LEVEL-EMBEDDED LOSSLESS IMAGE COMPRESSION

Mehmet Celik, A.Murat Tekalp

University of Rochester
Dept. of Electrica and Computer Eng.
Rochester, NY, 14627-0126

ABSTRACT

A level-embedded lossless compression method for continuous-
tone still images is presented. Level (bit-plane) scalability is
achieved by separating the image into two layers before compres-
sion and excellent compression performance is obtained by ex-
ploiting both spatial and inter-level correlations. A comparison of
the proposed scheme with a number of scalable and non-scalable
lossless image compression algorithms is performed to benchmark
its performance. The results indicate that the level-embedded com-
pression incurs only a small penalty in compression efficiency.

1. INTRODUCTION

Although most image processing applications can tolerate some
information loss, in several areas—such as medical, satellite, and
legal imaging— lossless compression algorithms are preferred.
CALIC [1], JPEG-LS [2], and JPEG2000 [3] are among well-
known lossless image compression algorithms. Among these
CALIC provides best compression ratios over typical images,
whereas, JPEG-LS is a low complexity alternative with compet-
itive efficiency. The JPEG2000 standard, on the other hand, is a
wavelet-based technique, which provides a unified approach for
lossy-to-lossless compression.

Generation of an embedded bit-stream, where a lower qual-
ity image can be reconstructed with only a part of the bit-stream,
is referred as scalable compression. In this paper, we propose a
specific instance of scalable compression called level-embedded
compression. Level-embedded scalability refers to bit-plane scal-
ability in the image pixel value domain. The method is useful in
several applications, where data is acquired by a capture device
with a high dynamic range or bit-depth. A lower bit-depth repre-
sentation is often sufficient for most purposes and the higher bit-
depth data is only required for specialized analysis/enhancement
or archival purposes. If the full bit-depth image is stored in a con-
ventional lossless compressed stream, a subsequent truncation of
lower order bits requires a decompression and reconstruction of
the image prior to truncation. If on the other hand, the compres-
sion scheme (and the corresponding bit stream) is level-embedded,
the truncation can effectively be performed in the bit stream itself
by dropping the segment of the stream corresponding to the trun-
cated lower levels. The latter option is often much more desirable
because of its memory and computational simplicity, which trans-
late to lower power, time, and resource requirements.

JPEG2000 offers scalability in resolution and distortion by
allowing reconstruction of lower resolution and/or lower signal-
to-noise-ratio (SNR) images. The scalability in JPEG2000 is,
however, different from the scalability provided by level embed-
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ded compression. Scalability in JPEG2000 is implemented in the
wavelet transform coefficient domain. Truncation of bit-planes in
the wavelet transform coefficient domain does not, in general, cor-
respond to the proposed level embedded scalability in the image
pixel value domain. In legal applications, the level embedded scal-
ability may therefore be more acceptable because the potential for
spatial artifacts may cast doubts on the veracity of photographic
evidence. The bit-depth truncation in level-embedded compres-
sion is analogous to using an acquisition device with a lower reso-
lution A/D converter. It also offers tight per pixel maximum abso-
lute error bounds and is guaranteed to not produce any spatial ar-
tifacts. JPEG-LS, in its near-lossless compression mode, provides
per pixel maximum absolute error guarantees without introducing
any spatial artifacts, as in level-embedded compression. In this
mode, however, JPEG-LS provides only lossy compression and
not an embedded lossless stream.

Level-embedded compression may be achieved through inde-
pendent compression of individual bit-planes as in JBIG [4]. This
process, however, causes a significant penalty in compression per-
formance over non-level-embedded methods because it fails to ex-
ploit correlations between the different bit-planes of an image. In
this paper, we propose an alternative method for achieving level
embedded compression which significantly reduces the penalty in
compression performance by exploiting the correlations.

