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ABSTRACT

We address the automatic classification of scanned input media in
order to improve color calibration. Since scanner responses vary
significantly according to the type of input, a media dependent
color calibration for a scanner is desirable for accurately mapping
scanner responses to a standard color space. To assist such media
dependent calibration, we propose an efficient algorithm for au-
tomated classification of input media into four major classes cor-
responding to photographic, lithographic, xerographic, and inkjet.
Our technique exploits the strong correlation between the type of
input medium and the spatial statistics of corresponding images,
which may be observed in the scanned images. Adopting two spa-
tial statistical measures of dispersion and periodicity, and utilizing
extensive training data, we determine well separated decision re-
gions to classify the input medium with a high confidence level.
Experimental results over an independent test data set validate the
results.

1. INTRODUCTION

A large number of color hardcopy images are being produced daily
using a wide variety of image production processes. Photography,
lithography, xerography, and inkjet printing are the dominant tech-
nologies for color printing. Images produced on these ”different
media” are often scanned, either for the purposes of copying or
for creating an electronic representation for use in various appli-
cations. Since scanner responses to the same perceived color on
different media are typically different, a media-dependent color
calibration of the scanner is required for accurately mapping the
scanner responses to a standard color space [1, 2].

The use of a media dependent calibration requires identifica-
tion of the input medium type at the time of scanning. The iden-
tified media class can be utilized for automatically associating a
media-specific calibration with the image data or for identifying
a smaller subset of calibration profiles for further manual selec-
tion. At present this is either absent or a cumbersome and error-
prone operator selectable option. Automated identification of the
scanned medium type is a preferable alternative. This paper de-
scribes an automated medium classification system based on the
scanned image data itself with no additional sensors.

Our classification technique is based on the strong correla-
tion between the four main types of input media - photographic,
lithographic, xerographic, and inkjet and the spatial characteris-
tics of the corresponding reproduction processes. Photographic
reproduction is contone, whereas the other media classes employ
halftone printing. Among the halftone systems, for technological
reasons inkjet uses primarily dispersed dot aperiodic halftoning,
whereas lithographic and xerographic reproduction use primarily
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Fig. 1. Subregions from images on different media

periodic rotated clustered dot screens [3]. Lithographic reproduc-
tion typically uses a higher halftone frequency and has a lower
noise than xerography. Analysis of the underlying halftone/contone
spatial characteristics of scanned image data can therefore be used
to identify the input medium with a reasonable degree of confi-
dence. Blow-ups of scanned image blocks from photographic,
inkjet, xerographic, and lithographic media are shown in Fig. 1.
Photographic, i.e.contone media exhibits very low (ideally no) spa-
tial variance. Clustered halftone dots produced by xerographic or
lithographic printing display more regular and periodic spatial ar-
rangements whereas dispersed halftone dots produced by inkjet
printing display high dispersion and no periodicity. Although the
inherent spatial structure can be visually observed and hence be
readily identified by someone familiar with different reproduction
processes, automatic identification in a computationally efficient
fashion using an automatic image processing system poses several
challenges.

Though classification based on 2-D power spectra has been
proposed earlier [4, 5], real-time implementation requires classi-
fiers that are much more computationally efficient. In this paper,
we present one such method based on spatial analysis of point pro-
cesses. We generate point patterns from small blocks of scanned
data that are representative of the underlying halftone processes
and analyze them using two spatial statistics, namely the disper-
sion measure, and periodicity measure. The measures are finally
used in a decision criterion to classify the input medium type. Ex-
perimental studies show that the input media can be identified cor-
rectly to a high degree of confidence using the proposed method.

