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ABSTRACT

Imaging devices operate at the physical interfaces corresponding to image capture and reproduction. The combi-
nation of physical insight and mathematical signal processing tools, therefore, offers unique advantages in solving
problems in imaging systems. In this paper, we illustrate and support this idea using examples from our research
on imaging, where the combination of physical insight, mathematical tools, and engineering ingenuity leads to
elegant and effective solutions.
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1. INTRODUCTION

The theory of signal and image processing is rooted in a strong mathematical foundation. This is evident from
fundamental texts on these topics [1–3] that present signal and image processing concepts in an elegant and
typically abstract mathematical framework. This approach has the benefit of unifying the presentation of key
concepts and encompassing a wide range of different cases within the analysis, and has demonstrated significant
success in practice. A prime example of the approach is the ubiquitous use of frequency representations based
on Fourier theory which significantly simplifies the analysis of linear time/shift invariant systems. Additional
examples that we build on in the course of this paper are linear algebra that leads to useful signal space
representations, first developed in the context of communication systems [4], and set theoretic estimation methods
for signal estimation and recovery [5].

For several real-world problems, signal and image processing approaches are most successful when they
combine the insight offered by the physics of the problem with the mathematical framework and tools inherent
in digital signal processing. To quote Simon Haykin [6]:

“Signal processing is at its best when it successfully combines the unique ability of mathematics to generalize
with both the insight and prior information gained from the underlying physics of the problem at hand.”

Imaging systems are a particularly fertile ground for problems in this class because they deal specifically with
the capture of physical scenes and with the reproduction of images on physical devices. Physical interactions
are thus at the heart of most imaging problems. Solutions for these problems that combine physical understand-
ing and modeling with appropriate mathematical tools of signal/image processing, offer in the combination,
advantages significantly greater than would be estimated as the sum of the individual parts∗. In this paper,
we highlight specific examples† of problems in physical imaging for which the happy marriage between physical
insight and modeling and appropriate mathematical methods leads to novel solutions. Two case studies are
presented in some detail and additional examples are briefly summarized.

The rest of this paper is organized as follows. In section 2, we highlight the phenomenon of show-through
in document imaging and illustrate how the combination of simple physical modeling with the powerful signal
processing technique of adaptive filtering leads to an effective method for correction of show-through in scanned

Further author information: (Send correspondence to Gaurav Sharma.)
E-mail: gaurav.sharma@rochester.edu, Telephone: 1 585 275 7313

∗Hence the title for this paper.
†The examples in the paper are derived from my own work, even though there are numerous other and significantly

better examples of work by others in the same vein. I apologize for the biased sampling. The only justification I can offer
is that I have access to and am most familiar with my own work.

Invited Paper

Color Imaging X: Processing, Hardcopy, and Applications, edited by Reiner Eschbach, Gabriel G. Marcu,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 5667 © 2005 SPIE and IS&T · 0277-786X/05/$15

95



(a) Side 1 (b) Side 2

Figure 1. Scans of two sides of a duplex printed page. (From [7])

documents. Next in section 3, we show how the blend of physical modeling with the mathematical tools of
linear algebra and set-theoretic estimation leads to useful solutions to problems in subtractive color systems.
Finally in section 4, we present a discussion and summary along with references to additional examples of
research that support the inequality in our title. Note that the research for the two individual cases covered
here has previously been published in more detailed individual contributions on show-through correction [7] and
set-theoretic estimation for subtractive color [8, 9].

2. SHOW-THROUGH IN DOCUMENT IMAGING

Duplex or double-sided printing is commonly used for hardcopy documents, with most magazine and book pages
being prime examples. When a duplex printed page is scanned, information from the back-side printing can
often be seen in the scan (of the front side of the page). This show-through is normally an undesirable artifact
in the scanned images that one would like to remove. An example of show-through can be seen in Fig. 1 where
the scans from two sides of a duplex printed page are shown. Show-through from the back side can clearly be
seen in either scan ‡. From the figure, one can also note that, the dynamic range (i.e., contrast) of the show-
through information is typically much lower than the dynamic range of the printing on the front side. This is a
manifestation of the physical fact that the transmittance of paper is low (in relation to its reflectance).

