.

Despite the large number of algorithms proposed for single im-
age dehazing, there are no established criteria or metrics for their
evaluation and past publications have primarily relied on subjective
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Fig. 1. The physical model for haze. Light at the sensor is com-
posed of airlight scattered by particles suspended in the air and light
reflected from imaged objects, which is attenuated when propagating
through the air.

comparisons on a limited number of images, with different publica-
tions using different sets of images. Three datasets: FRIDA [16],
D-hazy [17], and CHIC [18] have been proposed in prior work for
objective evaluation of algorithms. FRIDA [16] is rather special-
ized and provides several synthetic hazy road images from a driver’s
viewpoint. D-hazy uses depth images from the Middlebury [19] and
the NYU depth V2 [20] which are indoor scenes not representative of
the typical dehazing applications. CHIC uses a fog machine in an in-
door environment and provides 2 indoor scenes with known objects
(e.g. Macbeth color checker) and 2 scenes that include outdoor con-
tent seen through windows. The indoor fog generation makes these
images atypical, particularly for the case where an outdoor haze-free
scene is seen from haze within the room.

In this paper, we provide a new image dataset HazeRD, Haze
Realistic Dataset, for benchmarking of dehazing algorithms that con-
sists of fifteen different actual outdoor scenes at high resolution with
simulated haze under five different weather conditions, where re-
alistic parameter values are chosen based on scattering theory. As
compared to the indoor scenes used in [17], these scenes are more
representative of the outdoor conditions under which dehazing is of
interest and they correspond to actual images as opposed to the syn-
thetically generated versions in [16]. We benchmark a number of
single image dehazing algorithms both on the proposed new dataset
and on the existing D-hazy dataset [17]. Our results demonstrate
that there are significant differences between the performance of the
different algorithms on different datasets and the rank order of algo-
rithms is by no means constant over the different datasets, thereby
emphasizing the need for datasets like ours that are matched with re-
alistic conditions under which dehazing is utilized. New applications
of dehazing algorithms that seek to estimate physical atmospheric
parameters, for instance, the level of pollution in [21], further em-
phasize the need for validation datasets such as HazeRD.

The paper is organized as follows. Section 2 discusses the physi-
cal model for atmosphere scattering and image formation. Section 3
describes the simulation methodology. Section 4 described the Haz-
eRD dataset. Section 5 briefly summarizes some state of art dehaz-
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ing techniques and presents performance benchmarks on HazeRD
and D-hazy datasets. Finally, Section 6, discusses the results and
prospective future work.

2. PHYSICAL MODEL FOR HAZE

Mie scattering theory [2, Chap. 5, 6], which applies when parti-
cle sizes are significantly larger that the wavelengths of light in-
volved, can be used to analyze light propagation under hazy con-
ditions. While the exact details of Mie theory are quite involved,
image formation under hazy weather can be modeled by taking two
main factors into account: the airlight and the attenuation. The phys-
ical scenario is depicted in Fig. 1. Due to the scattering of light by
the particles in the haze, light from objects attenuates as it propa-
gates from the object to the camera with an intensity that declines
exponentially with distance. At the same time, part of the ambi-
ent illumination is scattered by the haze particles into the camera as
airlight that increases the intensity of the image. Assuming a ho-
mogeneous haze and a uniform ambient illumination, the spectral
irradiance incident on the camera sensor plane from an object with
spatially uniform spectral irradiance E» can be written as [1],

In =taEx + (1 —tx)Ax, (D

where A denotes the wavelength, A} is the airlight, and t\ = e~
is the so called transmission, with 8 denoting the scattering coeffi-
cient for the haze particles, and d denoting the distance between the
object and the camera. The product dS» is called the optical thick-
ness. Observe that as the distance d increases, the contribution of
airlight increases while the light from the object diminishes, leading
to reduced contrast. The image captured by a typical three channel
RGB (red-green-blue) camera can then be expressed as,

Ic = / tAExRxc + (1 — tx)AxRa cdA, 2
A

where C' € {R, G, B} represents the image channel and Ry, ¢ the
camera spectral response of the channel.

