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Abstract—We present a novel lossless (reversible) data-embed-
ding technique, which enables the exact recovery of the original
host signal upon extraction of the embedded information. A gener-
alization of the well-known least significant bit (LSB) modification
is proposed as the data-embedding method, which introduces ad-
ditional operating points on the capacity-distortion curve. Lossless
recovery of the original is achieved by compressing portions of the
signal that are susceptible to embedding distortion and transmit-
ting these compressed descriptions as a part of the embedded pay-
load. A prediction-based conditional entropy coder which utilizes
unaltered portions of the host signal as side-information improves
the compression efficiency and, thus, the lossless data-embedding
capacity.

Index Terms—Arithmetic coding, conditional entropy coding,
context modeling, data embedding, data hiding, least significant
bit (LSB) modification, watermark.

1. INTRODUCTION

ULTIMEDIA data embedding, or digital watermarking,!

refers to the process of inserting information bits into a
host multimedia signal without introducing perceptible artifacts
[1]-[3]. A variety of embedding techniques, ranging from high-
capacity bit modification to transform-domain spread spectrum
methods, are used in various applications such as authentication
[4], [5], meta-data tagging, content-protection, and secret com-
munications.

Most multimedia data-embedding techniques modify and,
hence, distort the host signal in order to insert the additional
information (other techniques may encode this information into
the “representation” of the signal, e.g., color space). The distor-
tion induced on the host signal by the data-embedding technique
is called the embedding distortion. Often, the embedding dis-
tortion is small, yet irreversible, i.e., it cannot be removed to
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IThroughout this paper, the terms data embedding, digital watermarking, and
watermarking are used interchangeably and subtle nuances among the terms are
ignored.

"Small Distortion"

Host Signal —— Lossless | Watermarked
Message Data — Data Embedding Signal
Recovered
| — .
Watermarked Lossless Host Signal
Signal Data Extraction Extracted
& Recovery Message Data
Fig. 1. Lossless data embedding, extraction, and recovery.

recover the original host signal. In many applications, the loss
of host signal fidelity is not prohibitive as long as original
and modified signals are perceptually equivalent. However,
in a number of domains—such as military, legal and medical
imaging—although some embedding distortion is admissible,
permanent loss of signal fidelity is undesirable. This highlights
the need for lossless data embedding? techniques. These tech-
niques, like their lossy counterparts, insert information bits
by modifying the host signal, thus inducing an embedding
distortion. Nevertheless, they also enable the removal of such
distortions and the exact—Ilossless—restoration of the original
host signal after extraction of embedded information. Particular
applications include embedding of DICOM header [6] informa-
tion into medical images and providing fragile authentication
watermarking for aerial/surveillance images [7].

A general block diagram representing lossless data-embed-
ding schemes is seen in Fig. 1. The lossless embedding step
takes the host signal and the message data and produces a water-
marked signal in which the message data is embedded. The data
extraction and recovery process uses the watermarked signal
to extract the embedded data and to recover the original host
signal exactly. Note that though the recovery process allows re-
construction of the original host signal with no distortion, it is
still desirable to keep the embedding distortion, i.e., the differ-
ence between the host and watermarked signal, to a minimum
so that applications that do not have access to the extraction and
recovery process do not incur a heavy penalty in image quality.

Lossless data-embedding techniques may be classified into
one of the following two categories: Type-I algorithms [8], [9]
employ additive spread spectrum techniques, where a spread
spectrum signal corresponding to the information payload is
superimposed on the host in the embedding phase. At the
decoder, detection of the embedded information is followed
by a restoration step where the watermark signal is removed,

2In the literature, lossless data embedding is also referred as reversible, in-
vertible, or distortion-free data embedding.
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Fig. 2. Type-II lossless data embedding.

i.e., subtracted, to restore the original host signal. Potential re-
versibility problems associated with the limited range of values
in the digital representation of the host signal, e.g., overflows
and underflows during addition and subtraction, are prevented
by adopting modulo arithmetic [8] or a circular interpretation of
the bijective transform [9]. Due to their spread-spectrum nature,
Type-I algorithms are robust with regard to the data embedding
and allow for extraction of message data even if the host signal
is perturbed (within reasonable limits) prior to detection. The
original host signal, however, cannot be accurately recovered
once the watermarked signal is perturbed. While the robust-
ness is often desirable, modulo arithmetic typically produces
disturbing salt-and-pepper artifacts in the watermarked signal
compromising the desired goal of minimizing embedding
distortion.

In Type-II algorithms [10]-[13], information bits are em-
bedded by modifying, e.g., overwriting, selected features
(portions) of the host signal—for instance least significant bits,
high-frequency wavelet coefficients. In this class of algorithms,
the embedding function is irreversible. Recovery of the original
host is achieved by compressing the original features and trans-
mitting the compressed bit stream as a part of the embedded
payload. At the decoder, the embedded payload—including
the compressed bit stream—is extracted, and the original host
signal is restored by replacing the modified features with
the decompressed original features. A general block diagram
representing Type-II algorithms is seen in Fig. 2. In general,
Type-II algorithms do not cause salt-and-pepper artifacts in
the watermarked signal and can facilitate higher embedding
capacities, albeit at the loss of the robustness of the first group.

This paper presents a high-capacity, low-distortion, Type-II
lossless data-embedding algorithm. First, in Section II, we in-
troduce a generalization of the well-known least significant bit
(LSB) modification method as the underlying data-embedding
technique. This technique modifies the lowest levels—instead
of bit planes—of the host signal to accommodate the payload
information. This generalization has a finer capacity-distortion
granularity. In the second part, Section III, a lossless data-em-
bedding algorithm for continuous-tone images is built based on
the generalized LSB modification method. This spatial domain
algorithm modifies the lowest levels of the raw pixel values as
signal features. As in all Type-II algorithms, recovery of the
original image is enabled by compressing, transmitting, and re-
covering these features. However, unlike in existing Type-II al-
gorithms, the novel feature compression step utilizes the rest of
the host signal as side-information. This property of the pro-
posed method provides excellent compression of the image fea-
tures. Earlier algorithms in the literature [10], [11] tend to se-
lect more complex features to improve the compression perfor-
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mance—thus, the lossless-embedding capacity. In Section I1I-B,
the embedding capacity-distortion performance of the algorithm
is further improved by modifying only a selected subset of signal
samples. Finally, a simple capacity-distortion control mecha-
nism, which minimizes the embedding distortion for a given
target capacity, is developed.

II. GENERALIZED-LSB (G-LSB) EMBEDDING

One of the earliest data-embedding methods is the LSB mod-
ification. In this well-known method, the LSB of each signal
sample is replaced (over written) by a payload data bit embed-
ding one bit of data per input sample. If additional capacity is
required, two or more LSBs may be over written allowing for
a corresponding bits per sample. During extraction, these bits
are read in the same scanning order, and payload data is recon-
structed. LSB modification is a simple, nonrobust embedding
technique with a high-embedding capacity and small bounded-
embedding distortion (£1). A generalization of the LSB-em-
bedding method, namely G-LSB, is employed here. If the host
signal is represented by a vector s, the G-LSB embedding and
extraction processes can be represented as

Sw :QL(S)+W (1)
W =Sw — QL(Sw) = Sw — QL(S) )

where s,, represents the signal containing the embedded infor-
mation, w represents the embedded payload vector of L-ary
symbols, i.e., w; € {0,1,...,L — 1}, and

T

Qr(z) =1L LzJ

is an L-level scalar quantization function, and | | represents the
operation of truncation to the integer part.