Traditionally thresholding is used to minimize the effect of show-through. Thresholding sets scanned re-
flectance values above a selected threshold to unity (white). This approach works well for pure black and white
regions (e.g. Fig. 1 (a)), but fails irretrievably for show-through seen in a light gray background, for instance, in
the region corresponding to the state of Texas in Fig. 1 (b).

Without additional information, one cannot distinguish low contrast information due to light gray printing
in the front side from show-through and it is difficult to improve on the thresholding solution. However, when
scans from both sides of the document are available (for instance in automatic feed duplex scanners) one can use
the scan from the back-side to distinguish these two cases. However, in order to remove show-through from the
light gray regions such as the region corresponding to the state of Texas in Fig. 1 (b), not only must one identify
regions with show-through but it is also necessary to determine the contribution of show-through. A physical
model of the scanning process is required for this purpose, which we develop next.

‡In order to ensure that information in the light document regions (in which show-through effects are seen) are not lost
due to truncation in the uncalibrated system through which this paper is reproduced, all images reproduced here have
been mapped through a single tone-adjustment curve that emphasizes the detail in this region. Images may, however,
still not reproduce well in print.

96     SPIE-IS&T/Vol. 5667



2.1. Physical Model for Show-through

The image captured by a scanner is a two dimensional array of pixels, where each pixel value represents the
reflectance of the document at the physical location corresponding to that pixel. The most common type of
scanner is a flat-bed scanner. Fig. 2 (a) shows a schematic of the optical components of a flat-bed scanner. The
document to be scanned is laid face down on a transparent glass platen and pressed flat against the platen by
a backing. The scanner lamp illuminates the document through the platen glass and the light reflected off the
spatial location corresponding to a given pixel is imaged by a lens onto a sensor. The resulting signal is digitized
to obtain a representation of the image as a reflectance profile. Typically, the sensors are laid out in a linear
CCD array, which allows for an entire row of pixels along one dimension of the document to be imaged in a
single exposure step. The array is moved across the document and multiple exposures are performed to capture
the complete two-dimensional image.

Platten Glass

Document

Lamp

CCD Sensor Array

Scanner Backing

Lens

Scanner Backing

Printing on back side
(Duplex-printed) page
Printing on front side

Lamp
Sensor

(a) (b)

Figure 2. Scanner model: (a) Optical schematic, (b) Duplex page scan.

Fig 2 (b) illustrates the process of scanning one side of a duplex printed page on a typical scanner, where
the arrangement of the duplex printed page of paper in relation to scanner lamp, sensor, and backing is shown
in a cross-sectional view. The process can be analyzed using a simplified physical model that comprehends the
relevant properties of the document and the scanner. The paper can be characterized in terms of the fraction
of light Sp that it scatters (reflects) back and the fraction Tb that it transmits. The printed information on
each side can be modeled in terms of the spatial transmittance profiles, Tf (x, y) and Tb(x, y), of the “printing
layers” on the front and back sides, respectively. The light reaching the sensor at the spatial location (x, y)
has two main components: a) light that encounters the front side printing layer is reflected from the paper
substrate and encounters the front-side printing layer again, this corresponds to a fraction T 2

f (x, y)Sp of the
incident light and b) light that goes through the front printing layer, the paper, and the back printing layer; is
reflected by the scanner backing; and encounters the three layers again on its return path; this corresponds to a
fraction T 2

f (x, y)T 2
b (x, y)TpRbk of the incident light, where Rbk is the reflectance of the scanner backing. Thus,

the reflectance detected by the sensor when scanning the front side is given by the sum of these two fractions as

Rs
f (x, y) = T 2

f (x, y)(Sp + T 2
p RbkT 2

b (x, y)) (1)

where the subscript f denotes the front side, and the superscript s is used to denote that this is the “scanned”
reflectance.