3. HAZE SIMULATION

In dense haze or fog, the scattering coefficient 3, is almost constant
over the visible spectral region, and therefore we can simplify (2) by
setting Bx = @ for all wavelengths A. The captured image channel
intensities can then be represented as

Ic(z,y) = Ec(z,y)t(z,y) + Ac(z,y)(1 —

where (x,y) denotes spatial location,

Ec(z,y) :/Ek(mvy)R%Cd)"
A

is the irradiance of the object received by camera sensor in the ab-
sence of haze, i.e., the haze-free image, and Ac = fA AxRx,cd)is
the airlight, and the depth d(x, y) denotes the distance of the object
imaged at (z, y) from the camera plane. Note that a key advantage of
the simplified model is that hazy images can be simulated using only
haze free images along with depth information using the scattering
parameter 3 and the airlight Ac and the spectral distributions on the
right hand side of (2), which are invariably unavailable, are not re-
quired for the haze simulation. The color and gamma correction [22]
in encoding the raw camera sensor values into digital images, how-
ever, need to be accounted for. Images are typically encoded in the
sRGB color space [23]. We assume that the color correction matrix
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Fig. 2. Flow for haze simulation based on (3).

is absorbed into the channel sensitivities in (2) and the "linear” inten-
sity values from (3) are nonlinearly encoded into the digital image
values via the transform specified in the SRGB standard [23], viz.,

_ [12.920, C < 0.0031308,
"~ 11.055C,/%* = 0.055 C > 0.0031308,

here Cp, is the linear RGB value for each channel, C' is the corre-
sponding sSRGB encoded value, where the transformation is specified
on a [0— 1] range which is then mapped to the 8-bit digital encoding.
For the simulation, the inverse of the transformation in (4) is applied
to the recorded haze free image after mapping the data into the [0—1]
range and once the simulated hazy images are obtained via (3) the
transformation in (4) is applied and the images are re-encoded as
8-bit representations.

The scattering parameter $ depends on the weather condi-
tions. Its value is specified in terms of the intuitive notion of visual
range [2, pp. 42], which is defined, under daylight conditions, as the
distance at which the apparent contrast between a dark object and the
horizon sky becomes equal to the just noticeable contrast threshold
e for an observer (usually set to 0.02). Specifically, the scattering
parameter is obtained from the visible range R,, via the relation
B = —1In(e)/Ry,. HazeRD simulates five different conditions from
light to dense fog, for which the visible range and the scattering pa-
rameter are listed in Table. 1. For simulating hazy images, HazeRD
uses (3) with these parameter values along with captured haze free
images that also have an associated depth map d(z,y) available.
Fig. 2 summarizes the the haze simulation process.

“

50m | 100m | 200m 500m 1000m
weather condition | dense | thick | thick | moderate light
scattering coef. 3 | 78.2 39.1 19.6 7.82 391

Table 1. The visual range in HazeRD, and the corresponding
weather condition and the scattering coefficient 3.

4. DATASET

For benchmarking performance of single image dehazing algo-
rithms, HazeRD (available at [24]) provides fifteen scenes, each one
having a haze-free RGB image and a ground truth depth map. The
dataset is derived from the architectural biometrics project [25, 26]
on which we first estimate the dense depth maps for each scene by
fusing structure from motion and lidar [27]. A weighted median
filter [28] and triangular interpolation was used for the refinement
of the depth map. Five different weather conditions are simulated
in each scene, ranging from light fog to dense fog, in order to test
the robustness of dehazing algorithms. Fig. 3 provides an overview
of the dataset generation process. The simulation of haze and fog
is performed by applying the inverse of (4) followed by (3) then
re-white balancing and redoing the gamma correction. The color
image values are converted to [0, 1] for implementing the color
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space transformations. The airlight is set to 0.76, to ensure vividness
of objects in overcast weather. Sky areas, where typically depth
values are missing, are set to have the distance of two times the
visual range, which ensures that the transmission is of the order
10~* and these regions correspond primarily to airlight. A sample
of hazy images derived from one of the original images in HazeRD
is shown in Fig. 4 for a number of different visual ranges. Figure. 5
shows the depth histograms of HazeRD and for the Middlebury and
NYU datasets that also provide images and depth maps required for
haze simulation. Compared to the other two datasets which focus
primarily on indoor images, the outdoor images in HazeRD span
a much larger range of distance ranges. HazeRD also provides a
noise option (off by default) to avoid unnatural homogenity in pure
airlight regions. In atmospheric optics, the main component of ran-
dom fluctuations can be expressed by low-order Seidel aberration;
here we use (depth) Perlin noise to simulate this phenomenon [16].

Metrics:
‘ Dehazing Algo H Dehazed Image H RMS
SSIM
1 Color Image
Depth Map

CIEDE2000
Fig. 3. Benchmarking workflow for evaluating dehazing algorithms
using the HazeRD (proposed) and D-Hazy [17] datasets.

