
Optimal Nonnegative Color Scanning FiltersGaurav Sharma� H. Joel Trusselly Michael J. VrhelzAbstractIn this correspondence, the problem of designing color scanning �lters for multi-illuminant color recordingis considered. The �lter transmittances are determined from a minimum-mean-squared orthogonal tristim-ulus error criterion, that minimizes the color error in estimates obtained from noisy recorded data. Non-negativity constraints essential for physical realizability are imposed on the �lter transmittances. In orderto demonstrate the signi�cant improvements obtained, the resulting �lters are compared with sub-optimal�lters reported in earlier literature.1 IntroductionIt is well known that the color of an object is dependent upon the illuminant under which it is viewed. Incertain applications, the color of an object under several di�erent viewing-illuminants must be estimated frommeasurements obtained with a single device. Examples of such applications include paint and textile industries,where it is desirable to monitor and minimize the color variation of paint/dye lots under common home, o�ce,and daylight illumination, and computer graphics simulations, where a single scene may need to be renderedunder several di�erent lighting conditions.The problem of accurately recovering color information under multiple viewing-illuminants can be posedas a color-�lter design problem. Reference [1] described a method of computing transmittances of �ltersthat minimized the minimum-mean-squared tristimulus error. The design of color recording �lters for a devicecapable of both re
ective and emissive measurements has also been described recently by Wolski et al. [2]. Theirmethod minimizes mean-squared error (MSE) in a linearized perceptually-uniform color space. Regularizationterms are used to enforce smoothness on the designed transmittances and to provide robustness in the presenceof noise and component variations in the �lters. Since noise was not explicitly included in the analysis, theweighting of the regularization term was determined empirically.Ref. [3] addressed the speci�c problem of designing color �lters which account for the presence of noise inthe recording process. The approach used a minimum-mean-squared orthogonal-tristimulus error formulation.Closed-form solutions for optimal scanning �lters at various signal-to-noise ratios (SNRs) were determined,�Xerox Corporation, MS0128-27E, 800 Phillips Rd, Webster, NY 14580. Email: sharma@wrc.xerox.com. This work was donewhile G. Sharma was at NCSU.yECE Dept., North Carolina State University, Raleigh, NC 27695-7911. Email: hjt@eos.ncsu.edu.zNational Institutes of Health, Bethesda, MD 20892. Email: vrhel@helix.nih.gov1



and the relation of the number of �lters to the color error was examined. However, the closed-form solutionswere not constrained to be nonnegative, which is necessary for physical feasibility. A constrained version of theproblem requiring the �lters to be nonnegative was also formulated, but since the problem had a nonlinear powerconstraint, only a sub-optimal solution to that problem was obtained based on the unconstrained solution. Inthis correspondence, the same constrained problem is considered. Through a simple modi�cation, the problemis transformed to one having only nonnegativity constraints. A numerical optimization scheme is utilizedto determine the optimal solution. Results indicate signi�cant improvement over the previous sub-optimalsolution.2 Problem FormulationFor completeness, the problem formulation from [3] will be brie
y summarized. Typically, color scanners �lterthe re
ected light from the scanned object into spectral-bands and record the light energy in each band usingradiation detectors. The spectra will be represented here by N -component vectors, consisting of equi-spacedsamples in the visible region from 400 to 700 nm. If a K channel scanner is used, the measurement of anobject whose re
ectance is speci�ed by the N -vector r can be algebraically represented as [3, 4]ts =MTLsr+ � = GT r+ � ; (1)where ts is a K � 1 vector of scanner measurements, Ls is the N � N diagonal matrix with samples of thescanner-illuminant spectrum along the diagonal, � is the K � 1 measurement noise vector, G = LsM, andM = [m1;m2; ::::mK ] is the N �K matrix of scanner �lter transmittances, where mi represents the spectraltransmittance of the ith �lter (including detector sensitivity and the transmittance of the scanner opticalpath).The color of an object, under a given viewing illuminant, is speci�ed by its CIE XYZ tristimulus value [5].If there are J viewing illuminants, in a manner analogous to the scanner measurements, the tristimuli of theobject with spectral re
ectance, r, can be written as [4, 3]ti = ATLir = ATLir; i = 1; 2; : : : J ; (2)where ti is the 3 � 1 vector of CIE XYZ tristimulus values under the ith viewing-illuminant, A is the N � 3matrix of CIE XYZ color-matching functions [5], Li is the N � N diagonal matrix with samples of the ithviewing-illuminant spectrum along the diagonal, and ALi = LiA.Colorimetric information about the object is determined from the scanner measurements by estimating thetristimulus values. The scanning-�lter design problem can be formulated as a problem of minimizing the MSE2