2. LEVEL EMBEDDED COMPRESSION ALGORITHM

We first describe the algorithm® for the case of two embedding lev-
els: a base layer corresponding to the higher levels and a residual
layer comprising of the lower levels. The method is subsequently
generalized to multiple levels in Section 2.4. The image is first
separated into the base layer and a residual layer. The base layer
is obtained by dividing each pixel value by a constant integer L
(BL(s) = |%]). L specifies the amplitude of the enhancement
layer, which is the remainder, which is also called the residual
(r =s—L|%]). Wealso call the quantity L | £ | as the quan-
tized pixel, @z (s). Note that the use of a power of 2 for L corre-
sponds to partitioning of the images into more significant and less
significant bit planes, and other values generalize this notion to a
partitioning into higher and lower levels. Since the resulting base
layer, i.e. the most significant levels of the image, is coded without
any reference to the enhancement layer and its statistics closely re-
semble that of the full bit-depth image, any lossless compression
algorithm can be used for the base layer. In this paper, CALIC [1]
is used for base layer compression. The compression of the en-
hancement layer is outlined in more detail below.

1Additional details of the algorithm can be found in [5].
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Since the enhancement layer, or the residual signal, represents
the lowest levels of a continuous-tone image, its compression is a
challenging task. For small values of L, the residual typically has
no structure, and its samples are virtually uniformly distributed
and uncorrelated from sample to sample. If the rest of the im-
age information is used as side-information, however, significant
coding gains can be achieved, by exploiting the spatial correlation
among pixel values and the correlation between high and low lev-
els (bit-planes) of the image.

The proposed method is inspired by the CALIC algorithm [1].
The method is comprised of three main components: i) prediction,
ii) context modeling and quantization, iii) conditional entropy cod-
ing. The prediction component reduces spatial redundancy in the
image. The context modeling stage further exploits spatial corre-
lation and the correlation between different image levels. Finally,
conditional entropy coding based on selected contexts translates
these correlations into smaller code-lengths. The algorithm is pre-
sented below in pseudo-code.

1. 30 = Predict Current Pixel();
2. d,t = Determine Context D,T(50);
3. 50 =Refine Prediction(3o, d, t);

4.6 = Determine Context ©($o);
5. 1f (6 > 0),
Encode/Decode Residual(ro, d, 6);
else,
Encode/Decode Residual(L — 1 — ro, d, |6]);
2.1. Prediction

Prediction is based on a local neighborhood of a pixel which con-
sists of its 8-connected neighbors, denoted by standard map direc-
tions: W, NW, N,... The residual samples are encoded and de-
coded in the raster scan order, i.e. left-to-right and top-to-bottom.
This order guarantees that residuals at positions W, NW, N, NE
have already been reconstructed when the center residual, ro, is
being decoded. In addition, all quantized pixel values of the image,
Q1 (s), are known as side-information. We define a reconstruction
function f(.), which gives the best known value of a neighboring
pixel, exact value (Qr(s) + r) if known, or the quantized value
plus % (to compensate for the bias in the truncation Qr(.)).

s if k € {W, NW, N, NE},
f(se) = { Qr(sk) + L otherwise. @

A simple, linear prediction for the current pixel value is calcu-
lated using the nearest, 4-connected neighbors of a pixel.

§°:i >

ke{W,N,E,S}

f(sk). @

Since this predictor is often biased, resulting in a non-zero mean
for the prediction error, so — S0, we refine this prediction and
remove its bias using a feed-back loop, on a per-context basis as
in [1]. The refined prediction is calculated as,

$o = round(3o + &(d,t)), 3)

where round( ) is the integer round, and &(d, t) is the average of
the prediction error (e = so — $0) over all previous pixels in the
given context (d, t). The resulting predictor $o is a context-based,
adaptive, nonlinear predictor.

2.2. Context Modeling and Quantization

Typical natural images exhibit non-stationary characteristics with
varying statistics in different regions. If the pixels can be par-
titioned into a set of contexts, such that within each context the
statistics are fairly regular, the statistics of the individual contexts
(e.g. probability distributions) may be exploited in encoding the
corresponding pixels (residuals) using conditional entropy coding.
If chosen appropriately, contexts can yield significant improve-
ments in coding efficiency. Increasing number of contexts better
adapt to the local image statistics hence improve the coding effi-
ciency. Since the corresponding conditional statistics often have to
be learned on-the-fly observing the previously encoded (decoded)
symbols, convergence of these statistics and thereby efficient com-
pression is delayed when a large number contexts are used. The re-
duction in compression efficiency due to large number of contexts
is known as the context dilution problem.

