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AbstractIn this paper, we consider the alternating projection algorithm suggested by Ziskindand Wax [13] for parameter estimation of superimposed complex sinusoids (cisoids)embedded in noise, and show how the objective function being maximized at each stepcan be expressed as a non-linear function of the Fourier transforms of the observeddata and discrete cisoids. We obtain elegant expressions for the objective functions forthe case when the number of cisoids is two and develop a discrete Fourier transform(DFT) based algorithm for this case. The expressions for the case of three or morecisoids are quite cumbersome, but have a nice recursive structure that is illustratedby taking the case of three cisoids as an example. The details of the recursion for thegeneral case are given in the appendix. We discuss some of the approximations andsimpli�cations that lead to substantial reduction in computation. Simulation resultsare presented to show how the developed algorithm performs in comparison with theother techniques.
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1 IntroductionThe problem of estimating the parameters of superimposed complex sinusoids (cisoids) innoise from limited data has received considerable attention in the past few years. It is wellknown that the discrete Fourier transform (DFT) is an e�ective and e�cient method ofestimating the frequencies and the amplitudes of cisoids if there is only one cisoid, or ifthe frequencies are well separated with respect to the inverse of the observation interval.However, when there are multiple cisoids with closely spaced frequencies, DFT processingproves ine�ective. In these cases, one has to resort to high resolution methods.One class of high resolution methods is based on linear prediction formulation. Among thealgorithms in this class, modi�ed linear prediction approaches [10, 6] and the total leastsquares method [7, 8] have proved very e�ective. While the performance of these methodsat high signal to noise ratio (SNR) is extremely good ( often approaching the Cram�er Raobound (CRB) ), they su�er from a drawback that their threshold SNR is reasonably large.Another class of estimation algorithms is based on the non-linear least squares approach.If the noise is assumed to be white Gaussian, maximum likelihood (ML) estimation falls inthis category. These algorithms exploit the information available about the signal to themaximum extent possible. While such algorithms perform well and have low threshold SNR,their computational complexity is too high to allow their use in practical applications. Hence,the emphasis in this class of algorithms has been towards simpli�cations and approximationsthat would make them computationally feasible. Several attempts have been made in thisdirection which have lead to iterative quadratic maximum likelihood (IQML) technique [5, 3],alternating projection (AP) algorithm [13, 2, 11] and constrained total least squares (CTLS)method [1]. 2



In this paper, we consider the AP algorithm of Ziskind and Wax [13]. They formulatedthe dual of the cisoid parameter estimation problem arising in the direction of arrival esti-mation context as a non-linear least squares problem, and proposed the use of alternatingmaximization to convert the multi-dimensional maximization into a sequence of simpler onedimensional maximizations. In the DOA estimation scenario, with no constraints on thearray response and geometry, they proposed a direct search for the maxima over the entirearray manifold at each step. However, in the cisoid parameter estimation problem (with uni-formly spaced samples), the structure in the problem can be exploited to implement the onedimensional search for maxima in an e�cient manner. In this paper, we show how the objec-tive function being maximized at each step can be expressed in terms of Fourier transformsof the data and of discrete cisoids, thereby allowing a DFT based implementation of thealgorithm. Though the ideas of alternating maximization and projection matrix decompo-sition have been considered earlier, the idea of extended decomposition and the recognitionthat the resulting function can be expressed completely in terms of Fourier transforms arenew. In addition, the proposed algorithm gives considerable computational saving over anAP algorithm involving a direct search over a grid of angular frequencies. Also, due to thestructure of the algorithm, one needs to calculate the DFTs only once, and further manip-ulations may be done in the Fourier domain itself. The development of our algorithm hassome similarity with reduced e�ort coarse search technique proposed by Van hamme [11].But, our development goes beyond that of Van hamme as noted in Section 4.The paper is organized as follows. In Section 2, we give the signal model under considerationand formulate the parameter estimation as a non-linear least squares problem. In Section3, we give the development of the AP algorithm for the cisoid parameter estimation case.In Section 4, we develop the DFT based algorithm for two cisoids' case. In Section 5, weillustrate the structure of the algorithm for multiple cisoids by considering the three cisoids'case as an example. Computer simulation results comparing the performance of the proposed3



