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Abstract: The use of multiple substrates in color printers
requires color characterization for each of the individual
substrates. A full re-characterization for each substrate is
measurement and labor intensive. In this article, a variety of
methods are proposed and evaluated for determining the
color characterization for a new substrate based on a
complete characterization on a reference substrate and a
small number of additional measurements for the new sub-
strate. This saves significant time and effort in comparison
to the traditional method of repeating the color character-
ization for each new substrate. The methods developed and
tested include model-based approaches based on Beer’s
law, Kubelka-Munk theory, and Neugebauer equations; and
an empirical technique based on principal component anal-
ysis. Results indicate that the model based techniques offer
only a small improvement over direct use of the reference
characterization, whereas, the empirical technique offers a
more significant improvement with as few as 26 measure-
ments on the new substrate. © 2003 Wiley Periodicals, Inc. Col Res

Appl, 28, 454–467, 2003; Published online in Wiley InterScience (www.

interscience.wiley.com). DOI 10.1002/col.10198
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INTRODUCTION

Color calibration of a printer is typically a two-step process.
In the first step, the printer response is characterized by

printing a number of color patches with known device
control values, measuring the colors obtained, and generat-
ing a characterization function that maps device control
values, such as CMYK, to corresponding colors specified in
a device independent color space, such as CIELAB. In the
second step, the characterization function is inverted to
determine the device control values required to produce a
color specified in device independent color space. The final
color correction that inverts the characterization function is
often implemented as a 3D look-up table that maps from a
device independent color space (e.g. CIELAB) to the device
control values (e.g. CMYK).

Several factors influence the printer response and conse-
quently, the printer characterization function. Some factors
are often unpredictable, in that they produce random vari-
ations in the response rather than systematic changes. Ex-
amples of such factors include printer drift and location-
sensitivity. The printer may change daily or even hourly
depending on the environmental conditions and throughput.
In addition, the response may depend on spatial location
(non-uniformity). Typically, the impact of these factors is
minimized through careful design of the printing system.
However, even if one were able to build a printer that did
not drift, that had uniform location sensitivity, with a stable,
predictable set of colorants, there is still one variable that
cannot be controlled—the print substrate. The substrate can
influence the color characteristics of the print in several
ways. Certain substrate properties such as surface roughness
can affect mechanical interactions between colorants and
substrate, in turn affecting the resulting color. For example,
inkjet colorants usually achieve more saturated colors when
printed on coated paper than on uncoated paper, because in
the former case, a fraction of the ink is absorbed into the
paper fiber. Secondly, optical properties play an important
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role. The most obvious property is the spectral reflectance of
the substrate. Other effects include optical scattering or
diffusion of light within the substrate. These effects have
been modeled by other researchers1–4

Since the printer response can vary considerably with
different printing substrates, a printer characterization is
specific to the substrate. If the user decides to use a substrate
different from that used in the characterization, the color
output error will depend upon the magnitude of the differ-
ences between the properties of the substrate used in the
characterization and that used for printing.

One approach is to ignore the change in substrate and use
the original characterization for the new substrate. This
approach is far from satisfactory and will in some cases
yield large color errors. The other straightforward alterna-
tive is to repeat the entire characterization procedure for
each new substrate. This approach is both measurement and
labor intensive and can be prohibitively costly in a system
supporting many different print substrates.

The intermediate approach explored in this article is to
assume an accurate characterization on a reference substrate
and to correct this for each new substrate with a small
number of additional measurements. As mentioned earlier,
many characteristics of the substrate affect the characteriza-
tion including color, weight, morphology, dimensional sta-
bility, coating technology, to name but a few. Of the sub-
strate characteristics listed, that which constitutes probably
the most important in color characterization and which will
be the focus of this work, is the substrate’s spectral reflec-
tance characteristic.

MINIMAL-EFFORT COLOR CHARACTERIZATION OF
A NEW SUBSTRATE

Various approaches were developed and implemented to
re-characterize the printer with a small effort when the
substrate is changed. Each of these methods is based on
techniques that predict the reflectance of a patch with spec-
ified device control values on the test substrate using the
known reflectance of the patch on the reference substrate
with the same device control values, in conjunction with
characteristics of the test substrate. These techniques in-
clude model-based approaches such as Beer’s law, Kubelka-
Munk theory and Neugebauer equations, and an empirical
regression approach based on Principal Component Analy-
sis.

