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ABSTRACT

In image-restoration problems involving a known blur,
set-theoretic estimation provides an effective framework
for incorporation of both noise statistics and a pri-
ori information. However, the sets formulated for use
with known blurs are not suitable for situations involv-
ing unknown stochastic blurs. In this paper, new sets
based on an error in variables criterion are developed,
which are more appropriate for restoration of uncertain
blurs. The conditions for convexity of these sets are rig-
orously established. Through 1-D simulations, the set-
theoretic restoration scheme utilizing these sets is com-
pared with the stochastic MMSE filter and with set-
theoretic schemes for stochastic blurs developed earlier.

1. INTRODUCTION

In several imaging applications, such as ground-based
astronomy and X-ray photography, the image recording
process involves an uncertain blur [1, 2]. In restoring
such images, often the average blur is used in restora-
tion schemes designed for images with known blur. Sig-
nificant gains can be achieved if additional knowledge
of the blur statistics is used in the restoration pro-
cess. The stochastic minimum mean square (MMSE)
filter [2]; the method of total least squares (TLS)[3], or
error in variables regression; and the constrained total
least squares (CTLS) technique [4, 5] are all motivated
by this idea. While these estimation schemes are statis-
tically sound, they do not permit use of other a priori
knowledge of the signal in the estimation procedure.

Set theoretic estimation [6] provides a flexible frame-
work for incorporation of a priori knowledge into esti-
mates of the signal. If available knowledge about the
signal can be represented in terms of sets {S;}/~;, in
which the signal must lie, a point in the intersection of
all these constraint sets, i.e., in

So = ﬁ Si,
i=1

is used as an estimate for the signal.

Obviously, set theoretic estimation is useful only for
problems for which there exists a procedure for comput-
ing this estimate. If all the sets, {S;}I",, are closed and
convex, the method of successive projections onto con-
vex sets (POCS) is guaranteed to converge to a point
in Sy starting from any arbitrary initial estimate [7, 8].
This result has been successfully exploited for a number
of signal restoration problems with a known blur, and
several convex sets have been defined based on prior
knowledge and noise statistics for that case [9, 10].

In [11] the sets based on noise properties were mod-
ified to take into account the case of a stochastic blur.
The modifications in [11] were primarily enlargements
of the sets based on noise statistics, to incorporate
the additional uncertainties introduced by inaccurate
knowledge of the blur. In this paper, new sets describ-
ing the properties of the noise and the blur pertur-
bations are defined in spatial and frequency domains.
The convexity of the new sets is established by means
of an elegant alternate characterization. Through one-
dimensional simulations, the performance of restora-
tion based on the modified sets is compared with the
stochastic MMSE filter and the approach in [11].

2. MEASUREMENT MODEL

For blurs arising from linear systems, the recorded data
can be represented as

g8nvx1 = Hyxninxi +vnx, (1)

where the matrix H is the linear blur, f is the original
signal to be restored, v is the measurement noise, and
the subscripts indicate the dimensions of the vectors
and matrices. For the case of stochastic blurs, H may
be modeled as H = H+ AH, where H and AH repre-
sent the known and unknown parts of H, respectively.
It will be assumed here that the entries in v are sam-
ples of a zero mean white noise process with a variance
of o2.



3. SETS BASED ON NOISE STATISTICS

If the blur, H, is known then under the hypothesis that
the true signal is y, the residual, g—Hy, corresponds to
the noise. In the method of least squares, the restora-
tion is chosen as the image which minimizes the norm
of this residual, whereas in set theoretic estimation [10]
an upper bound is placed on the norm of the residual
in agreement with noise statistics, to define the set [10]

So={x| | g - Hx |*< 4.}, (2)

where J, is equal to No2.

For the case when the blur is uncertain, the least-
squares paradigm is usually replaced by a (weighted)
total least squares schemel[3] in which the total squared
residual, 7 || E |2 + || » ||?, is minimized, where
E and n are constrained to satisty (H + E)x = g +
n, || - || denotes the Frobenius norm [3], and 7 is a
positive weighting factor. The stochastic blur case was
considered for set theoretic estimation in [11], where
a modified noise process, v’ = g — Hf = v + AHf,
was defined. This led to an enlarged set for the sample
variance of the residual,

Sy ={xl | g - Hx |*< 8.}, 3)

where 0! = §, + E || AHf ||? is the variance of v,
with E representing the expectation operator. For the
purposes of restoration, the worst case value of F ||
AHTS ||? given by E | AH ||?| f ||* was used.