algorithm with other methods and with the CRB are presented in Section 6, and concludingremarks are given in Section 7.
2 Signal Model and Problem StatementConsider a sequence of N uniformly spaced and noise corrupted samples from a signal con-sisting of M superimposed cisoidsy(n) = MXi=1 siej !i n + v(n); n = 0; 1; : : : ; N � 1 (1)where !i is the angular frequency of the ith cisoid , si is its complex amplitude and fv(n)gis a zero mean, stationary, complex valued random process with covariancesE[v(n) v�(m)] = �2 �nm (2)E[v(n) v(m)] = 0 (3)where �nm denotes the Kronecker delta and superscript `*' denotes conjugation.The problem to be solved is now stated as follows : assuming that the number of signals,M , is known, estimate the signal parameters f!igMi=1 and fsigMi=1 from the observed data.Denoting the parameters to be estimated as! = [!1; !2; : : : !M ]T (4)s = [ s1; s2; : : : sM ]T (5)we formulate the estimation problem as!̂ ; ŝ = arg min! ; s N�1Xn=0 �����y(n)� MXi=1 siej !i n�����2 (6)4



Now, de�ning the vectors y and a(!) asy = [ y(0); y(1); : : : ; y(N � 1) ]T (7)a(!) = [ 1; ej !; ej 2!; : : : ej (N�1)! ]T (8)and the matrix A(! ) as A(! ) = [ a(!1) ; a(!2) ; : : : ; a(!M) ] (9)we can rewrite (6) as !̂ ; ŝ = argmin! ;s k y �A(! ) s k2 (10)where k � k denotes 2-norm. We may note here that this estimate corresponds to the MLestimate if the noise is Gaussian.
3 Alternating Projection (AP) AlgorithmThe minimization in (10) is a multidimensional non-linear minimization in 3M real variables,and in its given form it is highly computation intensive. Reduction in the dimensionality ofthe problem can be achieved by noting that for any ! , the optimum value of s is given byŝ = A#(! )y (11)where superscript `#' denotes pseudoinverse. Substituting (11) in (10), we get!̂ = arg min! k y �PA(! ) y k2 (12)ŝ = �A+(!̂ )A(!̂ )��1A+(!̂ )y (13)where superscript `+' denotes Hermitian transpose and PA(! ) is the projection matrixwhich projects a vector onto the column space of A(! ). PA(! ) is given byPA(! ) = A(! ) (A+(! )A(! ))�1A+(! ) (14)5



Equation (12) may alternatively be written as!̂ = arg max! k PA(! ) y k2= arg max! y+ PA(! ) y (15)This is a M dimensional nonlinear maximization and is still computationally expensive.Using the alternating maximization technique, Ziskind and Wax [13] transformed it into asequence of simpler one-dimensional problems. The technique is iterative; at every step amaximization is performed with respect to a single parameter while all other parametersare held �xed. That is, the estimate of !i at (k + 1)th iteration is obtained by solving thefollowing one-dimensional maximization problem!̂(k+1)i = arg max! y+P[A( ~! (k)i );a(!)] y (16)where ~! (k)i denotes the (M � 1)� 1 vector of the pre-estimated parameters~! (k)i = [ !̂(k+1)1 ; !̂(k+1)2 ; : : : ; !̂(k+1)i�1 ; !̂(k)i+1 ; : : : ; !̂(k)M ]T (17)For initializing the algorithm we begin by solving the problem for a single cisoid,!̂(0)1 = arg max! y+ Pa(!) y (18)Next, we solve for !̂(0)2 with the �rst cisoid angular frequency �xed at !̂(0)1 ,!̂(0)2 = arg max! y+ P[a(!̂(0)1 );a(!)] y (19)Continuing in this fashion at ith initialization step, we determine the initial estimate of theith angular frequency, !̂i(0), assuming that there are only i cisoids and (i � 1) of these arelocated at their pre-estimated frequencies !̂(0)1 ; !̂(0)2 ; : : : ; !̂(0)i�1. The procedure is continued tillall the initial values are determined. 6