Beer’s Law

Beer’s law5 states that the absorption of light is propor-
tional to the number of absorbing molecules in its path and
describes simple subtractive colorant mixing on a wave-
length by wavelength basis. For a single colorant, the trans-
mittance (t(�)) of a colorant layer is predicted as

t��� � 10�����cx (1)

where � denotes wavelength and �(�), c and x represent,

respectively, the extinction coefficient at wavelength �, the
concentration, and thickness for the colorant. The term �(�)

cx is referred to as the spectral density of the colorant layer.
The reflectances observed when the colorant layer is printed
on two different substrates are given by

R1��� � t���
2 � Rp1��� R2��� � t���

2 � Rp2���

where Rp1(�) and Rp2(�) are the reflectances of the substrates
and R1(�) and R2(�) are the reflectances observed with the
colorant layer printed on the substrates. Using the above
relation, the reflectance for the new substrate (R2(�)), can be
obtained from the reflectance spectrum (R1(�)) of that colo-
rant mixture printed on a known substrate (Rp1(�)), and the
reflectance of the new substrate (Rp2(�)) as

R2��� � � R1���

Rp1���
� � Rp2��� (2)

While the relation above was derived for a single colorant
layer, it generalizes to multiple colorants under the assump-
tion that the colorant layers combine additively in spectral
density. It further generalizes to halftone tints under the
assumption of a spectral Neugebauer model (this is appli-
cable with or without an exponential Yule-Nielson correc-
tion, which is discussed in a later section). While this is not
a direct implementation of Beer’s law, assumptions are
made analogous to Beer’s law in that the colorants are
transparent, the colorants have zero scattering, and that the
toner thickness and colorant concentration do not vary with
a change in substrate. As long as the assumptions hold, it is
possible to predict the reflectance of any colorant mixture
on a new substrate (R2(�)), given only the reflectance spec-
trum (R1(112)) of that colorant mixture printed on a known
substrate (Rp1(�)), and the reflectance of the new substrate
(Rp2(�)). In this method, it is necessary to measure only the
reflectance spectrum of each new paper.

Kubelka-Munk (KM) Theory

When a colorant is not completely transparent, the Beer’s
law assumption of zero scattering does not hold. Therefore,
one must build a model that attempts to take into account a
colorant’s absorption and scattering properties. This is an
important consideration when modeling xerographic pro-
cesses. The printer toners are not completely transparent and
typically each toner has its own scattering coefficient.

Kubelka and Munk derived a color mixing model which
describes the reflectance and transmittance of a color sam-

FIG. 1. The Kubelka-Munk model.
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ple in terms of the absorption and scattering (K(�) and S(�))
coefficients of the colorant material. The model considers a
colorant layer of thickness X that both absorbs and scatters
light that is passing through it,6 which is placed in optical
contact with a background of reflectance Rp(�) (Fig. 1).

The Kubelka-Munk (KM) model assumes that the light is
scattered in only two directions, up and down, with the
change in light flux in the two directions described by two
simultaneous differential equations involving the colorants’
absorption and scattering coefficients. The effective reflec-
tance of the sample can be determined by solving the
differential equations and is given by:

R��� �

�Rp��� � R����

R����
� � R�����Rp��� �

1

R����
�

� exp�S���X� 1

R����
� R������

Rp��� � R���� � �Rp��� �
1

R����
�exp�S���X� 1

R����
� R������ (3)

where R(�) is the reflectance of the colorant layer on the
substrate, Rp(�) is the reflectance of the substrate, (R�(�)) is
the reflectance of a colorant sample of an infinitely thick
sample of the colorant, S(�) is the scattering coefficient of
the colorant, and X is the thickness of the colorant layer.
Equation 3 is commonly referred to as the exponential form
of the KM equation.7

The parameter R� represents the reflectance of an infi-
nitely thick colorant, that is, a thickness such that any
further increase in thickness has no effect on the reflectance
of the sample. R� is directly related to the absorption and
scattering coefficients of the colorant, shown in Eq. 4.