As a first step, we adopt a variant of d and ¢ contexts from [1],
which are defined as follows

>

ke{W,NW,N,NE,E,SE,S,SW}

S17(s0) —s0l, ()

_ L if f(sk) > 30,
b = { 0 otherf/Cise, * ©)
t = twlt~litelts, )

where t is obtained by concatenating the individual £, bits (16 val-
ues), and Q(A) is a scalar non-uniform quantizer with 8 levels,
whose thresholds are experimentally determined so as to include
an approximately equal number of pixels in each bin?. The context
d corresponds to local activity as measured by the mean absolute
error of the unrefined predictor Eqn. 2 and ¢ corresponds to a tex-
ture context®.

Typically, the probability distribution of the prediction error,
€ = s — &, can be approximated fairly well by a Laplacian dis-
tribution with zero mean and a small variance which is correlated
with the context d [6, pp. 33],[7]. Here, we assume that the predic-
tion error distribution p(e|d) is exactly Laplacian. The arguments
and the ensuing conclusions and techniques, however, are largely
applicable even when the true distributions deviate from this as-
sumption. Fig. 1.a shows a plot of the probability mass function
(pmf) p(e|d) under this assumption. Given §, the conditional prob-
ability distribution of pixel values p(s = s+ €|d, $) is obtained by
shifting the prediction error distribution p(e|d) by $ (Fig. 1.b).

In order to obtain residual’s probability distribution from pixel
statistics and to exploit the knowledge of the quantized pixel
Q1 (s), we introduce an additional context, 8, which is used only
in the coding process and not in prediction.

Note that the known quantized value Q1 (s) may be used as
an additional context directly. A known quantized pixel value,
Qr(s), limits the possible values of the pixel s to the range
[Qr(s),Qr(s) + L). This is illustrated in Fig. 1.b as the region
between the two vertical broken lines. The conditional probabil-
ity mass function p(r|d, $, QL (s)) can therefore be obtained by
normalizing this segment of the probability mass function to sum

2For the experimental resilts of Section 3, the quantizer Q( )’s thresh-
oldare{1,2,3,4,6,10,15}

3In order to avoid context-dilution during coding, ¢ contexts are used
only during prediction and not while coding.
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up to 1 (see Fig 1.c). Entropy coding the residual using this con-
ditional pmf restricts the symbol set required thereby improving
compression. Note, however, that there are typically a large num-
ber of possible values for Q@ (s), which would cause significant
context dilution. The characteristics of the Laplacian distribution,
however, allow for a significant reduction in the number of these
contexts.

Since the Laplacian distribution decreases exponentially about
its peak at $, the conditional pmf p(r|d, $, @r(s)) can be de-
termined from the relative positions of $ and Q(s). For in-
stance, if § < Qr(s), the peak is at r = 0 and the pmf de-
creases exponentially and is identical for all cases corresponding
to § < Qr(s) (e.g. Fig 1.b&c). This allows all the cases corre-
sponding to § < Qr(s) to be combined into a single compos-
ite context. Similarly, if § > Qr(s) + L — 1, the peak is at
r = L — 1 and the distribution increases exponentially, which
may all be combined into a single context as well. In other cases,
when Qr(s) < $ < Qr(s)+L—1,thepeakisatr = s—Qr(3).
Although total number of contexts after the above reductions is not
large, it can be reduced further, if the symmetry of the Laplacian
is exploited. In particular, the distributions with peaks at ry and
L — 1 — rg are mirror images of each other. If the residual values
are re-mapped (flipped rnew = L — 1 — 744) in 0ne of these two
contexts, the resulting distributions will be identical. As a result,
we can merge these contexts without incurring any penalty.

p(e | d) p(s | d.s*) p(r| d,s*Q, (s)
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Fig. 1. a) Prediction error PMF, p(e|d), under Laplacian assump-
tion (o4 = 10). b) Corresponding pixel PMF p(s = $ + €|d, $).
c) Conditional PMF of the residual (L = 4), p(r|d, $, QL(s))
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Fig. 2. Conditional PMFs p(r|d, $,Qr(s)) for contexts § =
{£1,+2} (L = 4). Symmetric contexts are merged by re-
mapping the residual values.