2. BACKGROUND ON SPATIAL STATISTICS

A simple theoretical model for a spatial point pattern is that of
Complete Spatial Randomness (CSR), in which the events are
distributed independently according to a uniform probability dis-
tribution over a study region. Formally a Homogeneous Poisson
Process(HPP) is equivalent to CSR [6], characterizing absence of
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Fig. 2. Realizations of spatial point processes: (a) homogeneous
Poisson process (b) aggregated (c) regular process.

structure in the data(Fig. 2(a)). Insight on the structure of a point
pattern may be gained by testing the deviation from CSR. There
are two types of deviations: If events at short distances occur more
frequently than is expected under CSR, and the pattern has a more
uneven intensity of points with local peaks at aggregations [7], the
pattern is called aggregated (Fig. 2(b)). Patterns that have an even-
ness in distribution are called regular patterns. They exhibit more
large inter-event distances than a CSR process (Fig. 2(c)).

First and second order properties often provide useful infor-
mation on a stochastic process even when full characterization is
difficult. First order properties may be analyzed, for instance, us-
ing (a) area-based methods that rely on frequency distribution of
observed numbers of events in subregions (quadrats) of the study
area or (b) distance-based metrics that use information on the dis-
tances between events to characterize the pattern.

Quadrat Methods: Quadrat sampling refers to collecting counts
of events in quadrats. Under a hypothesis of CSR, the distribution
of number of points per quadrat is Poisson with mean λ. A dis-
persion measure is given by

D =
s2

x̄
− 1, (1)

where x̄ (s2) is the sample mean (variance) of event counts in a
quadrat. The expected value of the dispersion index is 0 for a
random pattern (HPP), negative for regular processes, and positive
for aggregated processes. The index therefore distinguishes two
distinct types of departures from an HPP.

Distance Methods:

An alternative first order statistics is the mean nearest-event
distance ȳ. Intuitively, small values of ȳ indicate aggregation,
whereas large values of ȳ indicates regularity. Diggle [8] has sug-
gested a test based on the entire empirical distribution function of
nearest-event distances. Once, the empirical distribution function
Ĝ(y) of the distance measure is calculated, it will be compared
against the theoretical distribution function G(y) under HPP. The
significance of the test can be evaluated using Monte Carlo simu-
lations.

Which Tests to Use?: The dispersion measure (1) is a strongly
established statistic for testing CSR via quadrat count analysis.
However, the choice of quadrat size is important in its computa-
tion. If the structure of the pattern is detectable using a single
scale (quadrat size), then index of dispersion D is straightforward
for testing two-way departures from CSR. D provides a global
test to catch heterogeneity which usually manifests itself in terms
of aggregation. Distance-based methods emphasize local charac-
teristics, thus are more sensitive to aggregation and regularity, and
they are less sensitive to the choice of correct scale. A combination
of these two techniques is therefore used for media classification,
as outlined in the following section.
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Fig. 3. Decision Tree for the Media Identification Problem.
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Fig. 4. Level sets obtained from image channels of different media.
Columns 1: red, 2: green, 3: blue channel.

3. HALFTONE/CONTONE PATTERNS

The decision tree which is depicted in Fig. 3, explains the sequen-
tial decisions that are to be made for media identification prob-
lem. The first step differentiates between the two major types of
processes, contone and halftone. Blockwise local variation of the
scanned data is used to detect photographic media. If the stan-
dard deviation of the block is less than some experimentally pre-
determined threshold value, then the block is a candidate constant
block with very small spatial variation, labeled as photographic.
The remaining blocks are labeled as varying.

Point Pattern Generation: Each scanned image block is pro-
cessed to extract a point pattern. Close investigation of halftone
dot patterns in Fig. 1 reveal the fact that a group of dots with a cer-
tain color value when viewed separately from dots with other col-
ors, can represent the underlying spatial halftone pattern. This is
however equivalent to viewing a color level set of the color block.
We generate level sets from each channel separately or from color
level sets (additional details may be found in [9]). In Fig. 4 (a),
the point patterns clearly show a dispersed and aperiodic structure
in which there are some regions which do not contain events (light
pixels), and there are some regions with an aggregation of events.
Evenness in distribution of events or regularity with clear periodic-
ity of dot patterns can be observed in (b) and (c) which correspond
to xerographic and lithographic media respectively.