Equation (1) indicates that the reflectance Rs
f (x, y) detected by the scanner sensor depends on the front-side

print layer transmittance, the paper scattering and transmittance parameters, the reflectance of the backing, and
the back-side print layer transmittance. In particular, the dependence of the scanned reflectance Rs

f (x, y) for
the front side on the transmittance Tb(x, y) of the back side print layer represents the undesired show-through in
the front side scan. The equation also suggests a direct physical method for the elimination of show-through by
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setting Rbk = 0, i.e., using a black backing. This solution however produces undesirable black output for holes
and uncovered margin regions in the document and also encounters higher noise due to the variability in paper
transmittance, making alternate electronic methods for the correction of show-through more desirable.

2.2. Show-through Analysis and Correction

The goal of show-through correction is to recover the “image” Tf (x, y) printed on the front side with no depen-
dence on the back side “image” Tb(x, y) . Recovery of the show-through corrected image cannot be accurately
done using the front-side scan alone because it is not possible to reliably distinguish between light gray printing
on the front-side and low-contrast show-through from the back-side. Mathematically, this is manifested in the
fact that the single equation (1) cannot be solved simultaneously for the two unknowns, Tf (x, y) and Tb(x, y).
If the scan of the back-side is also available, then analogous to (1), the scanned reflectance for the back side can
be written as

Rs
b(x, y) = T 2

b (x, y)(Sp + T 2
p RbkT 2

f (x, y)) (2)

where the terms on the right hand side are as defined earlier.

Given (1) and (2), we can expect to remove show-through if scans of both sides of the page are available and
if these two equations can be solved for the two unknowns, Tf (x, y) and Tb(x, y). In practice, the situation is
not so simple because several of the parameters are unknown and (more significantly) the point-wise model of
interaction is an oversimplification. To address these hurdles, it is advantageous to first transform the equations
from reflectance to normalized optical density§, as

Ds
f (x, y) ≡ − ln

Rs
f (x, y)
Rw

p

= Df (x, y) − ln

(
1 − T 2

p Rbk

Sp + T 2
p Rbk

(1 − T 2
b (x, y))

)
(3)

where Rw
p = Sp + T 2

p Rbk is the (scanned) reflectance for “white” paper that has no printing on either side and
Df (x, y) = − ln(T 2

f (x, y)) denotes the normalized front side scan density that would have been obtained in the
absence of any printing on the back-side, which we refer to as the desired front side scan density.

For typical paper substrates, the fraction of light transmitted is much smaller than the fraction of light
scattered, i.e., T 2

p << Sp. This assumption is directly supported by the observation that most paper substrates
appear close to white, even when placed on a black backing. This allows us to significantly simplify (3) using

the approximation ln(1 − t) ≈ −t for |t| << 1, where t = T 2
p Rbk

Sp+T 2
p Rbk

(1 − T 2
b (x, y)). With this approximation, (3)

becomes

Ds
f (x, y) ≈ Df (x, y) +

T 2
p Rbk

Sp + T 2
p Rbk

Ab(x, y) (4)

where Ab(x, y) = (1 − T 2
b (x, y)) is the “absorptance” of the back side “print layer”.

Equation (4) states that the paper-normalized density of the front side scan can be approximated by the
sum of the paper-normalized density of the show-through corrected front side and the absorptance of the back-
side print layer weighted by a small factor. It is clear that the second term represents the show-through. An
equivalent equation is also readily derived for the back-side. The major significance of these equations is that
in the density domain the show-through separates into an additive distortion, which is further characterized as
being a scalar multiple of the absorptance of the printing layer on the opposite side.