In the embedding phase, the lowest L levels of the signal sam-
ples are replaced (over-written) by the watermark payload using
a quantization step followed by an addition. During extraction,
the watermark payload is extracted by obtaining the quantiza-
tion error—or simply reading lowest L levels—of the water-
marked signal. The classical LSB modification, which embeds
a binary symbol (bit) by overwriting the least significant bit of
a signal sample, is a special case where L = 2. G-LSB embed-
ding enables embedding of noninteger number of bits in each
signal sample and, thus, introduces new operating points along
the rate (capacity)-distortion curve.

3

A. Binary to L-ary (L-ary to Binary) Conversion

In the preceding section, we assumed that the watermark
payload is presented as a string of L-ary symbols w;. In typ-
ical practical applications payload data is input and output
as binary strings. Therefore, binary to L-ary (and L-ary to
binary) pre(post)conversion is required. Moreover, practice
signal values are generally represented by finite number of
bits, which can afford only a limited range of sample values.
In certain cases, the embedding procedure outlined above may
generate out-of-range sample values. For instance, in a 8 bpp
representation (range is [0, 255]) the embedding algorithm
with operating parameters L =6, Qr,(s) =252, and w = 5
will output s,, = 257, which cannot be represented by an 8-bit
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value. In general, for a given signal value, watermark symbols
can only take N values (w is an N-ary symbol) where N < L.
The out-of-range sample values can be avoided by skipping
samples where N < L, at the expense of the embedding
capacity at those samples. Alternatively, the binary to L-ary
conversion algorithm presented below achieves the same objec-
tive without sacrificing the embedding capacity. The algorithm
is motivated by arithmetic coding [14] for equi-probable input
symbols. We start by interpreting the binary input string h as
the binary representation of a number H in the interval [0,1),
ie.,, H = .hohihs ... and H € [0,1). Furthermore, we let R
initially represent this interval ([0,1)). For our description, we
assume the signal is encoded with integer values between zero
and S;am-

1) Given s and $,,4., determine Qp,(s) and the number of
possible levels N = min(L, $max — QL(8)).

2) Divide R into N equal subintervals, Rg to Ry —_1.

3) Select the subinterval that satisfies H € R,,.

4) Next watermark symbol is w = n.

5) Set R = R,, and go to step 1), for the next sample.

This conversion process is illustrated in Fig. 3. Note that the
inverse conversion is performed by the dual of the above al-
gorithm. In particular, watermark symbols, w, are converted
into a binary number H by successively partitioning the interval
R = [0,1). Number of partitions (active levels) N on a given
signal sample s,, are obtained from Qr(s,) = Qr(s). Pseu-
docode for this process is presented below.

1) Given s, and $q., determine Qr,(s,,) and the number
of possible levels N = min(L, smaz — QL(Sw))-

2) Divide R into N equal subintervals, Ry to Ry _1.

3) Set R = R, where w = s, — QL(sw) is the current
watermark symbol.

4) If there are remaining symbols, go to step 1).

5) Find shortest binary string H € R.

B. Embedding Capacity and Distortion

In G-LSB embedding (1), each signal sample carries an L-ary
watermark symbol w;, which represents log2(L) bits of infor-
mation. Therefore, the embedding capacity of the system is

Carss = loga (L) 4)

bits per sample (bps) (barring boundary effects due to overflow
restrictions).

A closed form expression for the expected mean square and
mean absolute error distortions may be obtained if we assume
that: 1) data symbols w are equi-probable, which is reasonable if
the input data is compressed and/or encrypted, as in many data-
embedding applications; and 2) the residual signal representing
the L lowest levels of the original host signal (r = s — Qr(s)),
is uniformly distributed, which is a reasonable approximation
for natural imagery, especially for small L
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Fig. 3. Binary to L-ary conversion using a variant of arithmetic encoding.
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III. LOSSLESS GENERALIZED-LSB DATA EMBEDDING

The G-LSB embedding algorithm outlined in the preceding
section can be directly used for data embedding with low dis-
tortion. However, the method is irreversible, i.e., the host signal
is permanently distorted when its lowest levels containing the
residual signal are replaced with the watermark signal. This
shortcoming can be remedied by including information for re-
construction of the residual signal along with the embedded data
in the payload. This technique had been proposed in [12] and
later used in [10], [11], [13] successfully.

Fig. 4 shows a block diagram of the proposed algorithm. In
the embedding phase, the host signal s is quantized and the
residual r is obtained (7). The residual is then compressed in
order to create capacity for the payload data h. The compressed
residual and the payload data are concatenated and embedded
into the host signal via G-LSB modification. In particular, the
resulting bit stream is converted to L-ary symbols w and added
to the quantized host to form the watermarked signal s,, (1).
Note that the compression block uses the rest of the host signal,
Q1 (s), as side-information, in order to facilitate better compres-
sion and higher capacity.

In the extraction phase, the watermarked signal s,, is quan-
tized and the watermark payload (the compressed residual and
the payload data h) is extracted (2). A desirable property of the
proposed algorithm is that the payload data extraction is rela-
tively simple, and it is independent of the recovery step. If de-
sired, the algorithm proceeds with the reconstruction of the orig-
inal host s. In particular, the residual, r, is decompressed using
Qr(sw) = Qr(s) as side-information. Original host, s, is re-
constructed by replacing the lowest levels of the watermarked
signal with the residual (8)

r=s-Qr(s) @)
5 = QL(S) +r= QL(Sw) +r. (8)
Note that the lossless-embedding system has significantly

smaller capacity than the raw G-LSB scheme, since the com-
pressed residual typically consumes a large part of the available
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Fig. 4. (Top) Embedding and (bottom) extraction phases of the proposed

lossless data-embedding algorithm.

capacity. The lossless-embedding capacity of the system is
given by

C(Lossless = C(GLSB - CResidual; )
where C'gsp is the raw capacity of G-LSB embedding (4) and
CResidual 18 the capacity consumed by the compressed residual.
This observation emphasizes the importance of the residual

compression algorithm; the better the compression, the higher
the lossless-embedding capacity.

A. Compression of the Residual

Efficient compression of the residual is the key to obtaining
high lossless-embedding capacity. Since the residual signal
represents the lowest levels of a continuous-tone image (7), the
compression is a challenging task. For small values of L, the
residual typically has no structure, and its samples are virtually
uniformly distributed and uncorrelated from sample to sample.
Direct compression of the residual therefore results in a rather
small lossless-embedding capacity. However, if the rest of
the image information is used as side-information, significant
coding gains can be achieved in the compression of the residual,
by exploiting the spatial correlation among pixel values and
the correlation between high and low levels (bit planes) of the
image.

