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Abstract

In this paper, we consider the alternating projection algorithm suggested by Ziskind
and Wax [13] for parameter estimation of superimposed complex sinusoids (cisoids)
embedded in noise, and show how the objective function being maximized at each step
can be expressed as a non-linear function of the Fourier transforms of the observed
data and discrete cisoids. We obtain elegant expressions for the objective functions for
the case when the number of cisoids is two and develop a discrete Fourier transform
(DFT) based algorithm for this case. The expressions for the case of three or more
cisoids are quite cumbersome, but have a nice recursive structure that is illustrated
by taking the case of three cisoids as an example. The details of the recursion for the
general case are given in the appendix. We discuss some of the approximations and
simplifications that lead to substantial reduction in computation. Simulation results
are presented to show how the developed algorithm performs in comparison with the
other techniques.



1 Introduction

The problem of estimating the parameters of superimposed complex sinusoids (cisoids) in
noise from limited data has received considerable attention in the past few years. It is well
known that the discrete Fourier transform (DFT) is an effective and efficient method of
estimating the frequencies and the amplitudes of cisoids if there is only one cisoid, or if
the frequencies are well separated with respect to the inverse of the observation interval.
However, when there are multiple cisoids with closely spaced frequencies, DFT processing

proves ineffective. In these cases, one has to resort to high resolution methods.

One class of high resolution methods is based on linear prediction formulation. Among the
algorithms in this class, modified linear prediction approaches [10, 6] and the total least
squares method [7, 8] have proved very effective. While the performance of these methods
at high signal to noise ratio (SNR) is extremely good ( often approaching the Cramér Rao
bound (CRB) ), they suffer from a drawback that their threshold SNR is reasonably large.

Another class of estimation algorithms is based on the non-linear least squares approach.
If the noise is assumed to be white Gaussian, maximum likelihood (ML) estimation falls in
this category. These algorithms exploit the information available about the signal to the
maximum extent possible. While such algorithms perform well and have low threshold SNR,
their computational complexity is too high to allow their use in practical applications. Hence,
the emphasis in this class of algorithms has been towards simplifications and approximations
that would make them computationally feasible. Several attempts have been made in this
direction which have lead to iterative quadratic maximum likelihood (IQML) technique [5, 3],
alternating projection (AP) algorithm [13, 2, 11] and constrained total least squares (CTLS)
method [1].



In this paper, we consider the AP algorithm of Ziskind and Wax [13]. They formulated
the dual of the cisoid parameter estimation problem arising in the direction of arrival esti-
mation context as a non-linear least squares problem, and proposed the use of alternating
maximization to convert the multi-dimensional maximization into a sequence of simpler one
dimensional maximizations. In the DOA estimation scenario, with no constraints on the
array response and geometry, they proposed a direct search for the maxima over the entire
array manifold at each step. However, in the cisoid parameter estimation problem (with uni-
formly spaced samples), the structure in the problem can be exploited to implement the one
dimensional search for maxima in an efficient manner. In this paper, we show how the objec-
tive function being maximized at each step can be expressed in terms of Fourier transforms
of the data and of discrete cisoids, thereby allowing a DFT based implementation of the
algorithm. Though the ideas of alternating maximization and projection matrix decompo-
sition have been considered earlier, the idea of extended decomposition and the recognition
that the resulting function can be expressed completely in terms of Fourier transforms are
new. In addition, the proposed algorithm gives considerable computational saving over an
AP algorithm involving a direct search over a grid of angular frequencies. Also, due to the
structure of the algorithm, one needs to calculate the DFTs only once, and further manip-
ulations may be done in the Fourier domain itself. The development of our algorithm has
some similarity with reduced effort coarse search technique proposed by Van hamme [11].

But, our development goes beyond that of Van hamme as noted in Section 4.

The paper is organized as follows. In Section 2, we give the signal model under consideration
and formulate the parameter estimation as a non-linear least squares problem. In Section
3, we give the development of the AP algorithm for the cisoid parameter estimation case.
In Section 4, we develop the DFT based algorithm for two cisoids’ case. In Section 5, we
illustrate the structure of the algorithm for multiple cisoids by considering the three cisoids’

case as an example. Computer simulation results comparing the performance of the proposed



algorithm with other methods and with the CRB are presented in Section 6, and concluding

remarks are given in Section 7.