In order to further incorporate the physical effect of the spreading of light in paper into our model, the term
T 2

p Rbk

Sp+T 2
p Rbk

, in (4) may be replaced with with an empirical “show-through” point spread function (PSF) to obtain

Ds
f (x, y) = Df (x, y) + h(x, y) ⊗ Ab(x, y), (5)

§Note that conventionally the logarithm to the base 10 is used in defining density, but for notational simplicity the
natural logarithm is used throughout this paper
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where h(x, y) is the “show-through point spread function” and ⊗ represents the convolution operator. Since

show-through PSF is a replacement for the term T 2
p Rbk

Sp+T 2
p Rbk

in the physical model, it is clear that h(x, y) is small
in comparison to unity and physically accounts for the transmission and spreading of light in the paper and the
reflectance of the backing.

In order to “solve” (5) for the desired or show-through corrected front side density Df (x, y) the absorptance
of the back side “image layer” , i.e., Ab(x, y) may further be approximated¶ using the estimate based on the
back side scan As

b(x, y) = (1 − Rs
b(x, y)/Rw

p )). With this approximation, (5) can be re-written as

Df (x, y) = Ds
f (x, y) − h(x, y) ⊗ As

b(x, y) (6)

Adaptive filtering based Show-through Cancellation

The show-through point-spread function h(x, y) is unknown in (6) and, in practical situations, so is the
exact alignment between the front and back side scans. Hence the “solution” above is not directly usable.
However, we can note that (6) is an exact 2-D analog of the one dimensional echo cancellation problem in
speech telephony [10, pp. 327]. Linear adaptive filtering methods that have been successfully applied to speech
echo cancellation are thus equally applicable to the show-through removal/cancellation problem, with suitable
modifications for the 2-D signals.

Using adaptive filters, the show-through point-spread function can automatically be estimated and tracked
as it undergoes changes due to (smooth) local variations in alignment between the front and back side images.
Note that this is feasible only because the physical model and the approximation described earlier make the
problem a linear one when the front side image data is in the density domain and the back-side image data is in
the absorptance domain.

The adaptive filtering process works as follows. At each pixel location (x, y) corresponding to the front
side image, the show-through contribution to the scan density is estimated as a weighted sum of back-side
absorptance values from the corresponding region on the back side,

∑
(x′,y′)∈S w(x′, y′)As

b(x − x′, y − y′), where
w(x′, y′) denote the coefficients of the adaptive filter and S denotes the support of the filter. The corrected front
side density Df (x, y) is then estimated by subtracting this estimated show-through contribution from the front
side scan density computed as per (3). The processing is then repeated for the next pixel location, continuing
until the complete image has been processed. The filter coefficients w(x′, y′) themselves are adapted in regions
with printing on the back side and no printing on the front side, which can be determined from a comparison
of image values over neighborhoods in the two sides. The adaptation of the filter coefficients can be done in
accordance with any of the several known algorithms in adaptive filter theory [10]. The simplest method, is
the least mean-squared (LMS) adaptation method that corresponds to gradient descent with an instantaneous
approximation to the gradient. Details of implementation of show-through cancellation using the LMS algorithm
may be found in Ref. 7.

Once the image is processed, estimated values of the show-through corrected or desired front-side scan
density may be converted to reflectance or any other suitable representation for the image. Show-through
corrected images corresponding to the scans of two sides shown earlier in Fig 1, obtained using the show-through
cancellation algorithm developed are shown in Fig. 3. From the results it is clear that the algorithm successfully
cancels show-through. It is effective in eliminating not only the show-through in white regions of the page but
also in light gray regions, such as the regions corresponding to the state of Texas in these figures.

In order to visualize the show-through PSF, the adaptive filter coefficients w(x′, y′) were recorded at several
positions in the processing of the image-side scan. The filter coefficients at two different image locations are
shown in Fig. 4. The filter coefficients have a primarily unimodal distribution, which is consistent with what is
expected physically for the show-through PSF.