The proposed method adapts the CALIC lossless image com-
pression algorithm [15], [16] for the lossless-embedding sce-
nario. The algorithm is comprised of three main components:
1) prediction, 2) context modeling and quantization, 3) condi-
tional entropy coding. The prediction component reduces spa-
tial redundancy in the image. The context modeling stage fur-
ther exploits spatial correlation and the correlation between dif-
ferent image levels. Finally, conditional entropy coding based
on selected contexts translates these correlations into smaller
code-lengths. The algorithm is presented below in pseudocode.

1) Sp=Predict Current Pixel().
2) d, t=Determine Context D, T(50).
3) $p=Refine Prediction ($o, d, t).
4) f=Determine Context O(s0p).
5) If (0 >0),

Encode/Decode Residual (rpo, d, 0);
else,

Encode/Decode Residual (L—1-ro, d, |6]).
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1) Prediction: A local neighborhood of a pixel which con-
sists of its eight-connected neighbors is seen in Fig. 5. In this
neighborhood, we denote the current (center) pixel(residual) po-
sition by O, and neighboring positions by W, NW, N, NE,
E, SE, S, and SW 3 The residual samples are encoded and
decoded in the raster scan order, i.e., left-to-right and top-to-
bottom (Fig. 5). This order guarantees that residuals at positions
W, NW, N, NFE have already been reconstructed when the
center residual, ro, is being decoded. In addition, all quantized
pixel values of the image, Q1. (s), are known as side information.
Therefore, at a given position, pixel values s = Qr(s) + r at
positions W, NW, N, NE and quantized pixel values Qp(s)
at positions E, SE, S, SW are known. To simplify the nota-
tion, we define a reconstruction function f(.), which gives the
best known value of a neighboring pixel, exact value if known,
or the quantized value plus (L/2) (to compensate for the bias in
the truncation Qr,)

if k € {W,NW,N,NE},

otherwise. (10)

flow) = {(ji(sk) +%,

A simple, linear prediction for the current pixel value is cal-
culated using the nearest four-connected neighbors of a pixel

§°:% >

ke{W,N,E,S}

f(sk). (1T)

Since this predictor is often biased, resulting in a nonzero mean
for the prediction error so — 5o, we refine this prediction and
remove its bias using a feed-back loop, on a per-context basis
as in [16]. The refined prediction is calculated as

S0 = round (5o + €(d, t)) (12)
where round() is the integer round and €(d, t) is the average
of the prediction error (e = sp — $o) over all previous pixels
in the given context (d,t). In order to avoid the propagation of
rounding errors, the average prediction error is computed from
the refined prediction instead of the raw prediction in (11). The
resulting predictor so is a context-based, adaptive, nonlinear
predictor [16].

2) Context Modeling and Quantization: Typical natural
images exhibit nonstationary characteristics with varying sta-
tistics in different regions. This causes significant degradation
in performance of compression algorithms that model the
image pixels with a single statistical model such as a universal
probability distribution. If the pixels can be partitioned into
a set of contexts, such that within each context the statistics
are fairly regular, the statistics of the individual contexts (e.g.,
probability distributions) may be exploited in encoding the
corresponding pixels (residuals) using conditional entropy
coding. If the contexts and the corresponding statistical models
are chosen appropriately, this process can yield significant im-
provements in coding efficiency. The context selection problem
addresses the fundamental trade-off concerning the number
of contexts. Increasing number of contexts better adapt to the
local image statistics hence improve the coding efficiency.

3The O indicates origin, and the symbols for other immediate neighbors are
based on the directions in standard map orientation, wherein N denotes north,
NW north west, and so on.
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Since the corresponding conditional statistics often have to be
learned on-the-fly observing the previously encoded (decoded)
symbols, convergence of these statistics and, thereby, efficient
compression is delayed when a large number contexts are used.
The reduction in compression efficiency due to large number
of contexts is known as the context dilution problem. A good
context model should avoid context-dilution by choosing the
optimum number of contexts.

As a first step, we adopt a variant of d and ¢ contexts from
[16], which are defined as follows:

>

ke{W,NW,N,NE,E,SE,S,SW}

1
A= g [f(s6) = 30| (13)

d=Q(A) (14)
1, i f(sk) > S0

b = {0./ otherwise (1s)

t=twlltn[ltellts (16)

where ¢ is obtained by concatenating the individual ¢, bits (16
values), and Q(A) is a scalar nonuniform quantizer with eight
levels, whose thresholds are experimentally determined so as to
include an approximately equal number of pixels in each bin.4
The context d corresponds to local activity as measured by the
mean absolute error of the unrefined predictor (11) and ¢ corre-
sponds to a texture context that is based on the relations of the
individual neighbors to the unrefined prediction.’

As described earlier in III-A-1, for each pixel, the (d, t) con-
text is determined and the prediction is refined by using the av-
erage prediction error for the previous pixels in the context, as
in (12). In the encoding step, the average prediction error for the
context is then updated using the prediction error for the current
pixel, in the decoding step, the pixel is first decoded and the up-
date follows.

Typically, the probability distribution of the prediction error
€ = s — § can be approximated fairly well by a Laplacian distri-
bution with zero mean and a small variance which is correlated
with the context d [17, p. 33]-[19]. In order to make precise
statements, for the following discussion, we assume that the
prediction error distribution p(e|d) is exactly Laplacian with
variance o4 determined by d. The arguments and the ensuing
conclusions and techniques, however, are largely applicable
even when the true distributions deviate from this assumption.
Fig. 6(a) shows a plot of the probability mass function (pmf)
p(e|d) under this assumption. Given $, the conditional proba-
bility distribution of pixel values p(s = § + €|d, §) is obtained
by shifting the prediction error distribution p(e|d) by 3. The
corresponding pmf is illustrated in Fig. 6(b).

In typical lossless image compression applications, pixel
values are coded using these conditional probability distribu-
tions. However, the residual compression problem set-forth in
this paper deviates from the usual lossless image compression
problem in two aspects. 1) The range of residuals, i.e., [0, L),
is typically much smaller than the range of pixel values, e.g.,
[0,255]. Therefore, instead of coding the complete range of

“4For the experimental results of Section IV, the quantizer Q()’s threshold are
{1,2,3,4,6, 10, 15}.

5In order to avoid context-dilution during coding, ¢ contexts are used only
during prediction and not while coding.
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Fig. 5. (Left) Raster scan order and (right) an eight-connected neighborhood.
Current pixel is in the center (O). Surrounding pixel positions are denoted by
their relative directions, W, NW , N, NE, E, SE, S, and SW.
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Fig. 6. (a) Prediction error PMF p(e|d) under Laplacian assumption (o, =
10). (b) Corresponding pixel PMF p(s = 5 + €|d, $). (c) Conditional PMF of
the residual (L =4), p(r|d, 5, Qr(s)).

pixel values, it is more efficient to encode only the residual. The
residual’s probability distribution for entropy encoding can be
obtained from the pixel statistics. 2) The quantized value of the
pixel Qr(s) is known, and this knowledge can be exploited.
We address these issues by introducing an additional context 6,
which is used only in the coding process and not in prediction.