2 Signal Model and Problem Statement

Consider a sequence of N uniformly spaced and noise corrupted samples from a signal con-

sisting of M superimposed cisoids
M .
y(n):ZSiBJWin+U(n)7 n:OJ]_)___)N_l (1)
i=1

where w; is the angular frequency of the i cisoid , s; is its complex amplitude and {v(n)}

is a zero mean, stationary, complex valued random process with covariances

Elp(n)v'(m)] = 0®dum (2)

Elo(n)v(m)] = 0 (3)

where 9,,,, denotes the Kronecker delta and superscript ‘*’

denotes conjugation.
The problem to be solved is now stated as follows : assuming that the number of signals,

M, is known, estimate the signal parameters {w;}, and {s;}}, from the observed data.

Denoting the parameters to be estimated as

T
w = [wl,wg,...wM]

T
S = [51, S92, ... SM]

we formulate the estimation problem as

2

N-1 Mo
W ,§=arg ‘Lmns > ly(n) =D sie? (6)
S =0 i=1



Now, defining the vectors y and a(w) as

y = [y0),y),....y(N-1]" (7)
a(w) = [1,e*, €%, . JW-De) (8)
and the matrix A(w ) as
Alw) =[a(w), a(ws), ..., a(wu)] (9)
we can rewrite (6) as
w ,8=argmin ||y — Aw)s |* (10)
where || - || denotes 2-norm. We may note here that this estimate corresponds to the ML

estimate if the noise is Gaussian.

3  Alternating Projection (AP) Algorithm

The minimization in (10) is a multidimensional non-linear minimization in 3 M real variables,
and in its given form it is highly computation intensive. Reduction in the dimensionality of

the problem can be achieved by noting that for any w , the optimum value of s is given by
§=A%(w)y (11)

where superscript ‘#’ denotes pseudoinverse. Substituting (11) in (10), we get
w = argmin|ly —Paw)y [ (12)
s = (AT@)AW)) ATw@)y (13)

where superscript ‘+’ denotes Hermitian transpose and Pa(w ) is the projection matrix

which projects a vector onto the column space of A(w ). Paw ) is given by

+

Paw)=AWw)(A"(w)A(w ) 'A"(w) (14)
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Equation (12) may alternatively be written as

w = argmax |[Paw)y |’

= arg max y+ Paw)y (15)

This is a M dimensional nonlinear maximization and is still computationally expensive.
Using the alternating maximization technique, Ziskind and Wax [13] transformed it into a
sequence of simpler one-dimensional problems. The technique is iterative; at every step a
maximization is performed with respect to a single parameter while all other parameters
are held fixed. That is, the estimate of w; at (k + 1)™ iteration is obtained by solving the

following one-dimensional maximization problem

(k+1)

; = arg max y+P[A(w ®) oy Y (16)
where w Z(k) denotes the (M — 1) x 1 vector of the pre-estimated parameters
e (A I s (0 ) (17)
For initializing the algorithm we begin by solving the problem for a single cisoid,
(I)EO) = arg max y P.u)y (18)
Next, we solve for &)éo) with the first cisoid angular frequency fixed at @50),
o) = arg max y P[a(wg())),a(w)} y (19)

Continuing in this fashion at i'* initialization step, we determine the initial estimate of the
it" angular frequency, c&i(o), assuming that there are only 7 cisoids and (i — 1) of these are
located at their pre-estimated frequencies @50), d)éo), e ,Cul@l. The procedure is continued till

all the initial values are determined.



The maximization in (16) still involves considerable computation due to the matrix inversion
and matrix-matrix multiplication required at each step. We now use a basic property of
projection matrices ( known as the projection-matrix update formula [13] ) to reduce the

computation further.