Evaluation
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Fig. 4. HazeRD Samples. From left to right: a hazy image, with the
visual range of 50m, 100m, 200m, and 500m respectively.
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5. BENCHMARK: ALGORITHMS AND DATASETS

As mentioned above, a typical dehazing algorithm usually has two
stages: first, some priors or constraints are formulated to regularize
the under-constrained problem, then a loss function is minimized to
determine a solution; which is then refined using the hazy images,
mainly to eliminate halos and artifacts. In this section, we bench-
mark six state of art dehazing algorithms described in the following,
which we referred to by the labels corresponding to the first author’s
last name as: (1) He [8], (2) Meng [9], (3) Zhu [10], (4) Berman [5],
(5) Cai [14] and (6) Ren [15]. We briefly summarize the algorithms
in order to subsequently understand their success and failure. Some
examples of these techniques on HazeRD and synthesized NYU and
Middlebury dataset are shown in Fig. 6.

He [8] observed that in haze free images, usually the lowest value
of a pixel among three channels is close to zero. Thereby from (3)
in hazy images, the lowest value, called dark channel prior, is an
approximation of the transmission. Soft-matting or a guided filter
is used as refinement to fit the estimated transmission to the object
outlines. This prior is developed further by others, for example into

Meng’s [9] color boundary prior and Zhu’s [10] color attenuation
prior. The color boundary prior argues that for each image, the color
directions are constrained in a cube. The dark channel prior can
be derived from the boundary prior with appropriate choice of pa-
rameters. The color attenuation prior assumes that the depth can be
modeled based on on pixels’ saturation and intensity.

Fattal and Berman [4, 5] developed single image dehazing algo-
rithms from a color consistency view, called color-line, or haze-line.
In their work, the colors of pixels are assumed to be consistent in
a small patch of the object. Given the image formation process,
patches of the same color should be co-linear, resulting in the so
called color-line, and the shifts indicate the optical distance. The
difficulty lies in detecting validated patches and in interpolation for
the invalid ones. Haze-line is the clustering of the quantized colors,
which avoids the complication of patch detection.

Besides these algorithms with strong assumptions, deep learning
concepts are also exploited in dehazing algorithms. Cai [14] pro-
posed a four-layer network consisting of a CNN layer, a multi-scale
mapping layer, a max pooling layer and a fully-connected layer. The
training set is formed from synthesized patches with homogeneous
transmission. Ren [15] proposed a coarse-to-fine network consist-
ing of cascade of CNN layers. The training set is obtained as crops
from the NYU dataset. Both methods trained the neural network to
compute the transmission.

The performance of dehazing techniques can be evaluated from
two perspectives: the accuracy of estimated transmission maps and
the fidelity of the dehazed images, each with respect to the corre-
sponding ground truth. We use root mean square (RMS) error to
evaluate the difference of the estimated transmission and the ground
truth, SSIM [29] to evaluate the similarity of dehazed images and
the original haze free images, and CIEDE2000 [30] to evaluate the
color fidelity. Results for the algorithms benchmarked and across the
different individual datasets are summarized in Table. 2. These re-
sults show that typically the transmission values (which are always
smaller than 1) have a large error, and the SSIM and CIEDE2000
metrics also show that the dehazed images have significant percep-
tible difference with the original images. The performance of most
of the techniques tested here varies with different weather condi-
tions. Table. 2 also lists the weather condition, or equivalently visual
range, that yields the best average performance for each algorithm.
The tabulated values indicate that algorithms based on priors are lim-
ited largely due to the scene and the weather. Generally, these algo-
rithms are not reliable in the sense of dehazing. The visual range
for indoor dataset, Middlebury and NYU dataset, is expanded to Sm,
10m, 20m and 50m for comparison with [17]. Contrasting the differ-
ences between indoor and outdoor scenes is important because de-
hazing techniques are much more likely to be used in the latter case.
For each algorithm, we run the T-test on the RMS, the SSIM and
the CIEDE2000 of HazeRD and the two reference datasets. These
datasets show statistically significant differences between the perfor-
mances of most algorithms (o = 5%). This demonstrates the value
of HazeRD as an alternative benchmark for dehazing algorithms: the
results on the indoor datasets with limited depth range do not appear
to hold for the outdoor datasets.

The regions in which these algorithms fail on the HazeRD
database also provides insight. Algorithms based on dark channel
assume all white or bright area is mainly caused by skylight. In
HazeRD, there are several white or bright walls which undermine
these assumptions, for example, see Fig. 7. Typical dark channel
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Fig. 6. Example of algorithms’ performances. First row from left to right: a haze free image from HazeRD, and the results of dehazing of
a corresponding hazy image obtained with: He [8], Meng [9], Zhu [10], Berman [5], Cai [14], Ren [15]; second row from left to right: the
ground truth transmission, and the transmission estimates corresponding to the estimated images in the top row; third row from left to right:
a haze free image from Middlebury, corresponding dehazed images in the same order of algorithms previously listed; fourth row from left to
right: a haze free image from the NYU dataset, and corresponding dehazed images.