The 6 contexts differentiate between statistically different (af-
ter incorporating all symmetries) residuals using the knowledge of

$ and Qr(s). This enables the conditional entropy coder to adapt
to the corresponding probability distributions in order to achieve
higher compression efficiency. Minimizing the number of such
contexts allows the estimated conditional probabilities to converge
to the underlying statistics faster.

Finally, we have empirically determined that assigning a sep-
arate 6 context to the cases s = Qr(s) and s = Qr(s) + L — 1
further enhances the compression efficiency. These cases have
been formerly included in the context where § < Qr(s) and
$ > Qr(s) + L — 1. We believe that the rounding in Egn. 3
partially randomizes the prediction when QL (s) ~ $ and causes
this phenomenon. The number of @ contexts and (d, 6) coding
contexts become | £#% + 1] and 8 | 2+ + 1], respectively.

2.3. Conditional Entropy Coding

At the final step, residual values are entropy coded using estimated
probabilities conditioned on different contexts. In order to im-
prove efficiency, we use a context-dependent adaptive arithmetic
coder. In a context-dependent adaptive entropy coder, the condi-
tional probability distribution of residuals in each coding context
(d, ) is estimated from previously encoded(decoded) residual val-
ues. That is, the observed frequency of each residual value in a
given context approximates its relative probability of occurrence.
These frequency counts are passed to an arithmetic coder which
allocates best code-lengths corresponding to given symbol proba-
bilities.

2.4, Multi-level Embedded Coding

The above description outlined level embedded compression for
two levels, a base layer and a single enhancement level. Multi-
level embedded coding can be obtained as a straightforward ex-
tension by applying the algorithm recursively. In the first stage,
the image is separated into a base layer B; and an enhancement
layer r1 using level L;. In the second stage, the base layer B;
is further separated into a base layer B, and enhancement layer
T2 using a (potentially different) level Ly. The process is contin-
ued for additional stages as desired. Each enhancement layer »; is
compressed using the corresponding base layer B;, and last base
layer B,, is compressed as earlier.

3. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed scheme using the
six 512 x 512 8-bit gray-scale images seen in Fig. 3. Although
the algorithm works for arbitrary values of the embedding level L,
in order to allow comparison with bit-plane compression schemes,
here we concentrate on bit-plane embedded coding, which corre-
sponds to using L = 2. Furthermore, the recursive scheme out-
lined in Sec. 2.4 is used to obtain multi-level embeddings with
more than one enhancement layer, each consisting of a bit-plane.
The number of enhancement layers, i.e. embedded bit-planes, is
varied from 1 through 7. One (1) enhancement layer corresponds
to the case where the LSB-plane is the enhancement layer and 7
MSB-planes form the base layer. Likewise, seven (7) enhance-
ment layers correspond to a fully scalable bit-stream, where all bit-
planes can be reconstructed consecutively, starting with the most
significant and moving down to the least significant. As indicated
earlier, in each case, the corresponding base layer is compressed
using CALIC algorithm.
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Fig. 3. Testimages used for experiments. Each image is 512 x 512
in size and has 256 gray levels (8-bits).

In Table. 1, the performance of the proposed algorithm is com-
pared with that of state-of-the-art lossless compression methods.
(More results can be found in [5].) The methods included in this
benchmarking include the regular (non-embedded) lossless com-
pression methods: CALIC, JPEG2000, JPEG-LS, and gray-coded
JBIG -“JBIG(gray)”; and embedded compression using JBIG (in-
dependent bit-planes), and the level-embedded scheme proposed
in this paper. The different level embeddings are denoted as L.E.
1, L.E. 2, ..., L.E. 7 for the cases corresponding to 1, 2, ... 7 en-
hancement layers. In our experiments, CALIC provided the best
compression rates for non-embedded compression. Therefore, in
Table. 1, we tabulate results for all non-embedded schemes and the
level-embedded scheme proposed here as the percentage increases
in bit-rate with respect to the CALIC algorithm.