in estimated CIE tristimuli. Such a procedure su�ers from two drawbacks: the CIE XYZ tristimulus valuesare highly correlated, and signi�cant magnitude di�erences can exist between di�erent illuminants. Hence, asin [3], each of the illuminant color-matching matrices, fLiAgJi=1, is orthonormalized to obtain fOigJi=1, suchthat Oi has orthonormal columns and a range space identical to that of LiA. The vector OTi r then represents atristimulus in an orthogonal tristimulus space. Note that the magnitude di�erences between illuminants couldalso be eliminated through simple scaling. However, the orthonormalization procedure is preferred because incomparison with mean-squared errors in the highly correlated CIEXYZ space, those in the orthonormalizedtristimulus space correlate better with perceptual measures of color di�erence [6].The problem of scanner design is now formulated as an optimization problem, where the color �lter/recordingilluminant matrix, G, is chosen so as to minimize the MSE in the orthogonal tristimulus space,� = KXi=1 
2i EfjjPi(ts)�OTi rjj2g; (3)where Pi(�) is an illumination color-correction transformation for the ith illuminant, which estimates thetristimuli OTi r from the scanner measurements ts; the 
2i are used to provide a weighting for the cost ofcolor errors under the various illuminants; and E denotes the expectation operator (taken over the re
ectancespectra and the additive noise).If the noise � is assumed to be uncorrelated with the signal GT r, then it can be seen that the linearminimum MSE (LMMSE) estimator of the orthogonal tristimuli isPi(ts) = OTi KrG hGTKrG+K� i�1 hts � �� �GT�ri+OTi �r (4)where Kr is the covariance matrix of the re
ectance spectra, K� is the covariance matrix of the noise, �r is themean of the re
ectance spectra, and �� is the mean of the noise [7]. In this work, only linear illumination color-correction transformations (Pi(�)) are considered. Alternate higher-order polynomial transformations are notexplored due to the mathematical intractability of the resulting problem, and because higher order polynomialso�er insigni�cant gains over a linear transformation when the input is not constrained to a restricted class [8].Substituting (4) in (3), it can be readily seen that the LMMSE can be written as �LMMSE = � � �(G),where � = tr(SSTKr) and �(G) = tr�SSTKrG hGTKrG+K� i�1GTKr� ; (5)where S = [
1O1; 
2O2; : : : ; 
JOJ ] and tr(�) denotes the trace operator. Since the sensor measurements areperformed independently on the K channels, it will be assumed that K� = �2I, where �2 denotes the varianceof the noise in the individual measurement channels.It is clear that �LMMSE is minimized if the �lter/illuminant matrix G is chosen so as to maximize �(G).In practice, the recording device is subject to additional limitations of illuminant intensity and integration3



