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Figures of Merit for Color Scanners

Gaurav Sharma, Member, IEEE, and H. Joel Trussell, Fellow, IEEE

Abstract—In the design and evaluation of color scanners and
cameras, it is useful to have a single figure of merit that closely
agrees with perceived color accuracy. In the past, several mea-
sures of goodness for color scanning filters have been proposed
to fulfill such a requirement. Most of the proposed measures
have had shortcomings in that they are either based on error
metrics in color spaces that are not perceptually uniform, or in
that they do not take into account the effects of measurement
noise. In this paper, an extension of the most promising measure,
based on linearized CIELAB space, is proposed to obtain a new
figure of merit that has a high degree of perceptual relevance
and also accounts for the varying noise performance of different
filters. The paper also provides a common framework for the
different figures of merit and a comprehensive comparison of
their computational complexity and reliability.

I. INTRODUCTION

HE perception of color involves interaction between

a physical stimulus (light) and the human visual sys-
tem. Hence, color differs fundamentally from other physical
quantities in that its specification and measurement must
perforce take into account the characteristics of the observer.
The CIE has defined color-matching functions for a standard
colorimetric observer and uniform color spaces [1], [2] that
capture properties of the human visual system relevant to
colorimetry. These standards provide a consistent definition
of color necessary for colorimetry and for the meaningful
exchange of color information.

Color scanners and cameras that strive for colorimetric
reproduction must also take into account the properties of the
human visual system in their design and in the interpretation of
data obtained from physical sensors. Measurement noise and
practical limitations in fabricating these systems often limit
the color accuracy of these devices. A figure of merit for color
scanners and cameras that relates closely to color accuracy is
therefore desirable for their evaluation and design.

A “quality factor” for color filters was first proposed by
Neugebauer [3]. Neugebauer’s quality factor was, however,
limited to the evaluation of single filters. Vora and Trussell
[4] extended the quality factor to filter sets with an arbitrary
number of filters. An alternate measure, called the color quality
factor (CQF) [5], has also been used in the industry for the
evaluation of filter sets with multiple filters.
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The aforementioned measures can all be related to a mean
squared error (MSE) metric in CIE XYZ space. Since the CIE
XYZ space is known to be perceptually extremely nonuniform,
a measure based on a uniform color space, such as the CIELAB
space [1], [2], could offer significant advantages over these
measures. Such a measure was implicit in the formulation used
by Vrhel and Trussell [6] for the design of filters. The non-
linear nature of uniform color spaces, however, necessitates a
considerable increase in computation. Recently, Wolski et al.
[71, [8] proposed the use of global and local linearizations of
CIELAB space to reduce the computational complexity while
preserving the desirable property of perceptual uniformity.

All the measures described so far are formulated with the
assumption that the scanner/camera sensors are noiseless. In
the real world, sensor noise is inevitable. Since filter sets need
not be equally robust in the presence of measurement noise, a
single figure of merit combining the filters and the information
of noise statistics is more desirable. Vrhel and Trussell [9], [10]
accounted for sensor noise in the design of color scanning
filters. However, the work was based on a mean squared error
metric in the perceptually nonuniform CIE XYZ space.

In this paper, a new figure of merit for color scan-
ners/cameras is considered that can be viewed as extension
of the work in [7], [8], and [10]. The new figure of merit
is based on an error metric in linearized CIELAB space and
incorporates a model for measurement noise. It therefore has a
high degree of perceptual relevance and also accounts for the
noise performance of different filters. This claim is validated
by the simulation results presented in Section VII. This work
also provides a comprehensive comparison of the reliability
and computational complexity of the different figures of merit
in a unified framework.

For notational convenience and brevity, the subsequent
discussion in this paper will refer to a color scanner scanning
images on reflective media. However, with trivial modifica-
tions the same analysis applies to color cameras and other
color measuring devices.

The rest of the paper is organized as follows. Section II
introduces the relevant notation for colorimetry and a model
for scanner operation. A general error metric for scanners is
developed in Section III. Based on this metric, a normalized
figure of merit is defined in Section IV and several specific fig-
ures of merit are shown to conform to the general framework
developed. Section V presents an overview of the different
figures of merit, summarizing their similarities and differences,
and Section VI describes their computational requirements.
Simulation results comparing the reliability of different figures
of merit are presented in Section VII and concluding remarks
in Section VIII. Some of the mathematical expressions omitted
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from the main text of the paper are summarized in the
Appendixes.

II. SCANNER COLORIMETRY

The color of an object is specified by its CIE XYZ tristim-
ulus values

= / GV, i=1.23 (1)
where {a;(\)}3_; are the CIE XYZ color matching functions
[11, [2], I()) is the spectral radiance of the viewing illuminant,
and r()) is the spectral reflectance of the object.

For computation, the integral in (1) is approximated by a
summation involving the corresponding sampled quantities. If
N equispaced samples over the visible range are used, the
three equations can be written compactly as

t(r) = ATLr = Alr 2

where t(r) is the 3 x 1 vector of CIE XYZ tristimulus values,
A is the N x 3 matrix of CIE XYZ color matching functions, L
is the IV x N diagonal matrix with samples of the illuminant
spectrum along the diagonal, r is the N x 1 vector of the
object reflectance, and A = LA.