The maximization in (16) still involves considerable computation due to the matrix inversionand matrix-matrix multiplication required at each step. We now use a basic property ofprojection matrices ( known as the projection-matrix update formula [13] ) to reduce thecomputation further.3.1 Projection Matrix DecompositionLet B and C be two arbitrary matrices with the same number of rows, and let P[B;C] denotethe projection-matrix onto the column space of the augmented matrix [B;C]. Then fromthe decomposition given by Ziskind and Wax [13] we haveP[B;C] = PB +PCB (20)where CB denotes the residual of the columns of C when projected onto the column spaceof B, and is given by CB = (I�PB)C (21)Applying (20) to the projection matrix in (16), we get!̂(k+1)i = arg max! (y+  PA( ~! (k)i ) +Pa(!)A( ~! (k)i ) ! y) (22)Since the �rst term does not depend on !, (22) reduces to!̂(k+1)i = arg max! (y+ Pa(!)A( ~! (k)i ) y) (23)where a(!)A( ~! (k)i ) = �I �PA( ~! (k)i )� a(!) (24)
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4 Two Cisoids' CaseThis is the simplest case with which both the issues of resolution and estimation accuracycan be addressed. For this case,A( ~! (k)i ) = ( a(!̂(k)2 ) i = 1a(!̂(k+1)1 ) i = 2 (25)For any non-zero vector u Pu = uu+(u+ u) (26)and in view of (8), we have a+(!)y = N�1Xn=0 y(n) e�j!n = Y (!) (27)a+(!) a(�) = U(! � �) (28)where Y (!) denotes the Fourier transform of fy(n)g andU(!) = N�1Xn=0 e�j ! n = 8<: ej (N�12 ) ! sin(N !2 )sin(!2 ) ! 6= 0N ! = 0 (29)Note that U(!) is the Fourier transform of a sequence of N ones, i.e., a discrete cisoidsequence of unit amplitude and zero angular frequency. We now develop the proposedalgorithm for the case of two cisoids.Using the relations (26) to (28) we can show thaty+ Pa(!)a(�) y = ���Y (!)� Y ( � ) U(!�� )N ���2�N � jU(!�� )j2N � (30)Thus, the AP algorithm for the case of two cisoids is as follows:(1) INITIALIZATION : k = 0 (31)!̂(0)1 = arg max! j Y (!) j2N (32)8



(2) ITERATIVE STEP :!̂2(k) = arg max! 8>>>>>>>><>>>>>>>>:����Y (!)� Y (!̂(k)1 )N U(! � !̂(k)1 )����20B@N � ���U(!�!̂(k)1 )���2N 1CA
9>>>>>>>>=>>>>>>>>; (33)

!̂1(k+1) = arg max! 8>>>>>>>><>>>>>>>>:����Y (!)� Y (!̂(k)2 )N U(! � !̂(k)2 )����20B@N � ���U(!�!̂(k)2 )���2N 1CA
9>>>>>>>>=>>>>>>>>; (34)k = k + 1 (35)(3) CONVERGENCE CHECK :If k (!̂ (k) � !̂ (k�1)) k1< " stop ; else go to step (2)where k � k1 denotes 1-norm and " is some suitably chosen small convergence parameter.We note that Y (!) is the Fourier transform of the given data sequence and U(! � �) is theFourier transform of a unit amplitude discrete cisoid sequence of length N having frequency�. Thus, the term j : : : j in the numerator in step (2) (cf. (33)) has an intuitively appealingphysical interpretation as the Fourier transform of a modi�ed signal obtained by subtractinga discrete cisoid of frequency !̂(k)1 and complex amplitude Y (!̂(k)1 )=N from the originalsequence. However, the denominator is quite non-intuitive and it arises due to the fact thatwhen two cisoid frequencies are close they become coupled. Hence, even if !̂(k)1 is the truefrequency of the �rst cisoid, Y (!̂(k)1 )=N is not its true amplitude.We may note here that (30) is similar to Eqn. (8) in Van hamme [11]. However, ourdevelopment goes beyond the treatment of Van hamme and expresses the objective functioncompletely in terms of Fourier transforms. This can be seen more clearly for the three cisoidscase which we shall treat in the next section.9