3.1 Projection Matrix Decomposition

Let B and C be two arbitrary matrices with the same number of rows, and let P g ¢ denote
the projection-matrix onto the column space of the augmented matrix [B, C]. Then from

the decomposition given by Ziskind and Wax [13] we have
Ppcj=Pp+Pcy (20)

where Cg denotes the residual of the columns of C when projected onto the column space
of B, and is given by
Cg=(I-Pp)C (21)

Applying (20) to the projection matrix in (16), we get

C:)Z(Ichl) = arg max {y+ (PA(LJ (k) ) + Pa(W)A(w (k) > y} )

Since the first term does not depend on w, (22) reduces to

~(k+1 +
o = arg max {y Pa(u})A(w ), }’} (23)

where



4 Two Cisoids’ Case

This is the simplest case with which both the issues of resolution and estimation accuracy

can be addressed. For this case,

~ (k) ,
=1
A ®y= | a@’) i 25
@i ={ 2 12, )
For any non-zero vector u
+
uu
P,= 2
e (20
and in view of (8), we have
N N-1 ‘
a (Wy = > yn)e" =Y(w) (27)
n=0
a’(w)a(§) = Ulw—¢) (28)

where Y (w) denotes the Fourier transform of {y(n)} and

Nl ) e’ Fh e sin(22) 0
U(w) = Z e Jvn — { N sin(g) w 7& 0 (29)
n=0 w =

Note that U(w) is the Fourier transform of a sequence of N ones, i.e., a discrete cisoid
sequence of unit amplitude and zero angular frequency. We now develop the proposed

algorithm for the case of two cisoids.

Using the relations (26) to (28) we can show that
‘Y(w) _ Y(§) Uw=¢) ‘2

I N
y Pa(w)a(g) y = Ulw—t)2 (30)
( N — | (N )| )
Thus, the AP algorithm for the case of two cisoids is as follows:
(1) INITTALIZATION :
k =0 (31)
Y 2

d)§0) = arg mgx% (32)
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(2) ITERATIVE STEP :

( )
(R 2
Y(w) - Y52 U - o)
W™ = arg max > (33)
© Uw—a)
N - N
\ )
( )
vl NONG
¥(w) - 252 U - o)
W D) = arg max > (34)
© Uw—a)
N N
\ y
k= k+1 (35)
(3) CONVERGENCE CHECK :
If || W®—wEDy|<e  stop; else  go to step (2)
where || - ||oo denotes co-norm and ¢ is some suitably chosen small convergence parameter.

We note that Y (w) is the Fourier transform of the given data sequence and U(w — &) is the
Fourier transform of a unit amplitude discrete cisoid sequence of length /N having frequency
€. Thus, the term | ... | in the numerator in step (2) (¢f. (33)) has an intuitively appealing
physical interpretation as the Fourier transform of a modified signal obtained by subtracting
a discrete cisoid of frequency &\¥ and complex amplitude Y(d)gk)) /N from the original
sequence. However, the denominator is quite non-intuitive and it arises due to the fact that

when two cisoid frequencies are close they become coupled. Hence, even if d)%k) is the true

frequency of the first cisoid, Y(@§’“’ )/N is not its true amplitude.

We may note here that (30) is similar to Eqn. (8) in Van hamme [11]. However, our
development goes beyond the treatment of Van hamme and expresses the objective function
completely in terms of Fourier transforms. This can be seen more clearly for the three cisoids

case which we shall treat in the next section.



4.1 DFT Based Implementation

In order to implement the minimization in a computationally efficient manner, we discretize
the search. So as to take advantage of fast DF'T algorithms, we carry out the search for
maxima at frequencies given by (27 ¢)/L, ¢=0,1...L—1. L should be large so that the
error introduced due to discretization is small compared to the root mean squared estimation

error. Now, instead of &)%k) and &)ék) we estimate q§k> and qgk) where

(k)

2
o® = ”LQI (36)
(k)
2
Denote
2 —
v(5H) = YW (39)
v (33 = T (39)
L
The DFT based AP algorithm is given as follows :
(1) INITIALIZATION :
k= 0 (40)
¢ = arg max | Y(q) (41)
(2) ITERATIVE STEP :
® Vig) - V() U(g— o)
(a7 = arg max — o (42)
| (- [oa-df) ]
(1) V(@) = Y(e"”) Ulg — ")
q = arg max - “ (43)
| (- oa-df) ]
ko= k+1 (44)
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(3) CONVERGENCE CHECK :

If qgk) = q%kil) stop ; else  go to step (2)

In (41) to (43),

ooy Y0 y(m) "

Y(q) = - = DFT of sequence {T . (45)
- o Ul 11 1
U(q) = N =DFT ofsequenceL{N,N,...N}J (46)