Scanner measurements of the object with a K channel
scanner can be similarly expressed as

t.(r) =ML,r+n7=G'r+19 3)

where t4(r) is a K'x 1 vector of scanner measurements, M is
the N x K matrix of scanner filter transmittances (including
detector sensitivity and the transmittance of the scanner optical
path), L, is the N x N diagonal matrix with samples of the
scanning illuminant spectrum along the diagonal, 77 is the K x 1
measurement noise vector, and G = L,M.

To obtain colorimetric information from the scanner, the
CIE XYZ tristimulus values must be estimated from the
scanner measurements. If there is no measurement noise and
the product of the viewing illuminant and the CIE XYZ color
matching functions can be expressed as a linear combination
of the scanner sensitivity curves, then the CIE XYZ tristimulus
values are obtained as a linear transformation of the scanner
measurements. Mathematically, if Ay = GBE, for some
matrix Bg and n = 0, then t(r) = Bots(r). For the more
practical case, when the sensor responses do not match up
to CIE and the measurements are corrupted by noise, the
CIE XYZ tristimulus values may still be estimated as linear
transformations of the scanner measurements

t(r) = Bt,(r) )

where the transformation B is determined so as to minimize
the color error.

In addition to linear transformations, polynomial trans-
formations and look-up tables have been used for scanner
calibration [11]—-[14]. Haneishi et al. [12] demonstrated that
when calibrating for multiple materials the higher order poly-
nomials offered no advantages over a linear transformation.
The same is true of look-up tables (LUT’s) [15]. Since the goal
of colorimetric scanning is to obtain a material independent

calibration, polynomial transformations and LUT’s are not
considered here.

The color error may be defined in several different ways and
accordingly, there will be different “optimal” transformations.
The next section elaborates further on the choice of color error
metrics and of the transformation, B, in the above equation.

III. A GENERAL SCANNER ERROR METRIC

The average magnitude of “color difference” between the
true color t(r) and the estimate t(r) may be used as an
error metric for quantifying the scanner performance. Different
color spaces may be used in the computation of the “color
difference.” To encompass several cases in a unified treatment,
it will be assumed that the error magnitude can be expressed
mathematically in the form ||F(t(r)) — F(t(r))|| where F()
is a3 x 3 (possibly nonlinear) transformation of the tristimulus
values, and || -|| denotes the Euclidean vector norm [16]. Such
a metric is motivated by the numerous uniform color spaces in
which equal Euclidean distances correspond to approximately
equal perceptual color errors [2]. In such a scenario, F()
represents the transformation from the CIE XYZ space into
a uniform color space.

In terms of the above notation, the scanners mean squared
color error is given by

(AL, G, B) = E{||F(t(r)) — F(£(r))|I*} ®)

where E{} denotes the expectation over the ensemble of
objects to be scanned. As an alternative to the mean squared
value, the maximum error over the ensemble, or a variety of
other means may be used in the above expression. The mean
squared value, however, has the advantage that it preserves
differentiability, which is desirable in design applications
making use of gradient based methods.

The above error metric quantifies the performance of a
scanner “specified by” G when the transformation B is used
in (4). An error metric for the scanner alone can be obtained
by replacing the generic transformation, B, with the optimal
transformation that minimizes the error. However, such an
error metric is not readily computable, since the optimal
transformation cannot be determined in closed form for a
general nonlinear transformation, (). If the transformation
F() is differentiable, with continuous first partial derivatives,
a first-order Taylor series provides a fairly accurate locally
linear approximation for F(). If ||t(r) — t(r)|| is small over
the scanned ensemble, this first-order Taylor series can be
used to approximate the error metric in (5) by the expected
mean-squared linearized color error

G(AL, G, B) ~ GI(AL, G, B)
= E{|lJF(t@)(t(r) = t@)I*}  ©)

where Jz(t(r)) denotes the Jacobian matrix [17] of the
transformation F() at t(r). In the subsequent sections, the
color space transformation J() will often be a linear trans-
formation. In such a case, the above approximation is exact
and Jz(t(r)) is the same as F, the matrix representing the
linear transformation (). The transformation that minimizes
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the linearized error metric, viz.,

Bopi(Ar, G) = arg min a(Ar, G,B) (7

can then be used to obtain an error metric for the scanner as
EAL,G) = (AL, G,Bopi(Ar, G)). As will be illustrated
below, the advantage of using the linearized error metric is
that closed-form expressions can be obtained for the optimal
transformation and for the scanner error metric.

If the measurement noise, 77, is zero mean and independent
of r, then it can be seen that the optimal transformation in
(7) is given by

vec(Bopt (AL, G)) = [(GT @ L3)S,(G@I3) + S,]
x (GT @ 15)8,vec(AT) (8)

1

where vec() is an operator that transforms a matrix into a
vector by stacking the columns of the matrix one underneath
the other in sequence, I3 denotes the 3 x 3 identity matrix, &
denotes the Kronecker product operator

S, = E{(rr") @ (JF(t(r))Jr(t(r))) } )
S, = K, © E{JE(t(r) J-(4(r))} (10
and K,, = E{nn’} is the noise covariance matrix.

The minimum mean-squared linearized color error obtained
using the optimal transformation from (8) is given by

(AL G)=a(Ar) - 7(AL,G) (11)
where
alAp) = vec(AE)TS,jvec(Af) (12)
7(AL,G) = vec(AT)'S,(G @ Ty)
x [(GT ©13)S,(G®TI3) +S,]
x (GT @ 13)S,vec(A]). (13)

A brief sketch for the derivation of (8)—(13) is included
in Appendix A.! If the transformation F() is a linear trans-
formation, significant computational savings can be made in
the computation of the above expressions. Since these will
be of interest in subsequent discussions, the computational
simplifications for the case when F() is a linear transformation
are summarized in Appendix B.