3.1. Dispersion Measure

The measure D in Eq. (1), is calculated over each point pattern
extracted out of blocks over the image. D for a point pattern that
belongs to inkjet media will be positive, i.e. D > 0. On the
other hand, the point patterns generated from either xerographic
or lithographic media fall into the second class of departures from
CSR: the regular patterns.
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Fig. 5. Histograms of dispersion measure D calculated over an
image on three different media (on different rows). (Column 1:
from color level set,2: from gray level sets). Bottom:Sample point
sets from the image.

For real scanner data, considerable variation may be seen in
the D values over an image. For a scanned inkjet media, the nor-
malized histogram of D over blocks of the image is a peaked curve
which is positively skewed. Xerographic and lithographic media,
on the other hand yield a peaked D distribution which is nega-
tively skewed. Xerographic and lithographic media, on the other
hand produce a peaked D distribution which is negatively skewed.
These expected results are observed in Fig. 5(top)
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Fig. 6. Inter-event distance histograms on inkjet medium.

A few sample blocks from a composite-content image on inkjet,
xerographic, and lithographic media along with the point patterns
generated through color level sets are shown in Fig. 5(bottom). To
account for the noise effects of real data and the positive-biasedness
of the dispersion measure, the decision to distinguish regular pat-
terns from Poissonian or aggregated patterns, the areas of the his-
togram

∫ 0

−β
HD(x)dx, and

∫ β

0
HD(x)dx are compared. β ∈

(0, 1) is a parameter which will be chosen as 0.5.

3.2. Periodicity Measure

For computational simplicity, we utilize a slightly modified 1-D
version of the inter-event distance spatial statistic. Histograms of
inter-event distances in 1-D in x and y directions are calculated
and accumulated over blocks of the image. Instead of MC simula-
tions, we determine a sample average of the empirical distribution
function of 1-D inter-event distances which provides a global es-

0 5 10 15 20
0

5

10

x 10
4

1−D Inter−event distance histograms in red, green, and blue channels (averaged over the image)

0 5 10 15 20
0

5

10

x 10
4

0 5 10 15 20
0

2

4

6

8

x 10
4

0 5 10 15 20
0

2

4

6

8

x 10
4

0 5 10 15 20
0

2

4

x 10
4

0 5 10 15 20
0

2

4

x 10
4

In X direction In Y direction 

Fig. 7. Inter-event distance histograms on xerographic medium.
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Fig. 8. Inter-event distance histograms on litho. medium.

timate of the distribution of halftone dot patterns for the specific
media (reproduction technology).

The inter-event distance captures inherent periodicity (or lack
thereof) in the input scan data. It can be observed as expected from
the unimodal density plots in Fig. 6 that inkjet printing produces
dot patterns with no periodicity, and inter-event distances decrease
roughly exponentially as distances get larger. A single peak is de-
tected at a short inter-event distance which is marked by a verti-
cal cyan line on each plot. Inter-event distance histograms for the
composite image reproduced on xerographic medium are shown in
Fig. 7. The presence of secondary and tertiary peaks in these plots
is an indication of a global periodicity in the point patterns. A gen-
erally trimodal characteristic of the inter-event distance histograms
is noted in this case.

For the composite image reproduced on lithographic medium,
inter-event distance histograms in x and y directions are plotted in
Fig. 8, and observed to display a distinctively trimodal character.
Existence of a strong second peak in addition to a relatively strong
third peak when compared to those of xerographic medium is an
indication of stronger periodicity characteristics.

The stronger tertiary peak of the lithographic medium in com-
parison to xerography may be attributed to the higher noise at the
microscopic scale in xerographic printing in comparison to litho-
graphic reproduction. This causes weak periodicities at larger dis-
tances (corresponding to higher halftone harmonics) when com-
pared to those of lithography.