=

L-1

Considerable computational savings can be achieved here. Firstly, {?(q)}q:o corresponds

N-1
to the L point DFT of the N point sequence {%} . appended with L — N zeros, which
n=

may be evaluated at the start of the algorithm and stored. Similarly, {U(q) v~ corresponds
1 1

he L point DFT of —, .=
to the L point 0] {N’N’ N

~

} appended with L — N zeros, and can be computed

v

N
and stored beforehand. Further, since typically N is very small in comparison with L, we

can use pruned fast Fourier transform (FFT) algorithms for the computation. {U(q—1)}i5

L—1
q=0

simply corresponds to {U(q) with a right circular shift of [ positions. The plot of
| U(q) | in dB as a function of ¢ for N = 25 and L = 2048 is given in Fig 1. The graph
is identical to the magnitude of the Fourier transform of a rectangular window. In general,
the pattern has a main lobe of width (2 L/N) at ¢ = 0 (taking into account the circular
fold-over in the DFT) and sidelobes of width (L/N). The peak amplitude of the main lobe
is 0 dB while that of the first sidelobe is approximately —13 dB, second and higher order
sidelobes are less than —17 dB. Hence, to a reasonable accuracy, U(q) may be approximated
by a (4 L/N) length sequence comprising of the main lobe and one sidelobe on either side.
This approximation is always valid in the denominators of (42) and (43). This can be
seen from Fig. 2 where 1/(1 — |U(g)[?) has been plotted in dB as a function of g. The
approximation is valid in the numerator too if the difference in amplitudes of the two cisoids

is small. Alternatively, different approximations involving more or less sidelobes may be used

in the numerator depending on the approximate knowledge of the relative amplitudes. Using

11



these approximations, considerable saving in computation can be achieved with negligible

degradation in the performance.

5 Extension of the Algorithm to Multiple Cisoids

In this section, we extend the AP algorithm to the case of multiple cisoids. The expressions
for the case of two cisoids, developed in the previous section, are quite elegant. However, the
expressions for three or more cisoids tend to get quite lengthy, though they have a simple

recursive structure allowing one to program the general case.

5.1 Extended Projection Matrix Decomposition

The idea of projection matrix decomposition, given in Section 3, can be applied repeatedly

to the projection matrix P, removing a single column at each stage till only one

(W )y

column 1is left.

In our case, {y+ (Pa(w> 5o ) y} in (23) can be expressed as
AW )

2

a(w)+ RO
+ ‘ Aw ;")
P.. . = t 47
Yy ( ( )A(w OB ) y [ a(w)A(c& o)) 12 (47)

Simplification of this expression using repeated decomposition of P A can be achieved

W &)
much more readily than the direct expansion of the projection matrix as all the columns of
AW Z(k) ) have the same constant norm N, and the quadratic form makes simplification easy.

We illustrate the general pattern of (47) considering the case of three cisoids as an example.

The general case of multiple cisoids is considered in the appendix.
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5.2 Three Cisoids’ Case

Repeated application of the decomposition of (20) and (21) to the expression in (47) yields
the AP algorithm for the case of three cisoids. Once again, as in Section 4, we carry out

the search for maxima at frequencies given by (2 7 ¢q)/L, g =0,1...L — 1, (instead

(k)
of @™ | &l and @ ) and estimate ¢\, ¢{¥ and ¢{¥ where 0¥ = ira o =
o o) k) 2ma®
22— and o) = h

Defining Y, U as in Section 4, we can now express the DFT based AP Algorithm for three

cisoids as follows :

(1) INITIALIZATION :

k=0 (48)
¢) = arg max | Y (q) | (49)
~ ~ ~ 2
Y(g)—Y (0) Ulg — q(o)

O g s V(g) = V(at”) Ulg - ¢V 0)

‘ (1 —|U(q - q§°))\2>

13



(2) ITERATIVE STEP :