IV. FIGURES OF MERIT FOR SCANNERS

The error metric for scanners derived above is useful for
comparing the color accuracy of different filter sets in a chosen
color space, i.e., for a given F(). Since different color spaces
may have very different scales, a normalized figure of merit
is more useful for the comparison of error metrics in different
spaces. It can be readily seen that, in (11)

0 S T(AL,G) S Oé(AL)
The term (A ) may be interpreted as the average “color”
energy in a spectrum from the spectral ensemble and and
ISince the submission of this paper, the authors have become aware of

[18], where an equation equivalent to (8) has been derived from a different
motivation.
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7(Ar,G) then represents the part of this energy that is re-
coverable from measurements made with the scanner specified
by G (at the given noise level). Furthermore, the “units” of
this “color” energy are approximately perceptually uniform if
F() represents the transformation from CIE XYZ space to a
uniform color space. Hence, the ratio

T (A Ly G)
q}-(ALv G) Oé(AL) (14)
defines a normalized figure of merit (FOM) for the color
scanner, where the subscript F has been added to explicitly
indicate the dependence on the transformation () (which was
implicit in the earlier expressions). The normalization ensures
that the figure of merit is bounded between zero and one with
qr(Ar, G) = 1 representing a “perfect” color scanner whose
error metric is zero.

While the discussion so far assumed the use of the scanner
for colorimetry under a single viewing illuminant, the expres-
sions are readily extended to multi-illuminant color correction
problems by using appropriate weighted averages of the error
metrics or figures of merit. Similar averages can be used
for devices aimed at measuring both reflective and emissive
objects [19], [7], [8].

A number of different color spaces and varying amounts of
statistical information may be used in (14). This leads to a
number of different figures of merit that have been used for
the evaluation of color scanners. The following subsections
discuss how these FOM’s conform to the general framework
developed above. Though the color quality factor does not fit
the above framework, it is included in the discussion here for
completeness.

A. XYZ Mean-Squared-Error-Based FOM

While it is well known that the CIE XYZ color space is
perceptually nonuniform [2], the simplicity of a FOM based
on MSE in CIE XYZ space is attractive. For this case, the color
space transformation () is, in fact, the identity mapping and,
using the expressions from Appendix B, it can be readily seen
that the FOM is given by

tr(ATK, G(GTK,G + K,)"1GTK, A
a(AL,G) = (AL ( T ) L)
tI‘(ALKTAL)

(15)
where tr(-) denotes the trace operator and K, = E{rr?} is
the correlation matrix for the ensemble of reflectance spectra
of scanned objects.

B. FOM’s Based on Orthogonal Color Spaces

From a signal processing viewpoint, the use of an orthogonal
color space, instead of the highly correlated CIE XYZ space,
would be desirable. This can be achieved by requiring that
the color space transformation () is a linear transformation
specified by a matrix, F,, such that the columns of ALFZ
are orthonormal. F,A%r is then the vector of the tristimulus
values of the reflectance r in the corresponding orthogonal
color space. Once again using expressions from Appendix B,
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it can be seen that in this case the FOM is given by

tr(PAL K1G’(G’TK1G’ + K»q)_lG'TKr)
tr (PAL AEK,)

(.ZO(AL7 G) =

(16)
where Pa, = AFIF,AT is the orthogonal projector
onto the column-space of A, known as the human visual
illuminant subspace (HVISS) [4].

Observe that the above FOM is independent of the choice
of the orthonormalizing transformation F, and of the actual
columns of Ay, (depending only on their span instead). Since
the choice of particular CIE XYZ color matching functions to
represent the human visual space was made for mathematical
convenience and not for any reasons of perceptual uniformity
[1], [2], this independence is a desirable feature. It may also be
noted that Vrhel and Trussell [9], [10] formulated the problem
of designing color scanning filters in terms of the maximization
of the numerator in (16) and thus implicitly used the above
FOM.

If measurement noise is ignored, i.e., it is assumed that
K, = 0, the figure of merit in (16) reduces to the data-
dependent measure of goodness for color scanning filters
proposed by Vora [20, p. 90]. If in addition, the “maximum
ignorance assumption” is used for the spectral correlation
matrix of the reflectance spectra of the scanned ensemble, i.e.,
it is assumed that K, is a scalar multiple of the identity, the
FOM reduces to the data independent Vora measure for color
scanning filters [4]

tr(Pa,.Pg)

3 A7)

(AL7 G)
where Pg = G(GTG)~!G7 is the orthogonal projector onto

the column-space of G, defined as the scanner visual subspace
(SVS).

C. Neugebauer’s Quality Factor

If the scanner has orthogonal channels, ie., G =
(g182...8K], with gl'g; = 0, i # j, the Vora measure
can be rewritten as

(.Zl/ AL7 (18)

Z [Pacgill>
lgill?
The above expression can be interpreted as the normalized sum
of the goodness measures of the individual scanning filters.
This goodness measure is, in fact, the quality factor for filters

proposed by Neugebauer [3]

[P, sl

(Jn(Ang) = ||g||2

19)

For filter sets with orthogonal or nearly orthogonal filters,
the average of the Neugebauer quality factors is a reasonable
measure of goodness for the set. However, for nonorthogonal
filters the use of average quality factors can lead to gross
mispredictions [4]. Since the Vora measure covers the useful
case of orthogonal filters, the Neugebauer quality factor will
not be considered in the subsequent discussion.
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D. Color Quality Factor

The Vora measure attempts to quantify the “fraction” of
the HVISS contained in the SVS. The Neugebauer quality
factor, on the other hand, attempts to evaluate single filters by
determining the fraction of the filters energy that lies in the
HVISS. By reversing the roles of the HVISS and the SVS, one
can determine what fraction of the energy of each illuminant-
color-matching-function product lies within the SVS. Thus
if the illuminant-color-matching-function product matrix is
written in terms of its columns as Ay = [ajagzag], the three
factors
[Pea?