4.1 DFT Based ImplementationIn order to implement the minimization in a computationally e�cient manner, we discretizethe search. So as to take advantage of fast DFT algorithms, we carry out the search formaxima at frequencies given by (2 � q)=L; q = 0; 1 : : : L� 1. L should be large so that theerror introduced due to discretization is small compared to the root mean squared estimationerror. Now, instead of !̂(k)1 and !̂(k)2 we estimate q(k)1 and q(k)2 where!̂(k)1 = 2 � q(k)1L (36)!̂(k)2 = 2 � q(k)2L (37)Denote Y �2 � qL � = Y (q) (38)U �2 � qL � = U(q) (39)The DFT based AP algorithm is given as follows :(1) INITIALIZATION : k = 0 (40)q(0)1 = arg maxq j ~Y (q) j2 (41)(2) ITERATIVE STEP :q(k)2 = arg maxq 8>><>>:��� ~Y (q)� ~Y (q(k)1 ) ~U(q � q(k)1 )���2�1� ��� ~U(q � q(k)1 )���2� 9>>=>>; (42)q(k+1)1 = arg maxq 8>><>>:��� ~Y (q)� ~Y (q(k)2 ) ~U(q � q(k)2 )���2�1� ��� ~U(q � q(k)2 )���2� 9>>=>>; (43)k = k + 1 (44)10



(3) CONVERGENCE CHECK :If q(k)1 = q(k�1)1 stop ; else go to step (2)In (41) to (43), ~Y (q) = Y (q)N = DFT of sequence (y(n)N )N�1n=0 (45)~U(q) = U(q)N = DFT of sequence � 1N ; 1N ; : : : 1N �| {z }N (46)
Considerable computational savings can be achieved here. Firstly, f ~Y (q)gL�1q=0 correspondsto the L point DFT of the N point sequence n y(n)N oN�1n=0 appended with L� N zeros, whichmay be evaluated at the start of the algorithm and stored. Similarly, f ~U(q)gL�1q=0 correspondsto the L point DFT of � 1N ; 1N ; : : : 1N �| {z }N appended with L � N zeros, and can be computedand stored beforehand. Further, since typically N is very small in comparison with L, wecan use pruned fast Fourier transform (FFT) algorithms for the computation. f ~U(q� l)gL�1q=0simply corresponds to f ~U(q)gL�1q=0 with a right circular shift of l positions. The plot ofj ~U(q) j in dB as a function of q for N = 25 and L = 2048 is given in Fig 1. The graphis identical to the magnitude of the Fourier transform of a rectangular window. In general,the pattern has a main lobe of width (2L=N) at q = 0 (taking into account the circularfold-over in the DFT) and sidelobes of width (L=N). The peak amplitude of the main lobeis 0 dB while that of the �rst sidelobe is approximately �13 dB, second and higher ordersidelobes are less than �17 dB. Hence, to a reasonable accuracy, ~U(q) may be approximatedby a (4L=N) length sequence comprising of the main lobe and one sidelobe on either side.This approximation is always valid in the denominators of (42) and (43). This can beseen from Fig. 2 where 1=(1 � j ~U(q)j2) has been plotted in dB as a function of q. Theapproximation is valid in the numerator too if the di�erence in amplitudes of the two cisoidsis small. Alternatively, di�erent approximations involving more or less sidelobes may be usedin the numerator depending on the approximate knowledge of the relative amplitudes. Using11