We demonstrated in this section an effective algorithm for the correction of show-through in duplex printed
scans that illustrated the “Physics U Math > Physics + Math” principle alluded to in the title of this paper. In
the next section, we consider another example illustrating this “inequality” in the context of subtractive color
imaging systems.

¶Ref. 7 justifies the use of this approximation through additional analysis.
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(a) (b)

Figure 3. Scanned data after show-through correction: (a) Side 1 (b) Side 2.
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Figure 4. Adaptive filter coefficients w(x′, y′) at two different image locations.

3. SUBTRACTIVE COLOR SYSTEMS AND SET-THEORETIC ESTIMATION

Physical models for color sensing and additive color systems naturally lend themselves to mathematical modeling
in a vector-space framework [11–14]. The power of the vector space approach is further enhanced when it is
combined with set theoretic estimation, which has proven a powerful technique for solving signal and image
processing problems [5]. The vector space and set theoretic approaches have been combined and successfully
applied to several problems in color science and color systems [8, 15, 16]. In this section, we highlight the
effectiveness of combining physical modeling with the mathematical method of projections onto convex sets
(POCS) for the purpose of solving problems in subtractive color. We restrict our attention here to the application
of target-less scanner color calibration [9] additional examples of applications where the same framework is useful
may be found in [8].

Typical scanner color calibration is done empirically by scanning a pre-measured calibration target and
determining the transformation that maps the scanner RGB values to the measured colorimetric values for
the calibration target. The calibration is accurate over the medium represented by the calibration target (i.e.,
composed of same substrate, same colorants, and same color separation method if there are more than three
colorants), but its performance over other media is significantly poorer. In practice, lack of calibration targets
for each scanned medium limits the accuracy of the empirical scanner calibration method. At present, scanner
calibration targets are available only from a handful of manufacturers of photo-processing products [17]. In
addition printed images that are to be scanned, need not correspond to the same type and batch of substrate
and colorants that were used in the targets.

Here we present a model-based scanner calibration method, which unlike the empirical calibration, does not
require a calibration target. Instead, the method utilizes physical models for the medium and the scanner along
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with the mathematical tool of set theoretic estimation [5] to obtain a calibration transformation. First, from
direct measurements or indirect estimation methods spectral models are obtained for the scanner and for the
medium of interest. The calibration is then performed by determining for each set of scanner RGB values, a
feasible reflectance spectrum for the given medium that would give rise to specified RGB values. The calibration
process thus defines a transformation from scanner measurements to spectra (on the given medium) that result
in those measurements. The spectra can be readily used to obtain color tristimuli under any desired viewing
illuminant, which is an additional advantage over schemes that transform scanner measurements into color
tristimuli under a particular viewing illuminant.

While useful models are clearly not available for arbitrary media, the Beer-Bouger law and Kubelka-Munk
theory provide useful models for photographic transparencies and prints, which fortunately constitute a significant
fraction of scanned inputs. In this paper, we present a target-less method for calibration for these media.

3.1. Spectral Model for Photographic Media

Typical photographic transparencies (and slides) are composed of cyan, magenta, and yellow dyes dispersed
in a transparent substrate. Different colors required in an image are produced by varying the amounts of the
three dyes. The dyes and the substrate have negligible scatter and therefore the spectral transmittance of
photographic transparencies is well modeled by the Beer-Bouger law [18, Chap. 7]. Using the Beer-Bouger law,
the transmittance of a sample can be computed from the corresponding dye concentrations as

t(λ) = rp(λ) exp

(
−

3∑
i=1

cidi(λ)

)
(7)

where λ denotes wavelength, rp(λ) is the transmittance of the substrate, {ci}3
i=1 are the concentrations, and

{di(λ)}3
i=1 the spectral densities of the cyan, magenta, and yellow dyes, respectively, corresponding to unity

concentrations. An identical mathematical model is applicable for reflective photographic prints with a suitable
re-definition of terms [9].