He [8] Meng [9] Zhu [10] Berman [5] Cai [14] Ren [15]
RMS 0.2819 + 0.0989 0.2991 + 0.1039 0.1918 + 0.0673 0.2271 £0.1199 0.2584 + 0.0996 0.2616 + 0.1032
HazeRD SSIM 0.5342 +0.1169 0.6232 + 0.1414 0.6306 + 0.1916 0.5770 £ 0.1521 0.4788 + 0.1466 0.6243 + 0.1864
CIEDE2000 | 17.9014 + 3.2727 15.9056 + 2.0815 14.2509 £ 6.1169 16.4010 + 3.8639 17.1261 + 3.8286 13.7952 + 5.7753
Best at dense thick to light moderate to light no preference dense light
RMS 0.2142 £ 0.1242 0.2461 + 0.1408 0.1921 + 0.0985™ 0.2551 £ 0.1084" 0.1792 + 0.0792 0.2022 + 0.0980
Middlebury SSIM 0.7046 + 0.1383 0.5788 + 0.2487 0.6394 + 0.2524 0.6093 + 0.2200 0.6227 + 0.2556 0.5978 + 0.2522
CIEDE2000 | 19.3802 £ 6.6979 | 18.4290 + 4.7335" | 19.8333 + 12.2146" | 19.1038 + 6.6742" | 18.8720 + 10.4724™ | 20.0272 + 11.1873
Best at 10m/20m 50m 50m 50m 20m/50m 50m
RMS 0.2074 £+ 0.1121 0.2404 + 0.1228 0.1998 + 0.0845* 0.2119 £ 0.0769* 0.1976 + 0.0772 0.1995 + 0.0758
NYU SSIM 0.6478 + 0.0518 0.7203 + 0.0596 0.7029 + 0.1668" 0.7100 £ 0.0763 0.6773 £ 0.1261 0.7044 + 0.1459*
CIEDE2000 | 19.7528 + 3.6458" | 16.9486 + 2.8969" | 16.2086 + 8.1587" 15.7918 + 2.8642 16.5856 £ 5.5898 15.4301 £ 7.3678"
Best at 10m 10m 50m 50m 20m/50m 20m 50m

Table 2. Performance of different dehazing methods on HazeRD, Middlebury, and NYU datasets. Each numerical entry is represented as the
average over the images in the datasett-the standard deviation. The best performing algorithm for each dataset is indicated in bold font, and *
in the Middlebury and NYU datasets indicates cases where the difference with respect to HazeRD was not statistically significant (5% level).

values are above 0.2, and the error is almost linear in all weather
conditions. The haze-line algorithm also has difficulty on bright sur-
faces, especially rough surfaces. Color fluctuations in such surfaces
are amplified to a large color difference. Cai’s [14] algorithm tends
to underestimate the transmission in sky areas, which may be caused
by the training set, generated by cropping small patches merely from
images, and assigning a uniform random depth for each patch.

Fig. 7. Scatter diagram of one scene of the dark channel prior error
(y axis) and the transmission error (x axis) in log scale. Each point
represents the density of pixels with similar prior-transmission ra-
tios. See the bright line. The dark prior channel is above 0.2 in most
area, which is contradictory to the assumption. The transmission er-
ror is almost linearly related to the dark channel error. From left to
right, fog: dense, thick, moderate, light.

6. DISCUSSION

As we have seen from the results, none of the algorithms bench-
marked here provides a sound estimate for the transmission on the
HazeRD dataset and each algorithm suffers from artifacts or color
infidelity. Most algorithms seem to focus on enhancing the contrast

or saturation without regard to what the true haze free image should
be. In part, the reason for this behavior that some priors don’t hold
true on the images because they are based on observations on par-
ticular images, and not the physical model itself. Another easily
overlooked problem is that the skylight is not actually uniform but
exhibits a gradual variation. In fact, we expect the clear dehazed sky
to be blue and not gray or white, as is commonly observed. Last
but not least, the performance of most techniques tested here varies
depending on the weather condition, which indicates that proposed
priors should be tested systematically and that training sets for deep
learning methods should include more comprehensive situations.
The results we obtained here indicate that dehazing techniques
have some fundamental performance differences between evaluation
datasets based on indoor and outdoor scenes. HazeRD provides a
valuable dataset for benchmarking dehazing algorithms in more re-
alistic outdoor settings. As an outdoor RGB-D dataset, HazeRD is
also potentially useful for benchmarking other algorithms including
monocular image depth estimation and outdoor scene segmentation.
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