these approximations, considerable saving in computation can be achieved with negligibledegradation in the performance.
5 Extension of the Algorithm to Multiple CisoidsIn this section, we extend the AP algorithm to the case of multiple cisoids. The expressionsfor the case of two cisoids, developed in the previous section, are quite elegant. However, theexpressions for three or more cisoids tend to get quite lengthy, though they have a simplerecursive structure allowing one to program the general case.5.1 Extended Projection Matrix DecompositionThe idea of projection matrix decomposition, given in Section 3, can be applied repeatedlyto the projection matrix PA( ~! (k)i ), removing a single column at each stage till only onecolumn is left.In our case, (y+  Pa(!)A( ~! (k)i ) ! y) in (23) can be expressed asy+  Pa(!)A( ~! (k)i ) ! y = ����a(!)+A( ~! (k)i ) y����2k a(!)A( ~! (k)i ) k2 (47)Simpli�cation of this expression using repeated decomposition of PA( ~! (k)i ) can be achievedmuch more readily than the direct expansion of the projection matrix as all the columns ofA( ~! (k)i ) have the same constant norm N , and the quadratic form makes simpli�cation easy.We illustrate the general pattern of (47) considering the case of three cisoids as an example.The general case of multiple cisoids is considered in the appendix.12



5.2 Three Cisoids' CaseRepeated application of the decomposition of (20) and (21) to the expression in (47) yieldsthe AP algorithm for the case of three cisoids. Once again, as in Section 4, we carry outthe search for maxima at frequencies given by (2 � q)=L; q = 0; 1 : : : L � 1, (insteadof !̂(k)1 , !̂(k)2 and !̂(k)3 ) and estimate q(k)1 , q(k)2 and q(k)3 where !̂(k)1 = 2 � q(k)1L ; !̂(k)2 =2 � q(k)2L and !̂(k)3 = 2 � q(k)3L .De�ning ~Y , ~U as in Section 4, we can now express the DFT based AP Algorithm for threecisoids as follows :(1) INITIALIZATION :k = 0 (48)q(0)1 = arg maxq j ~Y (q) j2 (49)q(0)2 = arg maxq 8>><>>:���~Y (q)� ~Y (q(0)1 ) ~U(q � q(0)1 )���2�1� ��� ~U(q � q(0)1 )���2� 9>>=>>; (50)
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(2) ITERATIVE STEP :
q(k)3 = arg maxq 8>>>>>>>>>>><>>>>>>>>>>>:

�������� ~Y (q)� ~Y (q(k)1 ) ~U(q � q(k)1 )� ~Y (q(k)2 )� ~Y (q(k)1 ) ~U(q(k)2 �q(k)1 )�1���� ~U(q(k)2 �q(k)1 )���2� � ~U(q � q(k)2 )� ~U(q(k)1 � q(k)2 ) ~U(q � q(k)1 )���������20BB@1� ��� ~U(q � q(k)1 )���2 � ��� ~U(q�q(k)2 )� ~U(q(k)1 �q(k)2 ) ~U(q�q(k)1 )���2�1���� ~U(q(k)2 �q(k)1 )���2� 1CCA
9>>>>>>>>>>>=>>>>>>>>>>>; (51)

q(k+1)1 = arg maxq 8>>>>>>>>>>><>>>>>>>>>>>:
�������� ~Y (q)� ~Y (q(k)2 ) ~U(q � q(k)2 )� ~Y (q(k)3 )� ~Y (q(k)2 ) ~U(q(k)3 �q(k)2 )�1���� ~U(q(k)3 �q(k)2 )���2� � ~U(q � q(k)3 )� ~U(q(k)2 � q(k)3 ) ~U(q � q(k)2 )���������20BB@1� ��� ~U(q � q(k)2 )���2 � ��� ~U(q�q(k)3 )� ~U(q(k)2 �q(k)3 ) ~U(q�q(k)2 )���2�1���� ~U(q(k)3 �q(k)2 )���2� 1CCA

9>>>>>>>>>>>=>>>>>>>>>>>; (52)
q(k+1)2 = arg maxq 8>>>>>>>>>>><>>>>>>>>>>>:

