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Performance Evaluation of Burst-Error-Correcting
Codes on a Gilbert–Elliott Channel
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Abstract—In this letter the performance of single burst-error-
correcting (BEC) codes used over bursty channels is evaluated.
The channel is represented by the Gilbert–Elliott (GE) model,
which has been used by numerous authors to evaluate the per-
formance of random-error-correcting (REC) codes over bursty
channels. Recursive expressions are derived, which are used in
evaluating the probability of a codeword error. These expressions
and an approximate closed-form expression are applied to the
performance of a single (23,12) BEC code.

Index Terms— Burst-error-correcting codes, cyclic codes,
Gilbert–Elliott channel.

I. INTRODUCTION

IN MANY digital communication systems, symbol errors
at the output of the channel tend to occur in bursts.

The Gilbert–Elliott (GE) channel [1], [2] is a useful discrete
model for such channels that has been studied in considerable
detail in the literature. For Rayleigh-fading channels, several
researchers have related the model parameters of the GE
channel to the fade statistics [3]–[5], and such a represen-
tation has been shown to be fairly accurate in spite of its
simplicity [6]. Elliott [2] first analyzed the performance of
error-correcting codes on a GE channel by establishing a series
of recursions for , the probability of transmission
errors in a block of symbols. Recently, Yee and Weldon [7]
presented a combinatorial analysis for a simplified GE channel
that replaced the recursions with closed-form expressions. An
alternate nonrecursive technique for approximate evaluation of

on simplified GE channels has also been presented
by Wong and Leung [8].

Since the probability takes into account only the
total number of errors and disregards their distribution, it is
useful only for the performance evaluation of random-error-
correcting (REC) codes and cannot be used for burst-error-
correcting (BEC) codes. An evaluation of two BEC codes
on a GE channel was performed in [5] using Monte Carlo
simulations, where a simplified analysis for the codeword
error probability for BEC codes was also presented under
rather restrictive assumptions on the model parameters. In this
letter a modified analysis of the GE channel is presented for

Paper approved by S. B. Wicker, the Editor for Coding Theory and
Techniques of the IEEE Communications Society. Manuscript received June
14, 1997; revised November 28, 1997.

G. Sharma is with the Digital Imaging Technology Center, Xerox Corpo-
ration, Webster, NY 14580 USA (e-mail: g.sharma@ieee.org).

A. A. Hassan is with Teledesic Corporation, Kirkland, WA 98033 USA
(e-mail: amer@teledesic.com).

A. Dholakia is with the Zurich Research Laboratory, IBM Corporation, CH
8803, Rueschlikon, Switzerland (e-mail: adh@zurich.ibm.com).

Publisher Item Identifier S 0090-6778(98)05177-0.

Fig. 1. The GE channel model.

evaluating the performance of single BEC codes. Since these
codes are particularly designed for combating burst errors,
such an analysis is highly desirable.

II. GE CHANNEL MODEL

The GE channel considered in this letter is a binary sym-
metric channel (BSC) with memory determined by a two-state
Markov chain. A schematic of the model is shown in Fig.
1. The two states of the channel are and , with the state
transition probabilities (state is state is
), where indicates the probability of event and the

separates a conditioning event. In state the channel is a BSC
with symbol-error probability . Note that with this notation,

denotes the state different from , and
. In the subsequent analysis it will be assumed that

the channel undergoes a state transition at the beginning of
a symbol time and then the symbol is transmitted over the
BSC determined by the state.

III. BEC ANALYSIS

For the analysis of BEC capabilities, it is necessary to keep
track of the channel state in addition to the number of errors.
Let

errors in an symbol sequence and

ending state is initial state was (1)

where “initial state” refers to the state for the symbol preceding
the first symbol in the symbol sequence and “ending state”
refers to the state for the last symbol of the symbol sequence.

The steady-state probability of the channel being in state
is [9, pp.
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349–354]. From Bayes’ rule, it follows that

errors in an symbol

sequence and ending state is

(2)

errors in an symbol

sequence initial state is

(3)

In terms of these definitions, the probability of errors in
a sequence of symbols can now be written as

(4)

From the channel model, it can be readily seen that the
following coupled recursions hold for and

:

(5)

The initial conditions for the recursion are given by
and , and

otherwise.
(6)

In order to evaluate the performance of error-correcting
codes, consider the use of a code with block length on
a GE channel. Clearly, if the code is a REC code capable of
correcting up to random errors, the probability of correct
decoding is . However, if the code is a
BEC code, the probability of correct decoding cannot be
expressed in terms of alone. In order to analyze
the performance of BEC codes their correction capabilities
must be defined. Since a large number of useful BEC codes
are cyclic codes capable of correcting “cyclic bursts,” an
analysis encompassing both cyclic and noncyclic BEC codes
is considered.1 The difference between the received vector
and the corresponding transmitted codeword defines the error
vector. A nonzero error vector is said to have a (cyclic)
burst length if all of the transmission errors are among
(cyclically) successive components, the first and last of which
are nonzero [10]. The burst length of the zero error vector
will be considered . A (cyclic) BEC code is said to have a
(cyclic) burst-correcting capability (BCC) of if it is capable
of correcting all error vectors with (cyclic) length less than or
equal to . Similarly, an REC code will be said to have an
REC capability (RCC) of if it is capable of correcting up to

random errors.