In order to motivate the context #, note that the known
quantized value Qr(s) may be used as an additional context
directly. A known quantized pixel value Qp(s) limits the
possible values of the pixel s to the range [Q1(s), QL(s) + L).
This is illustrated in Fig. 6(b) as the region between the two
vertical broken lines. The conditional probability mass function
p(rld, $,QL(s)) can, therefore, be obtained by normalizing
this segment of the probability mass function to sum up to
1. Fig. 6(c) illustrates the conditional probability mass func-
tion p(r|d, $,Qr(s)) obtained for the segment illustrated in
Fig. 6(b). Entropy coding the residual using this conditional
pmf restricts the symbol set required, thereby improving com-
pression. Note, however, that there are typically a large number
of possible values for Qr(s), which would cause significant
context dilution since a large number of samples would be
required to learn the statistics for each of these contexts on the
fly. The characteristics of the Laplacian distribution, however,
allow for a significant reduction in the number of these contexts.

Since the Laplacian distribution decreases exponentially
about its peak at $, the conditional pmf p(r|d, $, Q1(s)) can be
determined from the relative positions of $ and Qp,(s). For in-
stance, if § < Q1 (s), the peak is at = 0 and the pmf decreases
exponentially and is identical for all cases corresponding to
$ < Qr(s). This case corresponds to the one illustrated in
Fig. 6(b) and (c). This allows all the cases corresponding to
$ < Qr(s) to be combined into a single composite context.
Similarly, if § > Qr(s) + L — 1, the peakisatr = L — 1
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6 = {£1,4£2} (L = 4). Symmetric contexts are merged by

remapping the residual values.

and the distribution increases exponentially, which may all be
combined into a single context as well. In other cases, when
QL(s) < $§ < QrL(s)+ L—1,thepeakisatr = § — QL(3).
Although total number of contexts after the above reductions
is not large, it can be reduced further, if the symmetry of the
Laplacian is exploited.

The symmetry of possible residual statistics is illustrated in
Fig. 7. In particular, the distributions with peaks at ry and L —
1 — 7y are mirror images of each other. If the residual values
are remapped (flipped 7,600 = L — 1 —744) in one of these two
contexts, the resulting distributions will be identical. As a result,
we can merge these contexts without incurring any penalty. Fur-
thermore, we encode the remapping instruction into the sign of
the 6 context. We assign each pair of symmetric distributions to
an opposite sign, equal magnitude context value (£6;). During
entropy encoding, first the residuals are remapped if necessary.
Subsequently, the absolute value of 6 is used as the coding con-
text, together with d.

The 6 contexts differentiate between statistically different
(after incorporating all symmetries) residuals using the knowl-
edge of $ and Qr(s). This enables the conditional entropy
coder to adapt to the corresponding probability distributions
in order to achieve higher compression efficiency. Minimizing
the number of such contexts allows the estimated conditional
probabilities to converge to the underlying statistics faster.
Therefore, it prevents context dilution and improves the com-
pression efficiency.

In our experiments, we have observed that separating the case
$=Qr(s) from $ < Qr(s)and $ > Qr(s) + L — 1 produces
even better compression results. We believe that the rounding in
(12) partially randomizes the distributions when Qr,(s) = § and
causes this phenomenon. When the corresponding new contexts
are created, total number of 6 contexts equals | (L + 1/2) +1].
The total number of coding contexts (d, 6) is 8| (L +1/2) +1].

3) Conditional Entropy Coding: In the final step, residual
values are entropy coded using estimated probabilities con-
ditioned on different contexts. In order to improve efficiency,
we use a context-dependent adaptive arithmetic coder [14]
as in [16]. In a context-dependent adaptive entropy coder,
conditional probability distribution of residuals in each coding
context (d, #) is estimated from previously encoded(decoded)
residual values. That is, the observed frequency of each residual
value in a given context approximates its relative probability of
occurrence. These frequency counts are passed to an arithmetic
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coder which allocates best code-lengths corresponding to given
symbol probabilities.

B. Selective Embedding and Compression

In order to maximize lossless data-embedding capacity for a
given embedding level, the algorithm presented above utilizes
every pixel in a given image, i.e., the residual for each pixel is
replaced and incorporated in the embedded data in compressed
form and the lowest L signal levels of the pixel are used for
embedding data. When a pixel is used for data embedding, it
increases the expected embedding distortion by a fixed amount
(5). The additional lossless-embedding capacity created by the
pixel depends on the compressibility of the residual for the pixel,
which in turn is may be approximated by the average code-
word length for the corresponding context. The average code-
word length varies significantly between different coding con-
texts. In our experiments, we have observed that residual com-
pression is more effective in the “smooth” regions of an image,
due to more accurate prediction of pixel values. This observa-
tion is supported by the steeper conditional residual probability
mass functions (small variance) in contexts corresponding to
small values of d, which roughly corresponds to the smooth re-
gions of the image. As a result, using pixels in these contexts
(regions) yields a higher embedding capacity for a fixed-em-
bedding distortion. Conversely, pixels corresponding to contexts
with large values of d contribute small or negative amounts of
capacity while still contributing similar amounts of distortion.
If these pixels were left unaltered and not included in the em-
bedding process, one would obtain significant reduction in dis-
tortion without an appreciable capacity penalty.

An algorithm which utilizes a subset of all pixels (a subset
mask) is called a selective embedding algorithm. In general,
the mask that maximizes the capacity at a given embedding
distortion may be found through an exhaustive search. Not only
does this approach significantly increase the computational
complexity, but also it requires a side channel for the transmis-
sion of the resulting mask (the mask determines which pixels
carry the embedded payload; therefore, it should be available
during extraction of the embedded payload). The algorithm we
adopt here calculates a suboptimal mask for a given embedding
distortion and level from either the original or watermarked
host signal. The proposed algorithm utilizes the structured
distortion property of the G-LSB embedding algorithm. It uses
the quantized images Q1. (s) = QL(sw) as a common basis for
mask calculation and, thus, avoids any reference to the residual.
The ranking of conditional codeword lengths of each residual
is estimated using the smoothness of the quantized signal at
that position. In particular, for each pixel, s, the local variance
in its four-connected quantized neighborhood is calculated

>

ke{W,NW,N,NE}

(Qr(sk) — w)? (17)

where = (1/4) 3o (w nw v vpy @(sk) is the mean of
same four pixels. In our experiments, this smoothness measure
is observed to be well correlated with the average codeword
length: Codewords are shorter in the average when the vari-
ance is low. Later, starting from the pixel with the lowest local
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variance, specified number of pixels are assigned to the mask.
This assignment process can be simplified by collecting a his-
togram of variance values and determining a threshold where
given number of pixels have a lower variance. Then, each pixel
is assigned to the mask if its variance is less than the threshold.
In practice, a discrete histogram of variance values is collected.
Discrete valued histogram bins may lead to a threshold value
which assigns more pixels to the mask than the number speci-
fied by the distortion. In this case, the assignment procedure is
carried out in two passes. In the first pass, all pixels below the
threshold except the ones which belong to the histogram bin im-
mediately before the threshold are assigned to the mask. In the
second pass, excluded pixels are traversed in a particular scan
order and assigned to the mask until total number of pixels in
the mask matches the specified number. Since this process uses
the quantized images which are not modified by the data em-
bedding, i.e., Qr(s) = Qr(sw), for a given embedding distor-
tion, the results of the mask selection are identical for the em-
bedding and extraction processes ensuring that synchronism is
maintained.