�������� ~Y (q)� ~Y (q(k)3 ) ~U(q � q(k)3 )� ~Y (q(k+1)1 )� ~Y (q(k)3 ) ~U(q(k)1 �q(k)3 )�1���� ~U(q(k+1)1 �q(k)3 )���2� � ~U(q � q(k+1)1 )� ~U(q(k)3 � q(k+1)1 ) ~U(q � q(k)3 )���������20BB@1� ��� ~U(q � q(k)3 )���2 � ��� ~U(q�q(k+1)1 )� ~U(q(k)3 �q(k+1)1 ) ~U(q�q(k)3 )���2�1���� ~U(q(k+1)1 �q(k)3 )���2� 1CCA
9>>>>>>>>>>>=>>>>>>>>>>>;(53)k = k + 1 (54)
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(3) CONVERGENCE CHECK :If q(k)1 = q(k�1)1 and q(k)2 = q(k�1)2 stop ; else go to step (2)5.3 Computational Simpli�cationsThe computational simpli�cations mentioned in Section 4 are still valid for the case of mul-tiple cisoids. Further, several other simpli�cations can also be made. In view of the limitedregion in which ~U is signi�cant, the region in which the product terms involving two ormore terms in ~U are signi�cant is still smaller. We also note that if two groups of angularfrequencies !1; !2; : : : !k and �1; �2; : : : �r are widely separated (as compared to 2 �=N), thenone can writeP[a(!1);a(!2);:::a(!k);a(�1);a(�2);:::;a(�r)] ' P[a(!1);:::;a(!k)] +P[a(�1);:::;a(�r)] (55)This can be used while decomposing the projection matrix so as to reduce the complexityof the terms involved. However, while the above simpli�cation is useful, we still have ! as avariable and hence a(!) cannot be decoupled from the other columns of A( ~! (k)i ) ( see (23)and (24) ). This problem can also be circumvented and further reduction in computationcan be achieved by searching for local maxima in the neighbourhood of the previous estimaterather than searching over the entire range ( at each step ). In such case, the original equationfor the estimate of the ith frequency at the k + 1th iteration can be written as!̂(k+1)i = arg max!2
 y+ P[A( ~! (k)i );a(!)] y (56)where ~! (k)i denotes the (M � 1)� 1 vector of the pre-estimated parameters~! (k)i = [!̂(k+1)1 ; !̂(k+1)2 ; : : : ; !̂(k+1)i�1 ; !̂(k)i+1 ; : : : ; !̂(k)M ]T (57)and 
 is a set including !̂(k)i and the neighbourhood around it in which the search is tobe conducted. Now using the decomposition given in (55), we can drop from A( ~! (k)i ) thecolumns corresponding to angular frequencies far away from 
.15



6 Simulation ResultsIn this section we present simulation results to show how the proposed algorithm performs inrelation to the existing algorithms [10, 6, 7, 3] and the theoretical best performance predictedby the Cram�er Rao (CR) bound.The signal model considered wasy(n) = ej(2�f1n+�1) + ej(2�f2n+�2) + v(n); n = 0; 1; : : : ; 24with f1 = 0:5; f2 = 0:52 (normalized frequencies), �1 = 0 and �2 = �=4. fv(n)g was asequence of independent and identically distributed zero mean complex Gaussian randomvariables with uncorrelated real and imaginary parts, each with a variance of �2=2. Thevalue of � was chosen to give the desired SNR, de�ned as 10 log10 1�2 . We may mention herethat while the parameter values are the same as in [10, 6, 7, 3], we have the index n runningfrom 0 to 24 while [10, 6, 7, 3] use n = 1; 2 : : : 25.For the DFT based AP algorithm two values of L ( 2048 and 4096 ) were chosen. Thechoice of powers of 2 enables one to use fast radix 2 FFT algorithms. For MFBLP andTLS, the predictor order L was chosen as 18. This corresponds to (3N)=4 which was shown(experimentally) to be the near optimum value by Tufts and Kumaresan [10]. In the IQMLmethod, the convergence test parameter was �xed at 5� 10�6.The mean square error (MSE) in the frequency estimates was evaluated from 50 Monte-Carloruns. This was repeated for di�erent values of SNR and the results are plotted in Fig. 3 forthe case L = 2048 and in Fig. 4 for the case L = 4096. In the same �gures, we also overlaidthe MSE values obtained with the IQML method of Bresler and Macovski, with MFBLPand TLS methods for the predictor order 18. All the algorithms were simulated using the16