1 Note that practical considerations often necessitate the use of shortened
cyclic codes that are not cyclic.

Given the (cyclic) BCC of a (cyclic) BEC code, the proba-
bility of correct decoding can readily be determined from

errors in a sequence of symbols

have burst length (7)

errors in a sequence of symbols

have cyclic burst length (8)

Observe that , where

burst length and first error occurs

in th position in a sequence of symbols

(9)

By considering all cases that lead to an error in the th position,
it can be seen that for

(10)

and for

(11)

where

state is state is

(12)

In an analogous fashion it can be seen that for
(a condition that would hold for most reasonable cyclic BEC
codes), , where

(13)

IV. SIMPLIFIED ANALYSIS FOR CERTAIN CHANNELS

If the state transition probabilities and are small in
comparison with (the inverse of the block length), an
alternate analysis may be used to arrive at closed-form ex-
pressions for the codeword-error probabilities. Such situations
often arise when the parameters of common communication
channels are related to the transition probabilities of the GE
model [5]. For these scenarios, the transitions between states
are extremely infrequent and one may assume that for the
duration of a codeword, the channel remains in the state
in which the codeword began. With this approximation, the
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Fig. 2. Codeword-error probabilities versus t11 for the (23,12) Golay code and the (23,13) BEC code.

probability of codeword error on the GE channel is readily
obtained as

(14)

where represents the probability of codeword error on
a BSC with symbol-error probability . For an REC code with
block length and RCC

(15)

The corresponding expression for a cyclic BEC code with
block length , capable of correcting all cyclic bursts with
cyclic burst length (CBL) , is obtained from

No error

CBL and errors (16)

Since on a BSC all error patterns with errors are equiprobable

CBL errors
# of possible -error patterns with CBL

# of possible -error patterns

(17)

from which, using Bayes’ rule, it follows that

In a similar fashion, it can be shown that for a noncyclic
BEC code with BCC of

(18)

Note that the above expressions for probability of codeword
error on a BSC are also useful under the assumption that
the channel state changes very frequently, in which case the
channel can itself be approximated by a BSC with the average
bit-error rate , and the probability of
codeword error is approximately given by .

V. NUMERICAL RESULTS

Consider the probability of codeword error on the GE
channel for a pair of codes consisting of an REC code and
a BEC code with similar redundancy and block length. One
such pair is the (23,12) Golay code with an RCC of three
and the (23,13) BEC code with a BCC of five obtained by
shortening the (27,17) code in [11, p. 269]. Note that the
Golay code is capable of correcting arbitrary error patterns
provided the number of errors is less than or equal to three,
which includes burst errors with burst length less than equal
to three. Hence, for most values of the channel parameters,
the Golay code has a lower probability of codeword error
than the BEC code. However, if the GE channel produces a
large number of error bursts with burst length between three
and five, one can expect the BEC code to perform better than
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Fig. 3. Codeword-error probabilities versus t01 for the (23,13) BEC code obtained from exact recursions and simplified analysis.

the Golay code. One such scenario is demonstrated in Fig.
2, where the probability of codeword error for the two codes
(obtained from the recursions of Section III) have been plotted
against (the probability for a state transition from the bad
state back to the bad state), while the other channel parameters
are held fixed at . From
the figure, it is clear that at lower values of the Golay
code performs better than the BEC, but as the value of is
increased beyond 0.65 (approx.) the BEC code yields a lower
probability of codeword error than the Golay code.

An example comparing the probability of codeword error
for the BEC code obtained from the simplified analysis of
Section IV with that from the exact recursion is shown in Fig.
3. For this example, the probability of bit error in the good and
bad states were set to and , respectively,
and the state transition probabilities were set equal to
each other and varied over the range 10 –10 . From the
graph (and also from direct reasoning), it can be seen that for
this example the simplified analysis predicts no change in the
probability of codeword error as we change . For very
small values of and , the approximation in the simplified
analysis is valid and the results agree with the exact recursion.
However, as the probability of state changes increases, the
approximation breaks down and the results of the simplified
analysis no longer agree with the exact recursions.

VI. CONCLUSION

This letter presents a modified analysis of the GE channel,
which is useful for the performance evaluation of single BEC

codes on these channels. Using recursions, expressions for
the probability of codeword error for single BEC codes are
obtained. For GE channels with extremely infrequent state
changes, an alternate simplified analysis is also presented and
shown to agree with the exact recursions.
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