R���� � 1 �
K���

S���
� ��K���

S���
� 2

� 2�K���

S���
� (4)

where K(�) is the absorption coefficient. The K and S spectra
can be fitted to reflectance spectra as a function of wave-
length over a series of thickness values using the KM
equation, or by printing the colorants on multiple substrates
of known reflectance. A method for calculating the K and S
spectra over a series of thickness values can be found in the
work of Dalal and Hoffman.8,9

Although the use of the KM model is relatively straight-
forward, it requires apriori knowledge of many of the pa-
rameters for the model to work. This work assumes that a
minimal amount of data is available and that some param-
eters do not change from substrate to substrate.

Multilayer Kubelka-Munk Model

The basic KM model only predicts the reflectance of a
single colorant layer. An extension of this model was de-
rived by Dalal and Hoffman (1997)8,9 that predicts the
reflectance of multiple layer images by successively treating
each predicted layer reflectance as the substrate reflectance
of the subsequent layer (Fig. 2). That is, the modeled
reflectance spectrum for the first toner layer is treated as the
substrate reflectance spectrum, Rp(�), for the second toner

layer, and so on, ultimately resulting in the reflectance
spectrum of the multi-layer sample.

The method assumes that the K and S spectra of each
toner layer are invariant on each substrate. The thickness
parameters for each layer were assumed known in our work
and can be estimated using a set of measurements from a
variety of substrates. It was also assumed that the R� spectra
or the individual K and S spectra are available for the toners
in the xerographic printer. Note that the model used here
assumes non-interspersed spatially uniform colorant layers,
whereas in actual practice the colorant distributions are
interspersed and do not have a uniform thickness spatially.
If suitable statistics of the colorant layer distributions are
available, the model can be extended to take these into
account to obtain improved results. Details of this procedure
can be found in Hoffman.9

The KM model only provides a mechanism for predicting
the reflectance for solid colors and overprints and does not
apply to halftone tints. Therefore it must be used in con-
junction with a different model, such as Neugebauer10,11 in
order to predict the spectral response of halftone color
prints.

Neugebauer Model

The Neugebauer model has been widely used to predict
the colorimetric response of halftone color printers. The
original model is essentially an extension of the Murray-
Davies equation.12

The Neugebauer model is based on the assumption that
the color of individual points on the printed substrate cor-
responds to one out of all possible solid overprint colors
produced by overlaying one or more of the halftone colo-
rants. These solid overprint colors are referred to as the
Neugebauer primaries. For CMYK printers, there are 16
Neugebauer primaries, including white paper and all possi-
ble combinations of the four-color mixtures. In the process
of viewing, the eye averages over a region, the color of a
region is therefore predicted in the Neugebauer model as the
weighted average of the colors for the Neugebauer prima-
ries, where the weights are the respective fractions of area
covered by the Neugebauer primaries. For a given digital
input (C M Y K) with corresponding dot area coverages (c,
m, y, k), the spectral Neugebauer equations13 predict the
average spectral reflectance of a printed patch using Eq. 5.

RCMYK��� � � �
i�1

16

wi � Pi���
1/n� n

(5)

FIG. 2. Multi-layer Kubelka-Munk model.
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where wi represent the weight of each primary (i) calculated
from the fractional area coverage of the individual colorants
using the Demichel dot model equations. Pi is the reflec-
tance of the (i)th solid color and RCMYK is the predicted
patch reflectance. A Yule-Nielsen14 correction factor n is
included to account for light scattering within the substrate.
In this work, the fractional area coverages and Yule-Nielsen
factor were derived using an iterative procedure that opti-
mizes the model’s prediction of single-separation ramps of
C, M, Y, K (see ref. 10 for details).

The sixteen Neugebauer primaries can either be printed
and measured, or modeled using the aforementioned KM
model. Both approaches are explored in this article.