For computational purposes, it is convenient to represent spectra as N -vectors consisting of N uniformly-
spaced samples over a suitable wavelength interval that covers the spectral region over which the scanner or the
eye are sensitive. Using this sampled representation, (7) becomes

r = rp ⊗ exp (−Dc) (8)

where rp is the spectral reflectance of the paper substrate, D = [d1,d2,d3] is the matrix of colorant densities at
unity concentrations, c is the vector of normalized colorant concentrations corresponding to the reflectance r, ⊗
represents the term by term multiplication operator for N -vectors, and the bold lower case terms represent the
spectral N -vectors for the corresponding quantities in (7).

The model of (8) provides a means for determining the spectral reflectance of a sample from the concentrations
for the cyan, magenta, and yellow dyes. If the range of variation of the concentrations is known, equation (8) can
be used to determine the set of all reflectance spectra that are producible on the given medium. For example, if
the measured dye densities correspond to the maximum concentrations, the set of reflectance spectra producible
on the medium can be expressed as

Smed
0 = {r = rp ⊗ exp(−Dc) | c ∈ R

3, 0 ≤ ci ≤ 1} (9)

Since pure cyan, magenta, and yellow tone prints are not normally available in images, the densities corre-
sponding to the dyes cannot be directly measured. Note, however, that by taking the natural logarithm the
spectra in the model of (8) can be rewritten in terms of density as

ln(rp) − ln(r) = Dc =
3∑

i=1

cidi (10)
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The left-hand side in the above equation represents the density corresponding to the reflectance r relative to the
white paper reflectance rp. From the above equation, it is clear that these paper-relative spectral densities are
linear combinations of the three dye densities {di}3

i=1. Hence, the paper-relative spectral densities lie in a three
dimensional subspace of the overall N -dimensional space containing the spectral density vectors (excluding noise
effects). Principal components analysis (PCA) [19] provides a means for determining a set of basis vectors for
this three dimensional space.

PCA of an ensemble of paper relative densities computed from a set of representative spectra in accordance
with the left hand side of (10) yields three significant principal components that explain almost the entire variation
in the data [20]. These three significant principal components, referred to as principal dye densities [21], form an
orthonormal basis set for the three dimensional space in which paper relative densities lie. Though the principal
components do not correspond to actual dye densities, they span the same subspace as the actual dye densities,
i.e., any vector that is expressible as a linear combination of three dye densities can also be expressed as a linear
combination of the three principal components, and vice versa. Thus, if the actual densities corresponding to the
dyes are not known, the principal dye densities determined from PCA can be used in the model of (9) instead of
the actual densities [20,21]. While the concentrations corresponding to the real dye densities in (9) were subject
to simple upper and lower bounds, similar bounds cannot be obtained for “concentrations” corresponding to the
virtual dyes obtained from the principal components analysis. The information in the bounds is therefore lost
in this method.

The “principal dye” densities can be determined from a small number of spectral measurements on the
scanned images themselves and therefore do not require a calibration target. If O = [o1,o2,o3] is the matrix of
the (orthogonal) principal dye densities (obtained through the principal components analysis), the constraint set

Smed = {r = rp ⊗ exp(−Oc) | c ∈ R
3} (11)

can be used to describe producible spectra on the given medium (strictly speaking, this set is a super-set of the
producible spectra).

3.2. Color Scanner Model

For a color scanner, the optical model is the same as that presented in Fig 2, with the single channel sensor
replaced by a sensor with three channels with red, green and, blue color filters. For sensors commonly used in
electronic scanners, the sensor response is linear and can be modeled as

ti =
∫ ∞

−∞
fi(λ) d(λ) r(λ) ls(λ) dλ =

∫ ∞

−∞
mi(λ) r(λ) dλ i = 1, 2, . . . 3 (12)

where ti represents the scanner response for the ith channel, {fi(λ)}3
i=1 are the spectral transmittances of the

color filters (and other optical components), d(λ) is the sensitivity of the detector used in the measurements,
ls(λ) is the spectral radiance of the illuminant, r(λ) is the spectral reflectance of the pixel being scanned,
and mi(λ) = ls(λ) d(λ) fi(λ) is the overall spectral sensitivity of the ith scanner channel that incorporates the
illuminant spectral irradiance, the detector sensitivity, and the spectral transmittance of the color filter and other
optical components.