time. In order to incorporate these, it is assumed, as in [3], that the expectation of the total signal power isconstrained to be a �nite positive number, �. Mathematically, this assumption is stated as Efk GT r k2g = �.Note that with this constraint on the signal power, the problem of selecting the optimal nonnegative�lter/illuminant matrix, G, can be stated as [3]maxG �(G) subject to GT � 0; tr(GTKrG) = �; (6)where � = �� k G�r k2.This problem was formulated in Ref. [3], where it was stated that the problem is di�cult to solve dueto the nonlinear signal power constraint. A suboptimal solution was determined in [3] through a two stepprocess, �rst optimal �lter sets that were not constrained to be nonnegative were determined analytically, andthen nonnegative �lters that approximate the unconstrained optimal �lters were obtained through a numericaloptimization procedure. In the next section, it will be shown that a simple modi�cation of the problemeliminates the nonlinear constraint, allowing the problem to be solved directly.3 Constraint Simpli�cationIn practice, the parameters, � and �2, in the above optimization problem are not known in absolute terms.Instead, their ratio �=�2, de�ned as the SNR, is usually estimated from a knowledge of the detector noisecharacteristics and the device quantization requirements. Therefore, problem (6) is more completely stated asmaxG �(G) subject to GT � 0; tr(GTKrG) = �; ��2 = �; (7)where � is the SNR.By eliminating �2, (7) can be rewritten asmaxG f(G) � tr0@SSTKrG "GTKrG+ tr(GTKrG)� I#�1GTKr1A (8)subject to GT � 0, tr(GTKrG) = �.Note that the objective function is invariant to a scaling of G. Hence, if the solution to this problem isdenoted as Gopt(�;�) then the solution to the corresponding problem where the signal power is scaled by apositive constant � is simply Gopt(��;�) = p�Gopt(�;�). Hence, given a solution to the problemmaxG f(G) subject to GT � 0; (9)the solution to problem (7) can be immediately found by scaling with a positive scalar to satisfy the constrainttr(GTKrG) = �. 4



Since (9) involves only a nonnegativity constraint, it is more readily handled by numerical optimizationprograms than the optimization in (6), which involved an additional nonlinear constraint. Even a small amountof noise ensures that the function, f(�), is di�erentiable everywhere with gradient @ f@ G , given by [9]12 @ f@ G = KrSSTKrG "GTKrG+ tr(GTKrG)� I#�1 +KrG "GTKrG+ tr(GTKrG)� I#�1GTKrSSTKrG "GTKrG+ tr(GTKrG)� I#�1 +1�tr0@KrSSTKrG "GTKrG+ tr(GTKrG)� I#�21AKrG: (10)If the covariance matrix of the re
ectance spectra and the parameters of the scanning illuminant in S areknown, the expressions for the function and the gradient can be readily used in gradient-projection optimizationschemes [10] to determine the (locally) optimal solution to (9).4 Experimental Results and DiscussionThe multi-illuminant color recording problem simulated in [3] was used to evaluate the usefulness of the newprocedure (which determines the optimal solution to (6)) in comparison to the sub-optimal solution proposedin [3]. A sampling width of 10nm was used, which resulted in N = 31 samples between 400 and 700 nm. Are
ectance spectra ensemble, consisting of 343 spectral re
ectances from a color copier, was used to determinethe spectral covariance, Kr1. The CIE incandescent illuminant A, CIE daylight illuminant D65, and CIE
uorescent illuminant F2, were used as the viewing illuminants, with unity weighting factors (
i), to determinethe matrix S. Using a commercial scienti�c-optimization routine [11] based on a modi�ed-Newton methodwith gradient-projection, sets of 3 to 7 color �lters were calculated for SNRs of 30; 35; 40; 45, and 50 dB.Some comments about the numerical behavior of the optimization problem (9) would be appropriate here.As mentioned earlier the objective function, f(G), is invariant under scalar transformations of G. Therefore,the problem does not have a unique solution, and every positive scalar multiple of a maximizer is also amaximizer. This leads to undesirable scaling problems in the vicinity of G = 0. For numerical stability andimproved convergence, it is desirable to have a (locally) unique solution. Therefore, one of the elements of Gwas constrained to be unity. For most cases, the sub-optimal solutions from [3] were used as initial startingpoints for the iterative optimization routines and the maximum element in the initialization was constrained tobe unity. Experimentation with alternate initial points revealed that the solution was not unduly sensitive tothe initialization in the cases examined, and the unity constraint did not create any problem as long as it was1Results for other ensembles of re
ectance spectra were similar to those of the copier data set.5