[l2u][?

quantify the accuracy of the scanner in matching the
illuminant-color-matching-function products aj,as,as, re-
spectively. Note that these factors depend on the particular
basis {a;}?_; chosen for the HVISS.

The minimum of the three factors {¢(a;, G)}?_; may be
chosen as a measure of the overall accuracy of the scanner in
approximating the HVISS. This measure is the CQF [5]

Ge(AL, G) = min d(a;, G).

P(a;, G) = i=1,2,3 (20)

21

Instead of the minimum, an average value may also be used
to obtain an alternate color quality factor.

E. FOM’s Based on Perceptual Color Spaces

Since scanned images are ultimately viewed by a human
observer, an error metric quantifying perceived differences in
color would be ideal for evaluating the scanner. Euclidean
distances in the CIE XYZ space and in the orthogonal color
spaces of Section IV-B agree poorly with perceived color
differences and are, therefore, nonuniform color spaces from
a perceptual standpoint. Several approximately uniform color
spaces have been defined by the CIE [1] in which equal
Euclidean distances correspond roughly to the same per-
ceived difference in color. These spaces are described by
nonlinear transformations, F : R® — R°®, that transform
color tristimulus values in CIE XYZ space to the uniform
color space. Typically, the transformation JF() is differentiable
with continuous first partial derivatives and therefore can
be incorporated in the framework of Section III. For the
purposes of this discussion, the most extensively used uniform
color space, CIELAB, will be considered. The transformation
F() and its Jacobian matrix for the CIE L*a*b* space is
summarized in Appendix C. Using these expressions, a FOM
for the scanner can be computed as in (14). This FOM will
be denoted as g,,(Ar,G), and referred to as the perceptual
FOM. If the noise is ignored, i.e., it is assumed K, = 0,
this figure of merit reduces to one that was implicit in
Wolski et al.’s formulation of the filter design problem. The
corresponding FOM will be referred to as the perceptual
measure, ¢,(Ar,G), in subsequent discussions.

It can be inferred from (13) that the computation of the
perceptual FOM’s is considerably more involved than the
computation of the other measures for which F() was a lin-
ear transformation. To obtain less computationally expensive
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FOM'’s, global as opposed to local linearizations of the uniform
color space may be considered. One such linearization, based
on the first-order Taylor series for the CIELAB space about
the white point, will be considered here. Such a linearization
is equivalent to replacing F() by a linear transformation Fr,q;
obtained by evaluating the Jacobian matrix of () at the white
point. The expression for Fr4; is given in (43) in Appendix
C. The FOM obtained using this expression is given by (see
Appendix B)

Gapn (AL, G)
_ tr (FgabFLabAEK,,G(GTKTG + Kn)_lGTK,,AL)
N tr(FgabFLabAEKrAL)

(22)

and will be referred to as the approximate perceptual FOM.
A version of this FOM in which the noise was neglected
(K, = 0), was implicitly used by Wolski et al. [7], and will
be called the approximately perceptual measure g,p(Az, G).

V. DISCUSSION

Color errors in scanners arise from two distinct sources: 1)
the “difference” between the HVISS and the SVS, and ii) the
noise in scanner measurements. The different FOM’s described
in the last section were attempts at quantifying these errors.
The FOM’s that ignored device noise and concentrated only
on the the first source of errors are referred to as (scanner filter
goodness) measures, using terminology borrowed from [4].

In the absence of noise, the scanner measurements yield the
projection of the scanned object spectra onto the SVS. If the
HVISS is contained in the SVS, this projection is sufficient
for exact color reproduction. The scanner measures of the
last section, attempt to quantify the fractional “amount” of
the HVISS that is contained in the SVS. The Vora measure

Vora measure versus average AEY .

and CQF are based on purely geometric ideas of the distance
between subspaces [4], and ignore both the statistics of the
scanned spectra and perceptual nonuniformities in the HVISS.
The data-dependent Vora measure incorporates the statistics
of the scanned spectra while continuing to ignore perceptual
effects. The approximate perceptual measure and the percep-
tual measure of Section IV-E incorporate the statistics of the
scanned spectra and varying degrees of perceptual information.

Since the scanner measures ignore device noise, they offer
little insight on the noise performance of different filter sets for
color scanning. It can be shown [15] that the measures of the
last section depend only on the SVS, i.e., the space spanned by
the columns of G, and not on the individual entries in G. Thus,
they do not distinguish between different scanners having the
same SVS. Since measurement noise may have significantly
different impact on scanners having the same SVS but different
filters, this is a significant shortcoming of the measures, which
is overcome in the more comprehensive FOM’s that include
noise in the analysis. In a manner analogous to the scanner
measures, these used varying amounts of statistical information
about the scanner target ensemble and the knowledge of
perceptual nonuniformities in the HVISS.