4. EXPERIMENTAL RESULTS

A set of 42 images on different media (inkjet, xerographic, litho-
graphic, and photo) were scanned at 600dpi to create a training
data set. The resolution is one determining factor in choosing the
quadrat size in order to calculate dispersion measure. For our prob-
lem, 2 × 2, 3 × 3 quadrat sizes are reasonable choices to capture
point pattern structure over small blocks of size 20×20. For lower
resolution images, 4 × 4, or 5 × 5 quadrat size may be needed in
order to display larger patterns of halftone dots.
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Fig. 9. Peak3/Peak2 vs. Peak2/Peak1 scatter plots (Training).
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Fig. 10. Decision Regions

Our observations from the previous section lead us to use 2-D
decision planes which summarize the information obtained from
the inter-event distance histograms of an image in two directions.
The final test for a three-way classification of the input media fol-
lows by plotting Peak 3, the third detected peak, over Peak 2, vs.
Peak 2 over Peak 1. Strength of Peak 3 and Peak 2 produced
by lithographic media provides good means of its identification.
Thus, the quantities Peak2/Peak1 and Peak3/Peak2 (for both x
and y directions) are obtained as the resulting distance measures
to be used in the final decision phase. As can be observed from
the scatter plots in Fig. 9, there’s a distinct separation between
different halftone media. Inkjet region is the single point at the
origin (see Region 0 in Fig. 10). Xerographic region resides in
the rectangular region between 0 < Peak2/Peak1 < 0.5 and 0 <
Peak3/Peak2 < 0.7 (Region 1 in Fig. 10). Lithographic region is
set as all the remaining areas on the 2-D plane (Regions {2, 3, 4})
in Fig. 10.

The final decision criteria gives precedence to the distance
method which enables a three-way classification. Hence if image
falls into any one of the three regions, i.e. regions (0, 1, {2, 3, 4})
in Fig. 10, in both x and y directions, then the image is classified
as the corresponding medium. If there’s discrepancy between the
results of these two distance measures, then dispersion measure,
i.e. the area under HD is checked. If that gives xero/litho (regular
patterns) decision, we can do a further classification as follows. If
periodicity measure of an image in one of the directions results in
Region 1, and in the other direction results in Region 3, this im-
plies that there is a strong third peak, i.e., high frequency in one of
the directions, hence the medium can be classified as lithographic.
In contrast, if the periodicity measure of the image in one of the
directions results in Region 1, and the other in Region 2, this im-
plies a still weak third peak, and a little stronger second peak. This
might come from a xerographic medium, hence the classification.
If no classification could be made up to this point, by periodicity
measure, and the dispersion measure has classified as aggregated
patterns, i.e. inkjet, then this result is accepted.

In order to test our decision criterion and to see how default
parameters work generally, we run with a new test set of scanned
images which are reproduced on one of the media: inkjet, xerogra-
phy, lithography, and photo. The scatter plots for periodicity mea-
sure are given in Fig. 11. With the decision boundaries obtained
from the training set, only one lithographic image from the test set
(a lithographic image from an ad on upholstery for furniture), re-

Fig. 11. Peak3/Peak2 vs. Peak2/Peak1 scatter plots (Test).

sults in its periodicity data in y direction fall into xerographic deci-
sion region. However, with the convention we take as explained in
the previous paragraph, that is its other direction periodicity being
in Region 2, can correctly classify it also as lithographic. A col-
lection of photographic images from an image repository at Xerox
were also correctly identified.

5. CONCLUSIONS

The four primary color image reproduction technologies, viz. pho-
tography, lithography, xerography, and inkjet printing, employ pro-
cesses with clearly distinguishable spatial spatial statistics. In this
paper, we exploit this fact to develop a fully automated and com-
putationally efficient approach for the classification of input media
type based on the spatial statistics of the scanned image. The sys-
tem allows classification of scanned images in to these four cate-
gories based on scanned image data alone without the use of any
additional sensors. Experimental results indicate that the proposed
classifier is efficient and accurate.
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