Once again representing the spectral quantities as N -vectors composed of uniformly-spaced samples and
approximating the integral by a summation, the scanner model in (12) can be compactly written in matrix-
vector notation as

t = MT r (13)

where t = [t1, t2, t3]T is the vector of scanner RGB responses, r is the N × 1 vector of reflectance samples, M is
an N ×3 matrix whose ith column mi is the spectral sensitivity of the ith channel, and the superscript T denotes
the transpose operation.
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3.3. Model-based Scanner Calibration

The idea behind model-based scanner calibration is to exploit models for the medium and the scanner to obtain
a calibration transformation. The RGB values obtained from the scanner provide information regarding the
reflectance spectrum of the pixel scanned. This information is, however, of an incomplete nature because many
different (in fact, and infinite number) reflectance N -vectors can result in the same output triplet of scanner
RGB values. The scanner model of (13) provides a means for better describing the information provided by
the scanner RGB values regarding the reflectance spectrum of the input. The reflectance spectrum for a pixel
with scanner RGB values given by the vector t must lie in the set of all possible reflectances that produce the
given scanner response t. Using the model of (13), this set of all possible reflectances that produce the scanner
response t is mathematically defined as

Sscn(t) = {r | MT r = t} (14)

If it is also known that the scanned medium corresponds to the model presented in( 8), the input reflectance
lies in the set Smed of reflectances producible on the medium defined in (11). Combining the information provided
by the scanner RGB values and the scanner model with that for the medium, one can deduce that the reflectance
spectrum of the scanned pixel lies in the intersection Smed

⋂
Sscn(t) of the sets predicated by the scanner

model and the model for the medium. For a single photographic medium and typical scanner sensitivities, it is
unlikely that “scanner metamers”, i.e., different reflectance spectra that appear identical to the scanner will be
encountered‖. Therefore, the intersection represents a singleton (one-element) set.

From the above description, it is clear that the input reflectance reflectance spectrum can be estimated if an
algorithm is available for obtaining a reflectance in the intersection of the sets Smed

0 and Sscn(t). Set-theoretic
estimation methods [5] specifically address the problem of determining an element in the intersection of a number
of constraint sets. The most powerful and useful set-theoretic estimation algorithms are variants of the method
of successive projections onto convex sets (POCS) [5], which determines an element lying in the intersection of
a number of closed-convex sets by starting with an arbitrary point and successively projecting onto the sets till
convergence is achieved.

The set Sscn(t) is a closed convex set (under the normal Hilbert space [22] structure on R
N ) but the set Smed

0

is not a convex set (in the same Hilbert space). Therefore, the POCS method cannot be directly applied to the
model-based scanner calibration problem. Note, however, that the set Smed

0 is closed and convex in the density
domain. The problem can therefore be formulated in the generalized product space framework proposed recently
in [23]. By introducing a suitable Hilbert space structure over the space of reflectance spectra which makes the
set Smed

0 convex, the POCS algorithm can be used. We summarize only the results using the algorithm here and
refer the reader to [8] for theoretical details and to [9] for details of the practical implementation of the method.

The model-based scanner calibration method was tested using the Kodak IT8 photographic target [17].
The reflectance spectra for the 264 patches in the Kodak IT8 target were measured independently using a
spectrophotometer. The reflectance of the white patch in the gray-wedge on the target is used as the reflectance
of the paper substrate rp in computing paper-relative spectral densities. The first three principal components
of the 264 densities account for 97.2% of the signal energy in density space, and are used as the (orthonormal)
densities o1,o2,o3 of three principal dyes in the media model of (11).