same 50 noise realizations with appropriate scaling for di�erent SNR values. The �gures alsocontain the CR bounds.The plots of Fig. 3 show that among the methods for which the results are presented, theDFT based AP algorithm yields lowest threshold SNR; 3 dB less than that of IQML and6 dB less than that of MFBLP and TLS in the case of the estimate of f1 (0.5), while thecorresponding values are 2 dB and 7 dB in the case of f2 (0.52).Above the threshold SNR, the performance of the DFT based AP algorithm (DFTAP) issuperior to that of MFBLP and TLS methods by 1 to 2 dB and is similar to that of IQML.Note that the TLS and MFBLP perform similarly which is consistent with the results givenin [8] (In fact, the two curves cannot be resolved in Figs. 3 and 4). On average the DFTbased AP algorithm required 3-4 iterations for it to converge at high SNR's and 4-5 iterationsat SNR's close to the threshold SNR.The plot corresponding to the DFTAP shows some 
uctuations which are expected becausethe e�ect of discretization may not be averaged out over the 50 Monte-Carlo runs. Inaddition, at SNR greater than 30 dB, DFTAP for L = 2048 begins to show saturation as thevalue of the error introduced by discretization inherent in the algorithm is no longer negligiblein comparison to the MSE. This explanation is also borne out by the curves for L = 4096 inFig. 4, where we see that the saturation sets in much later as we have a �ner discretization.Also, as expected theoretically, the e�ects of saturation become apparent approximatelyat the point where 1=L equals the root mean square value corresponding to the CRB. Toovercome this saturation e�ect, one could (as a �nal step) have a �ner grid of Y around!̂(k)1 ; !̂(k)2 ; : : : !̂(k)M (the �nal DFTAP estimates) and of U around the pairwise di�erences ofthese angular frequencies. This requires direct evaluation of the Fourier transforms at therequired points. But, it is still computationally attractive because N is quite small, and hence17



the computational e�ort in this evaluation is much less than that required for increasing thevalue of L per se. Finally, the MSE values better than the CR bound, observed for DFTAPin the neighbourhood of the threshold SNR, may have resulted because of small number ofMonte-Carlo runs or due to slight bias in the estimates due to the discrete nature of thealgorithm.
7 ConclusionsIn this paper, we addressed the problem of parameter estimation of superimposed cisoidsin noise using the alternating projection (AP) algorithm. Starting with the AP algorithmit was shown how the objective function can be expressed in terms of Fourier transforms.A DFT based implementation of the AP algorithm was then presented for the two cisoids'case. Several computational simpli�cations were suggested for this case. The algorithm wasthen extended to the case of multiple cisoids taking the case of three cisoids as an illustrativeexample. Additional computational simpli�cations possible for the multiple cisoids case werediscussed. Simulation results were presented comparing the performance of the developedalgorithm with the MFBLP method, total least squares approach and the IQML algorithm.The algorithm was seen to have a lower threshold SNR and the performance above thethreshold was similar to that of the other methods.
AppendixIn this appendix we demonstrate the recursive structure of the algorithm for the generalcase of multiple cisoids. For this purpose we shall consider the initialization step of the APalgorithm. Note that the objective functions for the maximizations in the iterative step can18



be readily obtained by a cyclic permutation of the frequencies in the objective function forthe �nal initialization step.The initial estimate for the �rst frequency is given byq̂1 = arg maxq j V1(q) j2D1(q)where V1(q) = ~Y (q)D1(q) = 1W1(q) = ~U(q � q̂1)and the initial estimates for the other frequencies are given by the following recursive algo-rithm:for n = 1 to M � 1 do Vn+1(q) = Vn(q)� Vn(q̂n)Dn(q̂n)Wn(q)Dn+1(q) = Dn(q)� jWn(q) j2Dn(q̂n)q̂n+1 = arg maxq j Vn+1(q) j2Dn+1(q)Wn+1(q) = ~U(q � q̂n+1)� W �n(q̂n+1)Dn(q̂n) Wn(q)end f for loop g.The iterative step is now obtained readily by a cyclic permutation of the estimated frequenciesin the objective function for the initialization of q̂M . From the recursion it can also be seenthat the algorithm requires (3M2 � 2M)L multiplications/divisions and 3M (M � 1)L19



additions/subtractions per iteration of the AP algorithm (where M is the number of cisoidsand L is the length of the DFT used).
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