applied to an arbitrary element in the green region of the spectrum (approx. 500 to 550 nm). The algorithmconverged fairly fast, requiring under 20 iterations in most cases.The matrixG in (1) represents the combination of the recording-illuminant and the transmittances/sensitivitiesof the �lters and other components in the scanner. For brevity, in the following discussion, it will be referred toas the scanning �lter-set and its elements will be called �lter transmittances. The solution to (9) obtained bythe above procedure will therefore be alluded to as the optimal (nonnegative) �lter-set, and the nonnegativesolution from [3] will be called the sub-optimal �lter-set.Using simulations, the recording accuracy of the optimal �lter-sets obtained from the above procedure wascompared with the accuracy of the sub-optimal �lter-sets of [3]. In order to perform the comparison, for each�lter-set (optimal/sub-optimal and having between 3 and 7 �lters) a noisy recording of the copier data-setused in [3] was simulated using the model of (1), where white Gaussian noise, with variance determined by theSNR, was used for � . The CIE tristimulus vectors of the spectral re
ectance samples under the three viewingilluminants were estimated from the recorded data using an LMMSE estimator (Eq. (4) with Oi replaced byALi). True tristimuli were also calculated using (2). In order to calculate color errors in perceptually relevantunits, the tristimuli were converted to CIE L�a�b� space [5, 12] and the �E�ab error (Euclidean distance inL�a�b� space) was computed for each estimated tristimulus. For each �lter set, average �E�ab errors werecomputed over the copier re
ectance-ensemble and the viewing illuminants. The average �E�ab errors for theoptimal and the sub-optimal �lter sets are compared in Fig. 1, for SNRs of 30; 40, and 50 dB. The number of�lters is represented along the abscissa and the average �E�ab errors are plotted along the ordinate for di�erent�lter-sets, with the crosses (�) representing averages for the sub-optimal �lters from [3], and the circles (o)representing the averages for the optimal �lters obtained by the aforementioned procedure. The number of�lters is integral, but lines joining the points have been plotted to facilitate comparison and comments.Several interesting observations can be made from Fig. 1. First observe that the optimal �lters performconsistently better than the sub-optimal �lters. Given the nonlinear relation of the CIE L�a�b� space to theorthogonal-tristimulus space in which the optimal �lters are de�ned, this improvement does not directly followfrom the \optimality". The reduction in error is signi�cant for all �lter-sets, but the largest improvements inaverage �E�ab performance are at low SNRs and for �lter sets with large number of �lters. Intuitively, oneexpects the average error to monotonically decrease as additional �lters are added at a given SNR. The optimal�lters follow this trend, but due to the additional constraints on the sub-optimal �lters, they often show anincrease in average �E�ab error with increase in the number of �lters. These facts indicate that the additionalconstraints imposed on the �lters in de�ning the sub-optimal solution were inappropriate. One may also notehere that in the absence of noise, f(G) is invariant under nonsingular transformations of G [13]. Therefore,in the absence of noise, nonnegative �lters can be obtained by a nonsingular transformation of the optimal6



unconstrained �lters [14]. Since the sub-optimal �lters were initialized using such nonsingular transformations,this fact explains the (relative) improvement in performance of the sub-optimal �lter-sets at high SNR's.A more complete summary of the �E�ab error statistics for the optimal �lters appears in Table 1. For eachSNR, viewing-illuminant, and �lter-set; the �E�ab errors in the color-estimates of the 343 copier re
ectances(from the simulated noisy scanner measurements using the optimal �lters) were used to determine and tabulatethe following: �Eavg, the average �E�ab value of the set; �Emax, the maximum �E�ab in the set; �E�ab � 3,the number of errors with a �E�ab greater than three. The number of �E�ab values greater than three are givensince such values are perceptually noticeable by the average observer.A comparison of Table 1 with the corresponding table for the sub-optimal nonnegative �lters presented in [3]reinforces the conclusions drawn from the graphs in Fig 1. In almost all comparisons, the optimal nonnegative�lters o�er signi�cant improvements over their suboptimal counterparts, with the largest improvements forlow SNRs and for �lter sets with larger number of �lters. Both the graph and the table indicate that at allsimulated SNRs, going from three to four �lters o�ers the most signi�cant decrease in the average �E�ab error,and the improvement obtained upon using more than 4 �lters is incremental. Hence, it is desirable to usea four-channel scanner and four-tuples for obtaining multi-illuminant color information. Vrhel et al. [3] �rstarrived at this conclusion, which is strengthened by these new results.In addition to the feasibility requirement embodied in the nonnegativity constraint, it is desirable thatthe �lter-set G be ready fabricable for use in a scanning device. The manufacturability of the sub-optimal4-�lter set from [3], using dichroic materials, was examined in [15], and fairly close approximations to the sub-optimal �lter-sets were deemed producible. A similar study has not been performed for the optimal �lter-setsdetermined in this paper. However, it is unlikely that there will be signi�cant di�erences in manufacturabilitybetween the optimal and the sub-optimal �lters. This claim is validated by the details of the fabricationprocedure described in [15] and by the comparison of the optimal and sub-optimal nonnegative 4-�lter sets at30 dB SNR shown in Fig. 2.5 ConclusionOptimal nonnegative color-scanning �lters (for multi-illuminant color correction) designed in this paper wereshown to o�er signi�cant improvements in color recording accuracy in comparison with a sub-optimal schemereported in earlier literature. The simulation results further reinforced the conclusion in [3] that for multi-illuminant color-recording the use of four-tuples is desirable, instead of the tristimuli currently used.
7