This extension improves the capacity-distortion performance
of the original algorithm, at the expense of increased computa-
tional burden of calculating the mask.

C. Capacity Control

Thus far, we have concentrated on maximizing the lossless-
embedding capacity given an embedding level and a target dis-
tortion. In most practical applications, however, the complemen-
tary problem is of interest, where the goal is to determine the em-
bedding level and mask which result in the least possible distor-
tion, while providing the given target capacity. As the capacity
consumed by the compressed residuals—thus, the lossless-em-
bedding capacity—varies with the underlying image statistics,
it is not possible to accurately estimate the embedding level and
distortion from the target capacity.

A more suitable approach that is utilized here, is to vary the
embedding level L and the target distortion in the method of
Section III-B so as to achieve the desired capacity. In order to
allow extraction and recovery, the embedding level L, and the
final target distortion must be communicated to the receiver.
This is achieved by modifying LSBs of a small number of pixels
at fixed positions, say first n pixels, which are excluded during
the lossless-embedding phase. In order to ensure recovery, the
original LSBs of these pixels are transmitted as a part of the
payload. In order to limit the required through-put from this
additional channel, only a limited set of level-distortion pairs
are used. After obtaining the level and distortion parameters
through the additional fixed channel, the extraction algorithm
calculates the embedding mask which maximizes the embed-
ding capacity as outlined in Section III-B. As a result, the ca-
pacity-control problem, i.e., minimizing the distortion given a
target capacity at the embedding phase, is reduced to finding the
embedding level-distortion pair (from a limited set of such pairs)
which has the minimum distortion and satisfies the capacity re-
quirement. The achievable capacity of a given level-distortion
pair is obtained by compressing the residual and calculating the
G-LSB embedding capacity with the given parameters. An it-
erative algorithm, which searches through level-distortion pairs
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Fig. 8.

512 x 512 grayscale images used for testing.

in the given limited set, finds the best operating point among all
possible points. In a simple instance of such an iterative tech-
nique, the level-distortion pairs (possible operating points) are
ordered starting from the lowest distortion. The algorithm se-
quentially computes the capacities for each element in this list,
until the target capacity is met. If the initial target cannot be
achieved under desired distortion constraints, some applications
may alternatively allow for reduced target rates. For instance,
the image authentication method in [7] can lower the required
embedding rate at the expense of reduced tamper-localization
accuracy.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The lossless G-LSB embedding algorithm and its selective
embedding extension have been implemented and tested on a
number of images. The images used in the evaluation are shown
in Fig. 8. The images range from fairly smooth images, e.g.,
F-16, to highly textured images, e.g., Mandrill. We first present
an overview of the implementation issues. Thereafter, the per-
formance of the core algorithm and its extension are presented
and compared to the existing schemes.

A. Implementation Issues

The adaptive binary to L-ary conversion algorithm, outlined
in Section II-A, is a variant of the arithmetic (de)coding process
with equal symbol probabilities. Therefore, an integer imple-
mentation of arithmetic coding from [14] is employed. Over the
images listed, this implementation achieves a practical capacity
within 4 bits of the theoretically estimated embedding capacity
in (4). The same algorithm is also used as the adaptive arith-
metic coder for residual compression.

In capacity-controlled selective embedding (Section III-C),
level-distortion pairs are coded by the level and pixel-percentage
pairs. In order to accelerate the optimization search and reduce
the signaling overhead, possible embedding levels are limited
to L = [2, 16] and percentage of modified pixels is quantized to
one of {25%, 50%, 75%, 100%}. These level-percentage pairs
are further coded and represented by a single overhead byte.
The values mentioned here are selected for illustrative purposes
and can be customized based on the individual requirements of
specific applications.
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In order to guarantee flawless operation, we define a simple
protocol and an associated syntax for the embedded payload.
First, the overhead byte representing the embedding parame-
ters is embedded in the LSBs of first eight pixels of the raster
scan order. The original values of these pixel LSBs are buffered
and these positions are excluded in any subsequent embedding
mask. Payload to be embedded using the G-LSB algorithm con-
sists of four parts: 1) length of message data in bytes, 2) mes-
sage data, 3) buffered LSBs, and 4) compressed residual de-
scription. The length of the message data is represented by two
bytes allowing for a maximum length of 64 K bytes (a vari-
able size length descriptor can be utilized if message data is ex-
pected to be larger). The length of the compressed description
is not specified since the total number of coded symbols (resid-
uals) is defined by the pixel-percentage parameter. The pay-
load data constructed according to this syntax is embedded into
the image using G-LSB embedding algorithm. A total of three
bytes, two-byte length, plus the overhead byte, is the overall
overhead. In applications where a fixed-length message is em-
bedded, the overhead can be reduced accordingly.

B. Experimental Results

The lossless-embedding capacity-distortion performance of
the proposed algorithm has been evaluated for the 512 x 512
grayscale images seen in Fig. 8. The lossless capacity obtained
by embedding at various levels for each of these six images is
plotted against the embedding level L in Fig. 10. A subset of
these results is tabulated in Table I, where the average embed-
ding distortion induced when the full capacity is utilized is also
included. These average distortion values obtained from the wa-
termarked images agree quite well with the theoretical results
from (5). From Fig. 10 and Table I, we can see that the capacity
of the proposed method is heavily dependent on the character-
istics of the host image. Images with large smooth regions, e.g.,
F-16, accommodate higher capacities than images with irreg-
ular textures, e.g., Mandrill. In smooth regions, the predictor is
more accurate, and, therefore, conditional residual distributions
are steeper with smaller variances. These distributions result in
shorter code lengths and, thus, higher embedding capacities.

For each individual image, the capacity of the scheme in-
creases roughly linearly with number of levels (or exponentially
with number of bit planes). This is due to stronger correlation
among more significant levels (bit planes) of the image and the
algorithm’s ability to exploit this correlation. The rate of the in-
crease, however, is not entirely constant either among images or
throughout the levels.