The total least squares approach can be used to mo-
tivate an alternative set that accounts for the unknown
component of H. First, note that the set S, may be
rewritten as S, = {x| In > Hx =g +n,|| n°< &}
In a similar fashion, based on error in variables regres-
sion, a set can be defined to account for both the noise
and the unknown part of H as

Srrs = {x|3{E,n}> (H+E)x=g+n,
T EE+nlP<v}, (4)

where 7 and v are positive parameters determined by
the statistics of AH and v.

In order to use the set, Strs, in POCS based signal
restoration, it is necessary to establish its convexity and
to determine the projection onto it. The implicit defini-
tion in (4) involving E, n makes both these tasks rather
difficult. The following theorem provides us an alter-
nate characterization of Sppg simplifying both tasks.
The conditions for convexity follow from a straightfor-
ward corollary. Both the theorem and the corollary are
proved in [12].

Theorem 1 Syrs = {x € RN | | Hx — g |? —Z |
x |2 —v <0}.

Corollary 1 Strs is closed and convex if \/g is less
than or equal to the smallest singular value of H.

4. POWER SPECTRAL BOUNDS SETS

If the blur is assumed to be shift invariant, the oper-
ators H and AH are Toeplitz matrices determined by
the known part, h, and the unknown part, Ah, of the
stochastic impulse response, respectively. Under this
assumption, for the known blur case, N convex sets
were defined in [10] by placing appropriate confidence
limits on the periodogram of the residual. In [11] the
sets were modified to account for stochastic impulse
responses by expanding the bounds and making them
frequency dependent, to get the sets

_ N
SR = {x| | G(k) — H(k)X (k) |*< 0,(k)}, 0 < k < o
where upper case letters represent the discrete Fourier
transform (DFT) of their lower case counterparts,

N N
6, (k) = “5-0% + “-Pr(k)E | AH(R)

Py (k) is the periodogram of f, and « is a confidence
factor determined for a given confidence level for a nor-
malized chi-square random variable with two degrees of
freedom.

A modification similar to that for the residual vari-
ance set can be used for the power spectral bounds
(PSB) set, by defining the following sets,

Si(k) = {x[3A,E€C> [H(k)+ A] X(k) = G(k)

N
+E7Tk|A|2+|E|2§Vk},0<k‘<5.

It can be shown that [12]

O | HRX (k) = Gk) P =2 | X () P

from which it follows that Si(k) is a closed convex set
if | H(k) |?> ZE,

Projections onto Strs and Si(k) can readily be de-
termined from their characterizations given above us-
ing standard non-linear programming techniques [13].
These are summarized in [12].

5. EXPERIMENTAL RESULTS

In order to test the effectiveness of the modified sets
in restoration problems, the 1-D restoration example



from [11] was simulated. A stochastic impulse response
with Gaussian mean given by,

)~ = (—1”—28) , 5)

was created by generating M points between —128 and
127, with the location of each point being a zero-mean
Gaussian-distributed r.v. with a standard deviation of
8. The stochastic impulse response was then computed
as

number of points in [n — 0.5,7+ 0.5
h(n) = U [ ). (6)

The mean of the stochastic impulse response, h(n), was
assumed to be the known part of the impulse response.
E{| AH(k) |?} was also assumed to be known and
computed by averaging over 1000 realizations of the
stochastic impulse response. The noise was generated
using a Gaussian random number generator, and the
variance o2 was computed from the signal-to-noise ra-
tio (SNR), defined as 10log,(|| f ||?> /o2). The SNR
was set at 30 dB for the simulations.

For comparison, restoration was performed using
three different methods: the stochastic MMSE filter,
the dynamic POCS (DPOCS) technique from [11], and
POCS using the modified sets. The parameter M which
governs the uncertainty of the impulse response was set
equal to 100 as in [11]. The stochastic MMSE filter is
given by

_ PWE W |
(6) (T (k) |2 +B | AHE) ) + o2

Q(k) = P, (7)

The degraded signal was used as the initial estimate
for both the POCS schemes.

The original signal and the degraded signal are shown
in Fig. 1. The three estimates are shown in figures 2,
3, and 4 for the stochastic MMSE, DPOCS, EVPOCS
schemes, respectively. All plots include the actual sig-
nal for comparison. From the figures, it can be seen
that the stochastic MMSE filter yields a smooth re-
stored signal which does not fully capture the levels
in the original signal and has negative lobes. For the
DPOCS technique, the sets are rather conservative and
hence the estimate is not significantly different from
the degraded signal used as the initial estimate. The
EVPOCS approach using the sets St(k) performs signif-
icantly better giving good resolution of the two signal
peaks around n = 200 and also some discrimination
between the multiple signal levels in the central region.
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Figure 1: Original and degraded signals.
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Figure 3: Dynamic POCS Restoration.
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Figure 2: Stochastic MMSE Restoration.
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Figure 4: Error in Variables POCS Estimate.