A three channel UMAX color scanner was used for experimental evaluation of the technique. Since the scanner
spectral sensitivity matrix M was not directly available, these was first estimated by the principal eigenvector
technique described in [24] to obtain the scanner model of (14). The scanner was used to acquire an RGB image
of the Kodak IT8 target and the average RGB value corresponding to each of the color patches on the target was
computed. These scanner RGB values were used along with the scanner and media models in the model-based
calibration method outlined earlier.

Figure 5 illustrates some of the typical results obtained from this procedure. The solid lines in the figure
represent the actual measured reflectances corresponding to Kodak IT8 patches and the broken line closest to

‖In the presence of “scanner metamers”, the notion of what constitutes a valid scanner calibration itself becomes
debatable.
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each of the solid lines represents the corresponding estimate obtained by the model-based calibration procedure.
From the plots, once can see that the the errors in the spectral estimates are quite small.
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Figure 5. Representative results for the UMAX scanner calibration.

In order to quantify the accuracy of the model-based calibration scheme, the computed spectrum r̂ is compared
with the actual spectrum r using three different metrics: 1) the normalized mean squared spectral error (NMSSE)
defined (in dB) as

MSEspec = 10 log10

(
E{‖ r − r̂ ‖2}

E{‖ r ‖2}
)

, (15)

where E{·} denotes the average over the spectral ensemble (in this case the Kodak IT8 target spectra), 2) the
∆E∗

ab color-difference [25] under CIE D50 daylight illuminant, and 3) the ∆E∗
94 color-difference [26] under CIE

D50 daylight illuminant. The NMSSE measures the spectral error in the calibration and the ∆E metrics attempt
to quantify the visual impact of the spectral errors.

For the model-based calibration for the UMAX scanner, over the Kodak IT8 target, the NMSSE was −31.03
dB and the average and maximum ∆E∗

ab errors were 1.76 and 7.15, respectively. The average and maximum
values for the ∆E∗

94 metric were 1.11 and 5.70, respectively. The low values of the errors illustrate that the
model based technique provides an accurate spectral calibration of the scanner.

The model-based scanner calibration scheme presented in this section once again integrates physical modeling
with appropriate mathematical tools of linear algebra and set theoretic estimation to provide a novel solution
to the problem of scanner calibration. The broader framework of the models and the underlying mathematical
algorithms can also successfully address additional problems in the design of color filters and colorant formula-
tion [8].

4. DISCUSSION AND SUMMARY

For both the case studies presented here, solutions to problems in imaging systems were determined using
suitable physical models and mathematical tools. It is worth pointing out that the synergy and combination of
these elements is what allows the solution and either one by itself is insufficient. For instance, in the case of
show-through correction, the use of the gradient descent based LMS adaptive filtering by itself does not enable
the solution, instead, the physical analysis that allows linearization of the problem is also a key element. In
particular, the problem becomes linear when image data on the front side is converted to density and on the
back side to absorptance, which is a rather non-intuitive result and could be inferred only through the use of the
physical model. Vice-versa, the physical modeling by itself is also rather simplistic and is not sufficient for solving
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the problem since it does not readily allow us to compute the unknown show-through point-spread function or
the alignment between the images on the two sides.

The two examples presented demonstrate how a blend of physical modeling with mathematical tools can
produce powerful solutions for problems in imaging systems. This is a particularly common and powerful motif
in imaging systems research that is supported by numerous other examples including several additional ones from
our own work on estimation of device spectral sensitivities [24], quality measures for color recording devices [27],
and show-through watermarking [28]. The interdisciplinary nature of work in imaging systems makes these
approaches that combine physics and mathematics harmoniously even more compelling than other areas of
research.
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