The visual impact of the data embedding can be seen in
Fig. 9, where the original “Gold” image is compared to the
watermarked version in which a random message of over 3400
Bytes (27200 bits) is embedded using an embedding level of
L = 6. The visual distortion introduced by the embedding is
quite small, though, upon close inspection, a small amplitude
white noise may be observed in the watermarked version.
Common applications of lossless embedding such as meta-data
tagging and authentication have fairly small to modest capacity
requirements, which can be met with relatively small visual
distortion in the watermarked image.
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TABLE 1
AVAILABLE CAPACITY (BYTES) VERSUS EMBEDDING
LEVEL AND AVERAGE PSNR (DECIBELS) FOR EACH TEST IMAGE

Level(L) 2 3 4 5 6 8 10 12 14 16
PSNR(dB) | 51.1 | 46.9 | 44.2 | 42.1 | 40.5 | 38.0 | 36.0 | 34.4 | 33.0 | 31.9
F-16 2190 | 4757 | 7640 | 10155 | 13452 | 17863 | 22673 | 26962 | 30828 | 34239

Mandrill 80 241 | 458 746 1112 | 1910 | 2815 | 3849 | 4640 | 5793

Boat 629 | 1707 | 3074 | 4620 | 6219 | 9835 | 13190 | 16313 | 18674 | 22282

558
309
598

1503
879
1837

Barbara 2692 | 4094 | 5551 | 8298 | 11198 | 13622 | 16172 | 17604

Gold 1576 | 2451 | 3441 | 5656 | 8007 | 10445 | 12376 | 14569

Lena 2856 | 4297 | 5893 | 9347 | 12712 | 16768 | 19117 | 22127

Fig. 9. (Left) Original and (right) watermarked Gold image. (PSNR =
40.5 dB, 3441 bytes embedded, and embedding level L = 6).

081 i L AR RTTTI T :

0.6

Barbara

Capacity (bpp)

0o K g

02 A

Embedding Level (L)

Fig. 10. Lossless embedding capacity C,oss1ess Versus embedding level L for
all images.

The images in the test set above were all of a fixed size of
512 x 512 pixels. In order to test the effects of image size on
the embedding capacity, the Gold image was divided into four
quadrants and the subimages corresponding to each quadrant
was independently used for lossless embedding. At level L =
2, the capacity degrades by 13% as result of subdividing the
image. Starting from top-left and in clockwise direction em-
bedding capacities are 83, 94, 61, and 30 bytes with a total of
268 bytes instead of 309 bytes. This reduction is induced by the
modeling cost associated with multiple contexts: the adaptive
coding scheme employed here requires a learning stage—when
the algorithm adapts to the particular image’s statistics—during
which the compression efficiency is low. For smaller images,
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Percent Reduction in Capacity
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Embedding Level (L)

Fig. 11. Percent capacity degradation due to independent processing of
quadrants of Gold image as a function of embedding level L.

the relative overhead of the learning stage is larger because it is
amortized over fewer pixels. Similarly, the signaling overhead
has a bigger impact in smaller images.

Fig. 11 shows the capacity degradation—as a percentage of
the initial capacity—on the Gold image for embedding levels
L = 2,3,...16. In all cases, the subdivision into smaller im-
ages reduces the capacity but the percentage reduction in ca-
pacity shows a predominantly decreasing trend with increasing
embedding level L. At a first glance, this observation contradicts
the modeling cost explanation: The number of coding contexts
(d, #) increases with increasing embedding level. One would,
therefore, expect a correspondingly greater loss in the smaller
subdivided images due to the increase in adaptation overhead
of the context adaptive coder to these individual contexts. This
explanation, however, implicitly assumes that the residual sta-
tistics at each embedding level are similar, and, therefore, the
adaption overhead is directly related to the number of contexts.
In practice, the residual statistics differ significantly for different
embedding levels. At higher embedding levels, the stronger cor-
relation between image levels results in a distribution of the
residuals with a smaller variance in comparison to the energy of
the residual. As a result, reasonable approximations to residual
statistics at these levels can be obtained more quickly, i.e., the
adapting requires a smaller number of samples. Consequently,
the relative impact of the adaptation overhead with smaller sub-
divided images is reduced as the adaptation level L increases,
even though the number of coding contexts increases. The con-
tribution of the fixed signaling overhead is also de-emphasized
at higher levels, due to the net increase in overall capacity.

The three images, Mandrill, Barbara, F-16, corresponding,
respectively, to low, medium- and high-embedding capacities
were selected as representatives for the evaluation of the selec-
tive embedding extension to the lossless embedding algorithm
described in Section III-B. The lossless embedding capacity and
distortion values obtained for embedding levels L = 2, 4, and
8 by utilizing one to four fourths, i.e., 25%, 50%, 75%, and
100% of all pixels in data embedding for each of these cases is
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TABLE 1I
SELECTIVE EMBEDDING EXTENSION: AVAILABLE CAPACITY
(BYTES) AND AVERAGE PSNR (DECIBELS)

Level | % Pixels used | PSNR (dB) ‘ F-16 ‘Mandrill ‘Barbara

2 25 57.1 1393 50 302
2 50 54.1 1906 73 505
2 75 52.4 2159 76 563
2 100 51.1 2190 80 568
4 25 50.2 2666 301 1410
4 50 47.2 5731 424 2413
4 75 45.5 7452 445 2668
4 100 44 .2 7640 458 2692
8 25 44.0 4643 1181 2965
8 50 41.0 10964 1721 7233
8 75 39.4 17010 1850 8199
8 100 38.0 17863 1910 8298

listed in Table II. The specific pixels corresponding to these in-
dividual percentages are appropriately chosen so as to minimize
distortion using the process described in Section III-B. Note that
these percentage points are chosen for illustrative purposes. A
different or a larger set of percentage values may be used, if de-
sired. Likewise, other embedding levels can also be utilized. In
Table II, we observe that the minimum achievable distortion is
reduced (down to 57.1 dB at L = 2 with 25% pixels selected for
embedding) by the extension. This property is useful in appli-
cations which require small capacities and ultralow embedding
distortions. The selective embedding extension also offers ad-
ditional operating points with different distortion values which
further improves the capacity distortion scalability provided by
the different embedding levels of the G-LSB algorithm. Since
the selective embedding process chooses pixels that are likely
to provide the largest embedding capacity and, therefore, its ca-
pacity does not drop in proportion to the percentage of pixels
used in embedding but at a much smaller rate. This is apparent
in Table II where we see that the embedding distortion may be
reduced by at least 1 dB with a negligible (less than 2%) re-
duction in the embedding capacity. The selective modification
extension therefore leads to improved capacity-distortion per-
formance. For instance, the embedding capacity for Mandrill
at approximately 47 dB is 241 Bytes in the original method
(Table I). On the other hand, the extension yields a capacity of
424 Bytes—a 76% increase—at a slightly lower distortion (47.2
versus 46.9 dB in the original algorithm) when 50% of all pixels
are used. Similar trends are seen at various points for other im-
ages, as well.

The capacity-distortion performance of the baseline lossless
GLSB algorithm (100%) and the selective embedding extension
at the chosen embedding percentages of 75%, 50%, and 25%
is compared for the Barbara image in Fig. 12, where the loss-
less-embedding capacity is plotted against the PSNR for dif-
ferent values of the embedding level L for each of these embed-
ding percentages. As expected, a reduction in embedding per-
centage reduces the lowest achievable distortion (corresponding
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to L =2) pushing the lower ends of the corresponding curves
further to the right. In most cases, little or no capacity penalty
is incurred in the process for this lowest point. As a result, at
the low end of the distortion scale, reducing the embedding
percentage causes the capacity-distortion curve to move to the
right, adding lower distortion points or improving capacity dis-
tortion performance in this region. Reducing the embedding per-
centage does not, however, guarantee a universally superior ca-
pacity distortion performance. This is seen in Fig. 12 for the Bar-
bara image, where the performance of 25% selective embedding
extension drops below the original (100%) scheme as one moves
to the higher distortion regions (higher values of ). The deterio-
ration in capacity-distortion performance can be attributed to the
reduced effectiveness of the selection process at higher embed-
ding levels. As indicated in Section III-B, to ensure the synchro-
nization between the embedder and the detector, the selection
of embedding regions is based on the smoothness of the quan-
tized images )1,(s), and is therefore progressively impaired as
the embedding level increases and correspondingly the quanti-
zation noise. Thus the simple selection criterion based on (17)
can cause in exclusion of pixels whose inclusion in the embed-
ding would be beneficial from a capacity-distortion perspective.
In addition, the reduced number of pixels in the selective embed-
ding also increases the impact of the modeling cost. The com-
bined effect of these factors can result in poorer capacity-distor-
tion performance for the selective embedding at higher distor-
tions.