From the table, it is apparent that JPEG-LS and JPEG2000
offer fairly competitive performance to CALIC with only modest
increases in bit rate. Nonetheless, just like CALIC these meth-
ods are not bit-plane scalable. JPEG2000 provides resolution and
distortion scalability but not bit-plane scalability. In its default
mode, JBIG provides bit-plane scalability, however at a significant
loss of coding efficiency (almost a 35% increase in bit rate over
CALIC, on average). The performance of JBIG is significantly
improved when pixel values are gray-coded prior to separation
into bit-planes. This corresponds to the row labeled “JBIG(gray)”
in the table. However, in this case the resulting compressed bit-
stream is no longer bit-plane scalable for the original image data.
The level embedded compression scheme does significantly better
than JBIG. For a small number of embedding levels the penalty is
quite small with up to 4 enhancement layers requiring under 8%
increase in bit-rate over CALIC.

The proposed method incurs a penalty which increases
roughly linearly with increase in the number of enhancement lay-
ers (embedded bit-planes). In a hypothetical application, where 2
bit-planes are embedded, for instance, to truncate 8-bits to 6-bits in
a digital camera, the increase in bit-rate is 3% on the average. This
number is quite competitive with the non-scalable JPEG-LS and
CALIC algorithms in view of the added functionality. Itis also bet-
ter than the corresponding rate for the JPEG2000 algorithm. When
all bit-planes are embedded the penalty increases to 15%. This is
significantly better than the JBIG algorithm in its bit-plane scal-
able mode. However, it is considerably worse than the JPEG2000,
where alternate scalability is provided. The degradation at higher
levels of embedding is not a major concern because most applica-

tions of level-embedded compression are likely to require only a
small number of embedded bit planes.

4. CONCLUSIONS

We present a level-embedded lossless image compression method,
which enables bit-plane scalability, or more generally level scal-
ability. In situations, where the resulting compressed bit-stream
needs to be truncated to produce a lower bit rate (and lower qual-
ity) image, the proposed scheme guarantees freedom from com-
pression induced spatial artifacts and tight bounds on per pixel
maximum error, making it especially suitable in certain medical
and legal imaging applications. Experimental results comparing
the method with state-of-the-art lossless compression methods in-
dicate that level scalability is achieved with only a small penalty
in the compression efficiency over regular (non level-embedded)
compression schemes.
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Table 1. Performance of level-embedded compression scheme
against different lossless compression methods. Percent increase
with respect to CALIC is indicated.

[ I mage [ Avg. T F-16 [ Mand [ Boat [ Barb [ Gold [ Lena |

Conp. Method Best 1 ossless conpression rate (Baseline)

CALTC (bpp) 4.40 [ 3.54 | 5.66 | 4.15 | 4.42 | 4.58 | 4.08
Percent Increase in bit-rate wt baseline

= [ CALIC 0.0 0.0 0.0 0.0 0.0 0.0 0.0

— | JPE&Q000 5.2 7.6 4.0 6.2 4.6 4.6 5.2

2 | JPEG LS 3.1 | 1.9 | 228 | 2.4 | 6.2 | 1.8 | 3.4

® | JBIG(gray) | 15.0 | 17.5 | 11.2 | 15.8 | 17.6 | 13.7 | 15.8

JBI G 35.5 | 46.6 | 26.2 | 35.8 | 36.3 | 33.6 | 39.7

L.E 1 1.1 2.0 0.2 1.6 1.4 0.7 1.1

o | LLE 2 3.0 4.1 0.9 4.1 4.1 2.2 3.7

S| L.E 3 5.1 7.0 2.2 6.3 6.3 4.7 5.8

o | L.E 4 7.8 10.6 3.4 9.9 10.1 6.6 8.6

'L% L.E. 5 10.5 13.7 5.3 12. 4 14.0 8.5 11.7

L.E 6 12.8 15.9 6.6 14.5 17.5 10.7 14. 4

L.E 7 14.9 18.8 7.6 16. 4 20.0 12. 6 17.5
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