6 AcknowledgmentA grant of supercomputer time from the North Carolina Supercomputing Center, RTP, NC is gratefullyacknowledged.References[1] M. J. Vrhel and H. J. Trussell, \Filter considerations in color correction," IEEE Trans. Image Proc., vol.3, no. 2, pp. 147{161, Mar. 1994.[2] M. Wolski, J. P. Allebach, C. A. Bouman, and E. Walowit, \Optimization of sensor response functionsfor colorimetry of re
ective and emissive objects," IEEE Trans. Image Proc., vol. 5, no. 3, pp. 507{517,Mar. 1996.[3] M. J. Vrhel and H. J. Trussell, \Optimal color �lters in the presence of noise," IEEE Trans. Image Proc.,vol. 4, no. 6, pp. 814{823, Jun. 1995.[4] G. Sharma and H. J. Trussell, \Digital color imaging," IEEE Trans. Image Proc., vol. 6, no. 7, Jul. 1997.[5] CIE, \Colorimetry," CIE Publication No. 15.2, Central Bureau of the CIE, Vienna, 1986.[6] G. Sharma and H. J. Trussell, \Figures of merit for color scanners," IEEE Trans. Image Proc., vol. 6,no. 7, Jul. 1997.[7] W. K. Pratt, Digital Image Processing, John Wiley & Sons, New York, second edition, 1991.[8] H. Haneishi, T. Hirao, A. Shimazu, and Y. Mikaye, \Colorimetric precision in scanner calibration usingmatrices," in Proc. Third IS&T/SID Color Imaging Conference: Color Science, Systems and Applications,Nov. 1995, pp. 106{108.[9] Jan R. Magnus and Heinz Neudecker, Matrix Di�erential Calculus with Applications in Statistics andEconometrics, Wiley, 1988.[10] David G. Luenberger, Linear and Nonlinear Programming, Addison Wesley, Reading, MA, second edition,1989.[11] J. Phillips, The NAG Library : a beginner's guide, Clarendon Press, New York, NY, 1986.[12] G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae,John Wiley & Sons, Inc., New York, second edition, 1982.8



[13] G. Sharma, Color scanner characterization, performance evaluation, and design, Ph. D. dissertation,North Carolina State University, Aug. 1996.[14] M. J. Vrhel, Mathematical Methods of Color Correction, Ph. D. dissertation, North Carolina StateUniversity, May 1993.[15] M. J. Vrhel, H. J. Trussell, and J. Bosch, \Design and realization of optimal color �lters for multi-illuminant color correction," J. Electronic Imaging, vol. 4, no. 1, pp. 6{14, Jan. 1995.

9



3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

Number of filters

A
v
g
. 
d
e
lt
a
 E

30 dB

40 dB

50 dB

o Optimal nonnegative filter−sets

x Sub−optimal nonnegative filter−sets

Figure 1: Performance comparison of optimal and sub-optimal �lter sets.
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(b)Figure 2: (a) Optimal and (b) sub-optimal 4-�lter sets at 30 dB SNR.
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