C. Performance Comparison With Prior Art

We compare the performance of the proposed method against
other Type-II lossless data-embedding algorithms. Type-I algo-
rithms are excluded from this comparison due to their inferior
distortion-capacity performances.

1) Independent Bit-Plane Compression Methods: Early
work [12], [13] on Type-II lossless embedding proposed com-
pressing one of the LSB planes of the image by either using a
bi-level lossless image compression algorithm, e.g., JBIG, or by
using a dictionary based general purpose compression scheme,
e.g., LZW (gzip). We replicated these methods by extracting
the different LSB-planes of the images and compressing them
by JBIG and gzip compression utilities. The capacity estimates®
obtained through this process are tabulated in Table III. Note
that the bit planes are numbered starting from the least sig-
nificant, #1, proceeding with more significant ones (LSB #4
corresponds to the fourth least significant bit plane). From the
table, it is apparent that direct compression approaches which
attempt to compress the residual signal—or LSB planes—alone
without utilizing the rest of the image perform significantly
worse than the proposed scheme. In many cases, the com-
pression algorithms actually expand the data. The conditional
entropy coding scheme adopted here, however, successfully
exploits the intra pixel correlation among the different levels
of the same pixel and the inter-pixel correlations among neigh-
bors, thus provides improved embedding capacities even at low
distortions.

6In these experiments, file sizes are compared; it may be possible to slightly
increase these capacity values by eliminating parts of the file headers, e.g., image
size.
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Fig. 12. Capacity-distortion performance of selective embedding extension on
Barbara image.

2) RS Embedding Method: Recently, Goljan et al. [10]
reported an elegant Type-II lossless data-embedding method
called RS Embedding which offers significantly better results.
In this method, first a flipping function F4(+) is defined. The
flipping function F4(+) is a permutation on the set of possible
pixel values, which swaps pairs of pixel values, separated by a
defined amplitude A. F(-) with amplitude of one corresponds
to LSB flipping. Small groups of pixels from the image, G,
are classified into regular (R), singular (), or unusable (U)
classes based on the flipping function and a suitably chosen
discriminant function, f(-). In particular, a group G is regular
if f(FA(G)) > f(G), singular if f(Fa(G)) < f(G) and
unusable otherwise, where the flipping function is applied to
one or more the pixels constituting the group. The discriminant
function is intended to measure the smoothness of the group of
pixels and for suitably chosen pixel groups and discriminant
function, a majority of pixel groups appear regular in typical
natural images [10].

From the definition of R, S, and U groups, it is apparent that
the flipping function transforms an R group of pixels in to an S
group, and S group into an R group and a U group in to a (dif-
ferent) U group. In addition, application of the flipping function
twice to any group restores it to its original pixel values. These
properties are the basis for information embedding and recovery
in the RS embedding method. A binary payload is embedded in
an image as a string of R and .S features where, for instance, R
represents the binary value 1 and S represents 0. U groups are
skipped in the embedding and extraction process. The image
pixel groups are scanned in a predefined order. For each R or S
group, if the R/S classification matches the payload bit to be
embedded, it is left unaltered; if not, the flipping function is ap-
plied to the group to ensure that the R/.S classification matches
the payload bit. To enable recovery of the original host at the re-
ceiver, the bit stream of RS features corresponding to the orig-
inal image is compressed and included in the embedded pay-
load. Thus, in the embedding, first the pixel groups in the orig-
inal host image are scanned in a predefined order and the status
of R and S groups is computed as a bit stream (R = 1 and
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TABLE III
AVAILABLE CAPACITY (BYTES) AND AVERAGE PSNR (DECIBELS) WHEN ONE
OF THE LSB-PLANES 1S COMPRESSED WITH LZW OR JBIG ALGORITHMS.
ZERO CAPACITY INDICATES NO OR NEGATIVE CAPACITY

Bit-plane 1 2 3 4
PSNR (dB) 51.1 | 45.1]39.1|33.1
F-16 (LZW) 0 7 1033 | 4756
F-16 (JBIG) 0 0 1264 | 7928
Mandrill (LZW) 0 0 0 0
Mandrill (JBIG) 0 0 0 0
Barbara (LZW) 0 0 0 1068
Barbara (JBIG) 0 0 0 1174

S = 0), with the U groups simply skipped in the process. The
RS bit stream is then compressed to obtain a smaller bit-stream
C. In the specific implementation used here, a binary adaptive
arithmetic coder is used to compress the original string of R, S
features. The message data is concatenated with the compressed
bit-stream C' to form the payload which is finally embedded in
the image as outlined above. Suitable header information is in-
cluded while concatenation to allow it to be undone.

In the data extraction and recovery process, the R and S
bit-stream (R = 1 and S = 0) of the watermarked image is
computed by scanning the image groups in the same order as
the embedding process (once again ignoring U groups). The bit
stream is partitioned in to the extracted message data and the
compressed bit-stream C' representing the R, S values for the
original host image by reversing the concatenation step. Decom-
pression of C' yields the R, S values for original host. Finally,
the original host is recovered by again scanning the image pixel
groups and restoring the original R/S status of the groups by
applying the flipping function to the R/S groups whose classi-
fication differs from the original.

As in all Type-II lossless-embedding schemes, the capacity
available for lossless embedding depends on the compressibility
of the string representing the original R, S features. The com-
pression scheme exploits the imbalance between the number of
R and S groups. The Oth order entropy of the R and S bit stream
corresponding to the original host image, therefore, provides an
accurate estimate of the fraction of the capacity that is consumed
by the compressed recovery information, and equivalently the
lossless-embedding capacity.