The usefulness of the different measures and FOM’s for
practical problems is determined by their computational re-
quirements and by their relation to perceived color errors.
These questions are investigated in the next two sections.

VI. COMPUTATIONAL COMPLEXITY

For a one-time evaluation of an existing scanner, the cost
of computing the different FOM’s is not important. However,
if the problem of designing an optimal color scanner is
formulated as the maximization of the FOM, the cost of
computing the FOM is a significant issue. The computational
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complexity of the different FOM’s is therefore analyzed in
this section.

Note that the normalization factor «(Ar) in (14) does
not depend on G and, therefore, needs to be computed only
once. The same is true of the statistical information regarding
the scanner target ensemble and the noise, contained in the
matrices S,, S,, K, and K,,. These costs will therefore not
be considered as part of the computational requirements of
the different FOM’s.

By using the special structure of the matrices, significant
savings can be made in the computation of the different
FOM'’s and measures. Usually, the noise in different channels
is uncorrelated and K, is a diagonal matrix. Therefore, in the
evaluation of computational requirements, it will be assumed
that K, is diagonal. The matrices S,, S;, K,, and K,
are symmetric positive definite matrices. These properties
are therefore inherited by the matrices whose inverses occur
in (13), (15), (16), and (22). Using this observation, it can
be seen that each of these FOM’s can be written in the
form tr(UTW~1U)/a where « is a normalizing constant
(independent of ), W is a context-dependent positive definite
matrix and U is another context dependent matrix (or a vector).
Let W = VV7 denote the Cholesky factorization [16] of W,
where V is a lower triangular matrix. The aforementioned
measures are computed most efficiently using the fact that

w(UFW™U) = [VTIU| % (23)
where ||-|| r denotes the Frobenius norm [16]. Using (23), it can
be seen [16] that the computation of each of the XYZ MSE-
based FOM, the FOM’s based on orthogonal color spaces,
and the approximate perceptual FOM’s of (15), (16), and (22)
requires 2NK (N + K + 6) + K3/3 + (TK?)/2 + (37K ) /6

floating point operations (FLOP’s); and the computation of
the perceptual FOM based on (13) requires 18N K(3(N +
K)+1)+9K3+(45K?%)/2+ (13K)/2 FLOP’s. The scanner
goodness measures obtained by ignoring noise in these FOM’s
require roughly the same number of computations as the
FOM’s themselves.

The Vora measure in (17) can be computed in a stable and
efficient manner by using the QR factorization [16] to obtain
orthonormal bases, N and O, for the column spaces of Ay, and
G, respectively. The Vora measure can then be computed as
INTO||%./3. This requires 2NK(K + 3) — (2K3)/3 + 7K
FLOP’s. Using the same idea, the color quality factor in
(21) can be written as min ||O%a;]|?/||a;||* and requires
2NK(K + 1) — (2K3)/3 + 3K FLOP’s.

Typically, a 10 nm sampling interval is used for color
spectra over the visible range 390 nm to 730 nm, yielding N =
35 samples for the various spectral terms. Since color scanners
and cameras use only a few channels, K is relatively small in
relation to IV (typically K is between 3 and 7 [10]). Hence,
the N2 term in the above expressions is computationally the
dominant term. Using this observation, it can readily be seen
that the Vora measure and CQF are computationally the most
simple, requiring far fewer FLOP’s than the other FOM’s.
The FOM’s based on MSE in CIE XYZ space, the orthogonal
color spaces, or the globally linearized CIELAB space are
next in order of increasing computational complexity, and all
require the same number of FLOP’s. The perceptual FOM
is computationally the most expensive and requires roughly
3% = 27 times the computation of the FOM’s based on
global linear transformations of the CIE XYZ space. For the
typical case of N = 35, and for values of K between 3
and 7, the computational requirements for the different FOM’s
(computed using the general expressions involving /N and K)
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are listed in Table 1. The table facilitates a comparison of the
relative computational requirements of the different FOM’s.

VII. EXPERIMENTAL RESULTS

Since color is finally judged by a human observer, the
average perceptual color error over the ensemble of scanned
spectra is an ideal metric for evaluating color scanners. A FOM
that is monotonically related to the average perceptual error is
equally useful. Hence, the nature of the relation between the
average perceptual error and a FOM can be used to evaluate

the trustworthiness of the FOM. Since perceived errors are
psychophysical and cannot be evaluated without extensive
experimentation, in this section, a quantitative specification of
color errors is considered using a perceptually uniform color
space. In particular, the Euclidean distance in CIELAB space
(L*a*b*), referred to as the AE?, error, will be used as an
approximation to the magnitude of perceived color error.
The predictive abilities of different FOM’s can be evaluated
by examining the relationship between the FOM and the
average ALY, error over the scanner target ensemble for a
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TABLE 1

COMPUTATIONAL REQUIREMENTS OF THE FOM’s FOR N = 35

FOM or FLOPS (x10%)

Measure K=3 |K=4 |K=5 |[K=6 |K=17
CQF 0.831 1.369 2.032 2.814 3.712
Vora 1.263 1.945 2.752 3.678 4.720