- - - AR ONEARONE RN O N -
V(g) = V(") Ulg - ¢) - M2 =m0 ) (g — f)) - (g - ¢
(1‘ﬁ(q§k)q§k)) )
¢’ = arg max :
) ‘U( (k))‘2 ‘ﬁ(qfqék))*ﬁ(qik)fqék))ﬁ(qfqgk))‘
- q—4aq -
<1‘ﬁ(q§k)q§k)) 2)
\
- - - o 5o (k)Y e (B) (k)Y ~ -
Y(g) = V() Ul — ¢f?) — Hu 2w J0m i ) (77 (g — f9) - 0(g" — ¢f)
(1‘U(q§k)q§k)) )
q§k+1) = arg max -
N 2 ‘ﬁ(qfqék))*ﬁ(qék)fqék)) ff(qfqék))‘
1 |0(g— )| -
‘ ‘ <1—‘U(q§k)—q§k)) 2)
\
- - ~ oo (kD g (R F oo (B (k)Y -
Y(g) = V(") Ug — ) — Mo =X 0 - (f7(g — o) — 0(gf — ¢
(1‘ﬁ(q§k+l)q§k)) >
q§k+1) = arg max -
. ‘U( (k))‘z ‘ﬁ(q—q§k+l))—ﬁ(q§k)—q§k+l))ff(q—qék))
1 <1—‘U(q§k+1)—qgf)) 2)
\
k = k+1
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(3) CONVERGENCE CHECK :

If qgk) = q%kil) and qék) = qékil) stop ; else go to step (2)

5.3 Computational Simplifications

The computational simplifications mentioned in Section 4 are still valid for the case of mul-
tiple cisoids. Further, several other simplifications can also be made. In view of the limited
region in which U is significant, the region in which the product terms involving two or
more terms in U are significant is still smaller. We also note that if two groups of angular
frequencies wy, wo, ... wyg and &, &, ... &, are widely separated (as compared to 2 7/N), then

one can write

Plagui),aws),a(wy)alé)aE),a6)] = Plaw),.aw)] + Plae),..a¢)] (55)

This can be used while decomposing the projection matrix so as to reduce the complexity
of the terms involved. However, while the above simplification is useful, we still have w as a
variable and hence a(w) cannot be decoupled from the other columns of A (w (v ) (see (23)
and (24) ). This problem can also be circumvented and further reduction in computation
can be achieved by searching for local maxima in the neighbourhood of the previous estimate
rather than searching over the entire range ( at each step ). In such case, the original equation

for the estimate of the i*" frequency at the k + 1" iteration can be written as

A1) + )
i g WA Y Paw )0 ¥ (56)
where & Z(-k) denotes the (M — 1) x 1 vector of the pre-estimated parameters
e R - e N = (57)

and €2 is a set including &)fk) and the neighbourhood around it in which the search is to
be conducted. Now using the decomposition given in (55), we can drop from A (w Ek)) the

columns corresponding to angular frequencies far away from (2.
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6 Simulation Results

In this section we present simulation results to show how the proposed algorithm performs in
relation to the existing algorithms [10, 6, 7, 3] and the theoretical best performance predicted

by the Cramér Rao (CR) bound.

The signal model considered was
y(n) = d@mfinton) y piCrfantéz) 4y (n), n=01,...,24

with f; = 0.5, f = 0.52 (normalized frequencies), ¢, = 0 and ¢ = 7/4. {v(n)} was a
sequence of independent and identically distributed zero mean complex Gaussian random
variables with uncorrelated real and imaginary parts, each with a variance of 0?/2. The
value of o was chosen to give the desired SNR, defined as 10 logm%. We may mention here
that while the parameter values are the same as in [10, 6, 7, 3], we have the index n running

from 0 to 24 while [10, 6, 7, 3] use n =1,2...25.

For the DFT based AP algorithm two values of L ( 2048 and 4096 ) were chosen. The
choice of powers of 2 enables one to use fast radix 2 FFT algorithms. For MFBLP and
TLS, the predictor order L was chosen as 18. This corresponds to (3 N)/4 which was shown
(experimentally) to be the near optimum value by Tufts and Kumaresan [10]. In the IQML

method, the convergence test parameter was fixed at 5 x 1079,

The mean square error (MSE) in the frequency estimates was evaluated from 50 Monte-Carlo
runs. This was repeated for different values of SNR and the results are plotted in Fig. 3 for
the case L = 2048 and in Fig. 4 for the case L = 4096. In the same figures, we also overlaid
the MSE values obtained with the IQML method of Bresler and Macovski, with MFBLP

and TLS methods for the predictor order 18. All the algorithms were simulated using the
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same 50 noise realizations with appropriate scaling for different SNR values. The figures also

contain the CR bounds.