The capacity of the RS Embedding scheme depends on the
specific choices for the pixel scan-order, the pixel groups G, the
discriminant function f(+), and the amplitude A of the flipping
function. Increasing amplitude A typically causes a monotonic
increase in the lossless-embedding capacity and in the embed-
ding distortion. For a given flipping amplitude A, the imbalance
between the number of R and S groups is strongly dependent
on the choice of the discriminant function and pixel groups.
For our evaluation, we consider the two-pass “checkerboard”
scheme that offers the highest capacity among the options eval-
uated in [10]. In this scheme, the image is divided into “Black”
and “White” pixels in the same way as a chess board [the pixel
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TABLE IV
AVAILABLE CAPACITY (BYTES) AND AVERAGE PSNR (DECIBELS)
CORRESPONDING TO SELECTED AMPLITUDES FOR RS VECTOR ALGORITHM

Amplitude A 1 2 3 4 5 6

PSNR (dB) 52.9 |1 46.4 | 42.5 | 39.8 | 37.8 | 36.1
F-16 1529 | 4182 | 6604 | 8402 | 9746 | 10901
Mandrill 66 257 | 573 987 | 1439 | 1940
Barbara 327 | 1228 | 2434 | 3632 | 4818 | 5758

at (¢, 7) is black if i 4+ j is odd, and white otherwise]. In the
first pass, the black pixels are traversed in raster scan order (left
to right and top to bottom) and the white pixels are scanned in
the second pass similarly. The pixel group for computing the
discriminant function is defined as the nearest four-connected
neighbors of the current pixel being traversed, with the origin
O representing the current pixel and the four neighbors W, IV,
FE, and S, as defined in Fig. 5. The discriminant function for a
grouping centered at origin O defined as

>
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f(s0,5w,sN,5E,5W) = lso —sk|  (18)

and the application of flipping function to a group consists of
flipping the value for the pixel at the origin using the defined
amplitude flipping function leaving other pixels unaltered. Note
that the pixel groups in this scheme are overlapping; however,
the restriction of the flipping function to the pixel at the origin
and use of the checkerboard pattern ensures proper embedding
and recovery, since each pixel is traversed and potentially
flipped only once.

The version of RS Embedding outlined above was tested on
the images, Mandrill, Barbara, and F-16. The amplitude for the
flipping function A was varied from 1 to 6 in order to explore the
capacity-distortion performance of the scheme. Table IV lists
the capacity obtained (in bytes)” and average embedding distor-
tions for each of these embedding amplitudes. In Fig. 13, ca-
pacity-distortion performance of the RS Embedding scheme is
compared with the lossless G-LSB algorithm (at 100% embed-
ding). From a capacity distortion perspective, the lossless GLSB
(LGLSB) algorithm outperforms RS Embedding at most points
with the exception of the lowest distortion points corresponding
to L =2 and A = 1. In this range, RS Embedding achieves an
embedding capacity comparable to LGLSB with a significantly
lower distortion.

Though RS Embedding with A = 1 and LGLSB with L = 2,
both modify the LSBs of the pixel values similarly, the RS Em-
bedding has a distortion advantage since it modifies only pixels
corresponding to R and S groups, while skipping U groups. As
a result, pixels belonging to U groups do not incur any embed-
ding distortion, and a lower overall distortion is attained. The se-
lective embedding extension allows LGLSB to similarly extend
its domain of operation to lower distortions. In order to illustrate
this, the selective embedding LGLSB at 75% is compared with
RS Embedding in Fig. 14, where the capacity is plotted along

TThese results are not adjusted for the signaling overhead (up to 3 bytes).
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Fig. 13. Capacity-distortion performance comparison between baseline

(100%) lossless GLSB-embedding algorithm and R.S-embedding.

the ordinate with the embedding distortion along the abscissa
for the two schemes. At L = 2 the LGLSB induces a distortion
value similar to that of the RS Embedding at A = 1, with slightly
higher capacity. For each of the three images, the LGLSB ex-
tension at 75% embedding capacity distortion curves lie above
the corresponding curves for RS Embedding, indicating the im-
proved performance.

The LGLSB algorithm and its selective embedding extension
has an advantage over the RS Embedding scheme [10] in three
respects.

1) Lossless G-LSB allow greater flexibility and finer ca-
pacity-distortion granularity. In particular, selective
embedding scheme can modify an arbitrary percentage of
pixels at a given level. Thus, it can operate at a specified
distortion value. This property surpasses the granularity
offered by different amplitudes in RS Embedding, unless
the embedding amplitude is varied from pixel to pixel
at the expense of additional complexity and signaling
overhead.

The proposed method can achieve a significantly higher
embedding capacity for a comparable distortion. This
demonstrates the effectiveness of the selected compres-
sion technique. The capacity differential increases as the
allowable embedding distortion is increased and higher
levels or amplitudes are used. Besides the effectiveness
of the compression, the higher capacity difference at
higher embedding levels is related to the different pixel
modification methods employed by each algorithm. In RS
Embedding each pixel is modified by a single amplitude,
A, to represent (encode) a binary symbol. This process
has an irreversible embedding capacity of 1 bpp and
induces an average MSE distortion of A2 /2. On the other
hand, in G-LSB embedding each pixel is modified by a
multitude of possible values, and it represents (encodes)
an L-ary symbol. This induces an average MSE distortion
of L? — 1/6 with an irreversible capacity of log> (L) bpp.
Note that the lossless embedding capacity does not scale

2)
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Fig. 14. Capacity-distortion performance comparison between extended
lossless GLSB-embedding algorithm at 75% embedding and R.S-embedding.

accordingly because L-ary symbols have longer associ-
ated codeword lengths during compression. Nevertheless,
the compression scheme utilizes the redundancy among
different image levels—and L L-ary symbol values—and
as a result the lossless-embedding capacity is further
improved.

The lossless G-LSB embedding can achieve capacities ex-
ceeding 1 bpp, while RS Embedding’s capacity perfor-
mance is bounded from above by 1 bpp, regardless of
the allowable distortion. When images with large very
smooth regions are used, e.g., document images, the orig-
inal image features can be compressed very effectively
and the lossless-embedding capacity approaches the irre-
versible-embedding capacity values mentioned above. In
these cases, G-LSB scheme may achieve capacities well
above 1 bpp by increasing the embedding distortion.

Despite the above disadvantages, the RS embedding algo-
rithm has significant complexity advantages over the LGLSB
method. It has a relatively simpler implementation, lower
memory requirements and lower computational costs.

3) Difference Expansion Method: A type-1I embedding al-
gorithm based on reversible integer transforms and difference
expansion is proposed in [11]. The algorithm particularly em-
phasizes high payloads. For the Lena image the comparisons
included in [11] demonstrate that for the higher capacity (and
correspondingly higher distortion PSNR< 45 dB) the technique
provides better embedding capacities. Low-distortion regions
are not included in the comparisons.

3)

V. CONCLUSION

A novel lossless (reversible) data embedding (hiding) tech-
nique is presented. The technique provides high-embedding ca-
pacities, allows complete recovery of the original host signal,
and introduces only a small distortion between the host and
image bearing the embedded data. The capacity of the scheme
depends on the statistics of the host image. For typical images,
the scheme offers adequate capacity to address most applica-
tions. In applications requiring high capacities, the scheme can
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be modified to adjust the embedding parameters to meet the ca-
pacity requirements, thus trading off intermediate distortion for
increased capacity. In such scenarios, the G-LSB embedding
proposed in the current paper is significantly advantaged over
conventional LSB-embedding techniques because it offers finer
grain scalability along the capacity distortion curve. The per-
formance of the algorithm—and its extensions—is rigorously
tested with representative images and compared with the ear-
lier methods. The proposed algorithm is shown to out-perform
bit-plane compression and RS embedding methods, especially
at moderate- to high-distortion regions.
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