Linear F() | 9.299 12.702 | 16.260 | 19.975 | 23.849
Nonlinear F() | 217.815 | 298.322 | 382.870 | 471.513 | 561.305

number of filter sets. Simulations were performed to determine
this relationship for the different FOM’s. Throughout the
simulations, a 10 nm sampling interval was used over the
wavelength range 390-730 nm so that there were N = 35
samples for each spectrum. It was assumed that the scanning
and the viewing illuminants are the CIE daylight illuminant
D65 [1], [2], so that L and Lg are identical. With this
assumption, in the absence of noise the CIE XYZ color
matching functions define a “perfect” filter set with unity
Vora measure. Parameterized filter sets were used to obtain
a large number of additional filter sets with varying FOM’s.
The filter sets were designed to have three filters in each set.
The spectral transmittance of each filter was specified by a
Gaussian function of the form exp(—(\ — )2/(2+?)), where
A denotes wavelength; and the mean, u, and the variance,
+2, are the parameters specifying the filter. A “base set” of
Gaussian filters was created by determining the means and
variances of the three filters so as to maximize the Vora
measure. Both the means and standard deviations (square-roots
of the variances) defining the filters were then varied within
40 nm bands about their “optimal values” to obtain a number
of filter sets. The filter sets in which the filter transmittances
were nearly linearly dependent were dropped. This procedure
yielded a total of 251 filter sets spanning a significant range
of Vora measures. It may be noted that the results presented
here are essentially unchanged if other combinations of smooth
viewing and scanning illuminants, such as CIE incandescent
illuminant A, daylight illuminant D50, or the equal energy
illuminant E [1], [2] are used in the simulations.

The simulations used an ensemble of scanner target re-
flectances containing 424 reflectances. Of these, 240 were from
the Kodak Q60 Photographic Scanner Target [21], 64 from
the Munsell chart, and 120 from a Dupont paint catalog [22].
Simulated noisy measurements were made with each filter set
for the entire ensemble using (3). The measurement noise
7 was assumed to be signal-independent, zero-mean, white,
Gaussian noise with (per-channel) variance 072] determined by
the signal-to-noise ratio (SNR) defined as

tr(GTK, G
SNR (dB) = 10log;, <r(42)) (24)
o
n
The noise correlation matrix was thus K, = 031. Sample

averages over the ensemble of reflectances were used to
estimate the matrices S,., K,, and S,. These were then used
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to determine the “optimal transformation” of (7) for each
filter set. Using this transformation, CIE XYZ tristimulus
values were estimated from each simulated noisy scanner
measurement. Actual CIE XYZ values corresponding to the
same reflectance were also computed using (1). The actual
and estimated tristimulus values were transformed to CIELAB
space, and the Euclidean distance was computed between them
to obtain the AE?, error corresponding to a single reflectance.
For each filter set, the mean of these errors over the entire
ensemble of scanner target reflectance spectra was computed
to obtain an average ALY, error corresponding to the filter
set. For each filter set, the different FOM’s of Section IV were
also computed. The relationship of each FOM to the average
AE?, error was examined by using a scatter plot of the two
quantities for the 251 filter sets. SNR values of 40, 50, and 60
dB were considered in the simulations.

The relation between the different scanner measures (that
ignore noise) and the average AE?, error is illustrated in
the scatter plots of Figs. 1-4. Only a representative random
selection of the 251 points corresponding to the different
filter sets has been included in these and subsequent plots
to keep them uncluttered. Also included in all the plots are
best fit curves of the form, avg. AE?, = B3v/1— FOM. The
rationale behind such a curve comes from (14), where it
can be seen that the FOM’s have the corresponding square-
root relation to a root-mean-squared color error. From the
figures, it can be seen that the CQF does not have the desired
approximately monotonic relation to the average AE?, error
even at a relatively high SNR of 60 dB. At the same SNR,
the Vora measure does somewhat better, the data-dependent
Vora measure makes significant gains over the Vora-measure
by incorporating knowledge of the correlation of scanned
spectra, and the perceptual measure does extremely well, with
all the points in the scatter plot lying very close to a smooth
monotonic curve. At an SNR of 40 dB, significant changes
occur in each of the scatter plots. For all the measures, there
is apparently no clear functional relationship between the
measures and the average AE?, error. Also note that, even
at the moderately high SNR of 40 dB, the measure 1 filters
(the CIE XYZ color matching functions) are no longer optimal
from a perceptual standpoint. Several interesting facts can also
be observed from the abscissa of the different plots. Because of
the use of the minimum in (21), the CQF is often lower than
other measures, providing pessimistic estimates even in the
absence of noise. The data-dependent measures are rather high
for all the filter sets. An explanation for this can be found in the
fact that object reflectance spectra can be well approximated
by a low-dimensional space [22]. In the limiting case, when
the scanned reflectances lie in an M -dimensional space, it can
be seen that the data-dependent measures are unity for any
scanner with M or more linearly independent channels [23].

Figs. 5-8 demonstrate the relation between the different
FOM'’s that account for device noise and the average AE?,
error. From Fig. 5, it is clear that the CIE XYZ MSE-based
FOM is a poor indicator of perceptual color error. The poor
predicted performance for the cluster of points below the
solid curve in the center of the figure is probably due to the
computation of errors in a nonorthogonal space. The FOM
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based on an orthogonal color space is considered in Fig. 6
and the approximately perceptual FOM based on a global
linearization of CIELAB space in Fig. 7. From the plots, it
is clear that these FOM’s are better indicators of perceived
color error than the CIE XYZ MSE-based FOM. However,
the points constituting the scatter diagrams are far from a
smooth monotonic curve in either case. Fig. 8 is the scatter
plot corresponding to the perceptual FOM. The points in
this case are almost ideally distributed, lying along a rather
well-defined smooth monotonic curve. Note that unlike the

measures that did not vary with SNR, the perceptual FOM has
lower values at lower SNR’s and the corresponding points on
the scatter diagram are shifted to the left, forming a continuous
smooth curve. Thus, the perceptual FOM also captures the
tradeoff between the errors arising due to the difference in
the HVISS and the SVS and those arising due to the device
noise, providing an ideal FOM for analysis and design of color
scanners and cameras.