The plots of Fig. 3 show that among the methods for which the results are presented, the
DFT based AP algorithm yields lowest threshold SNR; 3 dB less than that of IQML and
6 dB less than that of MFBLP and TLS in the case of the estimate of f; (0.5), while the

corresponding values are 2 dB and 7 dB in the case of fy (0.52).

Above the threshold SNR, the performance of the DFT based AP algorithm (DFTAP) is
superior to that of MFBLP and TLS methods by 1 to 2 dB and is similar to that of IQML.
Note that the TLS and MFBLP perform similarly which is consistent with the results given
in [8] (In fact, the two curves cannot be resolved in Figs. 3 and 4). On average the DFT
based AP algorithm required 3-4 iterations for it to converge at high SNR’s and 4-5 iterations
at SNR’s close to the threshold SNR.

The plot corresponding to the DFTAP shows some fluctuations which are expected because
the effect of discretization may not be averaged out over the 50 Monte-Carlo runs. In
addition, at SNR greater than 30 dB, DFTAP for L = 2048 begins to show saturation as the
value of the error introduced by discretization inherent in the algorithm is no longer negligible
in comparison to the MSE. This explanation is also borne out by the curves for L = 4096 in
Fig. 4, where we see that the saturation sets in much later as we have a finer discretization.
Also, as expected theoretically, the effects of saturation become apparent approximately
at the point where 1/L equals the root mean square value corresponding to the CRB. To
overcome this saturation effect, one could (as a final step) have a finer grid of ¥ around
o) o), &)g\f,) (the final DFTAP estimates) and of U around the pairwise differences of
these angular frequencies. This requires direct evaluation of the Fourier transforms at the

required points. But, it is still computationally attractive because NV is quite small, and hence
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the computational effort in this evaluation is much less than that required for increasing the
value of L per se. Finally, the MSE values better than the CR bound, observed for DEFTAP
in the neighbourhood of the threshold SNR, may have resulted because of small number of
Monte-Carlo runs or due to slight bias in the estimates due to the discrete nature of the

algorithm.

7 Conclusions

In this paper, we addressed the problem of parameter estimation of superimposed cisoids
in noise using the alternating projection (AP) algorithm. Starting with the AP algorithm
it was shown how the objective function can be expressed in terms of Fourier transforms.
A DFT based implementation of the AP algorithm was then presented for the two cisoids’
case. Several computational simplifications were suggested for this case. The algorithm was
then extended to the case of multiple cisoids taking the case of three cisoids as an illustrative
example. Additional computational simplifications possible for the multiple cisoids case were
discussed. Simulation results were presented comparing the performance of the developed
algorithm with the MFBLP method, total least squares approach and the IQML algorithm.
The algorithm was seen to have a lower threshold SNR and the performance above the

threshold was similar to that of the other methods.

Appendix
In this appendix we demonstrate the recursive structure of the algorithm for the general

case of multiple cisoids. For this purpose we shall consider the initialization step of the AP

algorithm. Note that the objective functions for the maximizations in the iterative step can
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be readily obtained by a cyclic permutation of the frequencies in the objective function for

the final initialization step.

The initial estimate for the first frequency is given by

| Vilg) I
1

1= a a
q1 rgqu Dulq)

where

Vilg) = Y(q)
Di(q) = 1

Wilg) = Ulg— )

and the initial estimates for the other frequencies are given by the following recursive algo-

rithm:

forn=1to M —1do

Vi) = Valo) = 1 )
Duale) = Dul) - 'Vggqj)'

7 ((jnJrl)

Wiii(q) = U(q— Gny1) — Du(d) Wi (q)

end { for loop }.

The iterative step is now obtained readily by a cyclic permutation of the estimated frequencies
in the objective function for the initialization of ¢,,. From the recursion it can also be seen

that the algorithm requires (3 M? — 2 M) L multiplications/divisions and 3M (M — 1)L
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additions/subtractions per iteration of the AP algorithm (where M is the number of cisoids

and L is the length of the DFT used).
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