Since several applications require that the worst case color
errors be minimized, it is also desirable to have a monotonic
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decrease in the maximum AZE?, error with increase in an
FOM. A scatter plot of the maximum AFE?, error (over the
ensemble of 424 reflectances) versus the perceptual FOM
is shown in Fig. 9. The points constituting the scatter dia-
gram have considerably larger spread than the corresponding
diagram for the average AFE, error. Since the FOM was
based on mean-squared values, this larger spread is to be
expected. However, note that the monotonic trend is still
apparent, particularly for filter sets with a high (perceptual)
FOM. This is encouraging, since it indicates that for scanners

with reasonably high perceptual FOM, the FOM also reflects
the worst case performance with fair accuracy.

VIII. CONCLUSION

In this paper, a unified framework was developed for the
description of several figures of merit (FOM’s) for color
scanning systems. A new perceptual FOM was obtained using
linear approximations to CIELAB space, which accounted for
color errors from the noncolorimetric design of scanning filters
as well as the errors resulting from measurement noise. The
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computational requirements of different FOM’s were analyzed.
The relation between the different FOM’s and perceptual error
was studied through simulations. The new perceptual figure of
merit was shown to be in excellent agreement with perceived
color error (quantified in terms of the average AE?, error) for
filter sets with considerable variation in colorimetric accuracy
and across a wide range of SNR values.

APPENDIX A
DERIVATION OF THE GENERALIZED ERROR METRIC

In this appendix, a brief derivation of (8)—(13) leading to
the general scanner error metric is provided. For this purpose,
it is useful to introduce the vec(-) operator that transforms a
matrix into a vector by stacking the columns of the matrix one
underneath the other in sequence. It is also useful to state some
properties of the vec(-) operator and the Kronecker product.
For arbitrary matrices, T, U, V, and W, the following results
[17, pp. 27-30] hold:

vec(UVW) = (W? @ U)vec(V) (25)

(T+U)(V+W)=TV+TOW
+UV+UW (26)
(ToU)VeW)=TVeoUW (27)
(ToU)! =(TT o UT) (28)

where ® denotes the Kronecker product and it is assumed
that the matrices satisfy appropriate size restrictions for all the
operations to be defined.

Substituting (3) in (6)

a(Ar, G, B) = B{||Jx(t(r)) [Afr - B(G"r +m)]|’}.
(29)
Using (25)

Jr(t(r)ALr = (7 @ Je(t(r)))vec(AL).  (30)

Jr(6(0)BIGTr 4 7] = [(GTr + m)T © Jr(6(r))]vec(B).
(31

Denoting b = vec(B), x = (r? @ Jz(t(r)))vec(AT), and
Y = [(GTr +n)T © Jr(t(r))]

GI(AL, G,B)
= E{llx—Yb|*}
= E{||x]*} = 2E{x"Y}b + T E{Y"Y}b. (32)

It readily follows [16] that
vec(Bopi (A, G)) = arg Irgn a(Ar, G,B)

= [E{Y"Y}]T'E{YTx} (33

and

6I(AL7 G7 Bopt)
= B{[lx[*} - B{x"YHE{YTYH T E{Y"x}. (34)
If the measurement noise 77 is zero mean and independent
of r, then (8)—(13) are readily obtained [15] by simpli-
fying E{||x||*}, E{YTx}, and E{YTY} using properties
(26)—(28).

APPENDIX B
SIMPLIFICATIONS FOR LINEAR F()

In this appendix, simplifications for the expressions in
(9)—(13) are considered for the case when the color space
transformation F() is a linear transformation specified by a
matrix F. Then it can be readily seen that S, = K, @ (F'F),
and S, = K, @ (F'F), where K, = E{rr’} is the
correlation matrix for the ensemble of reflectance spectra of
scanned objects.
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Using these expressions, and the properties of the Kronecker
product, it can be shown that [15]

Bopi(AL, G) = AT(G'K, G +K,)'G'K,  (35)
a(Ap) = vec (AE)T[KT @ FTFlvec (A:E)
={r (FTFAEK,,AL) (36)

7(Ar, G) = vec(AT)T[K,G(GTK,G + K,)*
x GTK, @ F'Flvec(A7)
= tr(F'FATK,G(G'K,G + K,)!

x GTK,.Ap) (37)

where tr(-) denotes the trace operator.

Note that Byt (A, G) does not depend on F (this is not
true in general for a nonlinear transformation F()). However,
the scanner error metric £(Ap, G) still depends on F'.

APPENDIX C
LINEARIZATIONS OF CIELAB SPACE

For the CIELAB color space the transformation () is given
by [1]

116f () — 16
F(t) = {500(f (%) - F(32)) (38)

t t

200(f () = f(3))
where
1
s x > 0.008 856

fa)= {7.7873: + 45 2 <0.008856 (39)
and w = [wi,ws,ws3]? denotes the CIE XYZ tristimulus

values of the white point. The tristimulus values of the perfect
reflector (spectral reflectance unity at all wavelengths) will be
considered at the white point in this paper.

The Jacobian matrix of the transformation () is given by

Jx(t) = JoD(t) (40)
where
0 116 0
Jo = (500 —500 0 41)
0 200 —200
and D(t) = diag(v(t1, wy), v(te, wa), v(ts, ws)), with
1, —L7-2 a 4
_ J3za7%b75 3 >0.008856
v(a,b) {7.787b—1 ¢ <0.008836 “2)
The Jacobian evaluated at the white point
1. -1 -1 -
Froo =Jr(w) = gJodlag(wl Lowyt ws 1) (43)

is useful if instead of the local linearization of F() a global
linear (affine) approximation is desired.

1001

REFERENCES

[1] CIE, Colorimetry, CIE Publ. no. 15.2, Centr. Bureau CIE, Vienna,
Austria, 1986.

[2] G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods,
Quantitative Data and Formulae, 2nd ed. New York: Wiley, 1982.

[3] H. E. J. Neugebauer, “Quality factor for filters whose spectral trans-
mittances are different from color mixture curves, and its application to
color photography,” J. Opt. Soc. Amer., vol. 46, pp. 821-824, Oct. 1956.

[4] P. L. Vora and H. J. Trussell, “Measure of goodness of a set of color
scanning filters,” J. Opt. Soc. Amer. A, vol. 10, no. 7, pp. 1499-1508,
1993.

[5] H. J. Trussell, G. Sharma, P. Chen, and S. A. Rajala, “Comparison of
measures of goodness of sets of color scanning filters,” in Proc. IEEE
Ninth Multidimensional Signal Processing Workshop, Belize, Mar. 1996,
pp. 98-99.

[6] M. J. Vrhel and H. J. Trussell, “Filter considerations in color correction,”
IEEE Trans. Image Processing, vol. 3, pp. 147-161, Mar. 1994.

[7] M. Wolski, J. P. Allebach, C. A. Bouman, and E. Walowit, “Optimization
of sensor response functions for colorimetry of reflective and emissive
objects,” in Proc. SPIE: Device-Independent Color Imaging and Imaging
Systems Integration, E. Walowit, Ed., 1994, vol. 2170, pp. 209-219.

[8] M. Wolski, C. A. Bouman, J. P. Allebach, and E. Walowit, “Optimization
of sensor response functions for colorimetry of reflective and emissive
objects,” in Proc. IEEE Int. Conf. Image Processing *95, pp. 11323-11326.

[91 G. Sharma, H. J. Trussell, and M. J. Vrhel, “Optimal nonnegative

color scanning filters,” IEEE Trans. Image Processing, submitted for

publication.

M. J. Vrhel and H. J. Trussell, “Optimal color filters in the presence of

noise,” IEEE Trans. Image Processing, vol. 4, pp. 814-823, June 1995.

[11] J. E. Farrell and B. A. Wandell, “Scanner linearity,” J. Electron. Imag.,

vol. 2, pp. 225-230, July 1993.

H. Haneishi, T. Hirao, A. Shimazu, and Y. Mikaye, “Colorimetric

precision in scanner calibration using matrices,” in Proc. 3rd IS&T/SID

Color Imaging Conf.: Color Science, Systems and Applications, Nov.

1995, pp. 106-108.

H. R. Kang, “Color scanner calibration,” J. Imaging Sci. Technol., vol.

36, pp. 162-170, Mar./Apr. 1992.

P. C. Hung, “Colorimetric calibration for scanners and media,” in Proc.

SPIE, 1991, vol. 1448, pp. 164-174.

G. Sharma, “Color scanner characterization, performance evaluation,

and design,” Ph.D. dissertation, North Carolina State Univ., Raleigh,

Aug. 1996.

G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed.

Baltimore, MD: The Johns Hopkins Press, 1989.

J. R. Magnus and H. Neudecker, Matrix Differential Calculus with

Applications in Statistics and Econometrics. New York: Wiley, 1988.

M. Wolski, J. P. Allebach, C. A. Bouman, and E. Walowit, “Optimization

of sensor response functions for colorimetry of reflective and emissive

objects,” IEEE Trans. Image Processing, vol. 5, pp. 507-517, Mar. 1996.

P. Chen and H. J. Trussell, “Color filter design for multiple illuminants

and detectors,” in Proc. Third IS&T/SID Color Imaging Conf.: Color

Science, Systems, and Applications, Nov. 1995, pp. 67-70.

P. L. Vora, “Optimization criteria and numerical analysis in the design of

color scanning filters,” Ph.D. dissertation, North Carolina State Univ.,

Raleigh, Aug. 1993.

[21] Proc. Conf. Standards for Electronic Imaging Systems , San Jose, CA,

28 Feb.—1 Mar. 1991, vol. CR37 of Critical Reviews of Optical Science

and Technology, M. Nier and M. E. Courtot, Eds. Bellingham, WA:

SPIE, 1991.

M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of

object reflectance spectra,” Color Res. Appl., vol. 19, pp. 4-9, Feb. 1994.

B. K. P. Horn, “Exact reproduction of color images,” Comput. Vis.,

Graphics, Image Processing, vol. 26, pp. 135-167, 1984.

(10]

[12]

[13]
[14]

[15]

[16]
(17]

(18]

[19]

[20]

[22]

(23]

Gaurav Sharma (SM’88-M’97), for a photograph and biography, see this
issue, p. 932.

H. Joel Trussell (S’75-M’76-SM’91-F’94), for a photograph and biography,
see this issue, p. 899.