EMPIRICAL REGRESSION BASED ON PRINCIPAL
COMPONENT ANALYSIS

An alternative to using model-based approaches, is to adopt
an empirical technique that treats the problem of predicting
the reflectance on the test substrate as a data-fitting problem.
In this case, the reflectance measurements corresponding to
a known set of device control values for a new substrate are
inferred from the reflectance measurements corresponding
to the same control values on the reference substrate by
means of a pre-determined transform. The transform is
determined from measurements of a set of training patches
on the reference substrate and on the new substrate, both
corresponding to the same set of device control values.
Typically, the dimensionality of the transform directly im-
pacts the amount of training data needed with larger
amounts of data required as the dimensionality of the trans-
form increases. Since it is desirable to keep the number of
measurements on the new substrate to a minimum, it is
beneficial to reduce the dimensionality of the problem as far
as possible. We exploit principal component analysis (PCA)
for this purpose. The basic idea is to transform the reflec-
tance data into PCA coordinates and apply a transformation
in these coordinates in order to account for a change in
substrate. The transformation is estimated from the avail-
able set of corresponding training data on the reference and
test substrates.

PCA is a mathematical technique for analysis of a set of
multivariate data. The technique provides a representation
of the multivariate data as a linear combination of orthonor-
mal basis vectors, wherein each successive basis vector
accounts for as much of the variation in the original data as
possible. For typical print reflectance data, a very accurate
approximation in a least squares sense can be obtained by
using only the first few basis vectors or principal compo-
nents. This approximation reduces the dimensionality of the
original data from the number of variables in the multivar-
iate data set to the number of principal components selected.
Using a larger number of principal components (i.e. basis
vectors) provides improved approximation accuracy at the
cost of increased dimensionality. In an alternate view, the
PCA analysis can be interpreted as successively searching
for the dimensions along which the observations are maxi-
mally separated or spread out.15 The principal components

of the multivariate set of data correspond to orthonormal
eigenvectors of the sample covariance matrix ordered ac-
cording to decreasing eigenvalues. The principal compo-
nents can be computed in a numerically stable and robust
fashion using the Singular Value Decomposition.16

In a geometric sense, the best r (�n) dimensional repre-
sentation of the original n-dimensional data is obtained by
projecting the n-dimensional data into the r-dimensional
subspace17 defined by the first r principal components v1,
v2, . . . , vr. The approximation to an original n-dimensional
vector z using the r principal components is given by a
weighted combination of the principal components

ẑ � �
i�1

r

wivi (6)

where the weights wi are given by

wi � vi
Tz (7)

Here the superscript T represents the transpose operation.
For our application, we are dealing with spectral data,

where typically a 10nm sampling interval is used over the
range of wavelengths from 380–730nm. This corresponds
to a 36-dimensional space. Since typical reflectance spectra
of natural objects are smooth, PCA can provide an accurate
approximation with as few as 5-10 principal components,18

thus offering significant reduction in dimensionality with
little loss in accuracy. Each reflectance spectrum R(�) is
thus represented by the 5–10 weighting factors wi corre-
sponding to the chosen principal components vi.

The reduced dimensionality provided by PCA can be
exploited in an empirical scheme for compensating for
change in the substrate. With reference to Fig. 3, the first
step is to determine the appropriate dimensionality r of the
PCA representation of printed reflectance spectra. To this
end, a large number of patches corresponding to different
device control values (CMYK) are printed ❶ and measured
using a spectrophotometer to obtain spectral reflectance
values. In our work, 289 patches were used. The measured
reflectance spectra are then normalized using a Yule-
Nielsen modified form of the Beer’s law assumption ❷,

Rnormalized��� � �Rmeasured���

Rpaper���
� 1/n

(8)

where Rmeasured is the reflectance factor of each patch, Rpaper

is the reflectance factor of the substrate white, and n is the
Yule-Nielsen factor. Based on experiments with the differ-
ent substrates, a value of n � 5.0 was chosen for all
substrates. Equation [8] is analogous to pre-conditioning the
data using the Beer’s law model of Eq. [1] to reduce the
variability that the subsequent regression needs to account
for. The resulting normalized spectral data is analyzed using
PCA to obtain a set of r basis vectors ❸. In our work, the
289 patches were printed on four different substrates and
measured spectrally. For each value of r ranging between 1
and 20, the PCA approximations (given by Eq. [6]) were
compared with the original measurements. In order to eval-
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uate the PCA approximation with a perceptually meaningful
metric, both the approximated and measured data were
converted from their spectral representation to CIELAB and
compared using the �E*94 color difference metric.19 This is
given by:

�E*94 � ���L*

kLSL
� 2

� ��C*

kCSC
� 2

� ��H*

kHSH
� 2

, (9)

where �L*, �C*, and �H* are differences in lightness,
chroma, and hue respectively; kL � kC � kH � 1; SL � 1,
SC � 1 � 0.045C*, and SH � 1�0.015C*. The average

�E*94 color difference over the patches as a function of the
number of PCA basis vectors is illustrated in Fig. 4 in
tabular form and as a graph. As might be expected, the data
in Fig. 4 show that the average color error in the reconstruc-
tion decreases monotonically with an increase in the number
of basis vectors. Significant jumps in reconstruction accu-
racy can be seen when 3, 5, 10 or 17 basis vectors are used.
Although increasing the number of basis vectors r improves
the reconstruction, it is necessary to consider the fact that
this also requires in an increased number of measurements
on the test substrate for accurate regression. Furthermore,

FIG. 3. Set-up procedure for relating spectra on reference and test substrates.

FIG. 4. Average �E*94 error vs number of PCA basis vectors.
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too many basis vectors may start modeling the noise within
the spectral reflectance measurements and potentially cause
increased error when applying the procedure to a new
substrate. Based on these trade-offs, the number of basis
vectors was empirically selected to be r � 10. ❹ For the
four substrates compared in Fig. 4, this ensures an average
color error under 0.1 �E*94 units in the PCA based spectral
approximations. Note that the more common technique for
determining the number of PCA basis vectors is to deter-
mine the percent contribution to the variance from each
successive PCA component, instead of the �E*94 based
evaluation employed here. While both techniques have sim-
ilar qualitative characteristics, with successive vectors of-
fering smaller and smaller gains, the technique employed
here allows us to determine the contribution of the PCA
approximation to the final color error and establish that the
dimensionality of the PCA approximation is not the bottle-
neck in the empirical process.

Once the dimensionality and corresponding PCA basis
vectors have been determined, the transformation from the
reference substrate to the test substrate can be determined as
follows. A small set of patches corresponding to a given set
of device control values are printed on both the reference
and test substrates ❺ and reflectance spectra for each of
these patches are measured. Both sets of spectra are nor-
malized using the Yule-Nielsen modified form of the Beer’s
law assumption ❻. For each normalized spectrum on the
reference or test substrate, the weights corresponding to the
10 PCA basis vectors are computed ❼ (using Eq. [6]). This
yields a set of PCA weights for the reference and test
substrate corresponding to the same set of device control
values ❽. Linear regression is then used to compute the
optimal linear transformation T that maps the reference
substrate PCA weights to the test substrate PCA weights. ❾
Specifically, if x is the r 	 1 vector of PCA basis weights
for a patch printed on the reference substrate with a given
set of device control values, the corresponding r 	 1 vector
y of PCA basis weights for a patch printed on the test
substrate with the same set of device control values is
estimated as

ŷ � Tx (9)

where T is the r 	 r matrix representing the linear trans-
formation. If the vectors of PCA basis weights for the set of
training patches printed on the reference substrate are x1, x2,
x3, . . . xK and corresponding vectors of PCA basis weights

for the test substrate are y1, y2, y3, . . . yK, respectively, the
optimal linear transformation T is given by:

T � YXT(XXT)�1 (10)

where

X � 
x1�x2�x3�· · · xK�
(11)

Y � 
y1�y2�y3�· · · yK�

and XT(X�XT)�1 represents the pseudo-inverse of the K 	
r matrix XT. In our work, the pseudo inverse was computed
using the singular value decomposition.16 Applying the
computed transformation T to the PCA basis weights for a
reflectance measured on the reference substrate provides an
estimate of the PCA basis weights for the corresponding
(same CMYK values) reflectance on the test substrate.a

A critical factor in the aforementioned derivation is the
choice of CMYK values in the small sample set. The fol-
lowing are desirable guidelines in selecting this set:

i) The CMYK values should be a subset of the original
characterization data set so that no new measurements
are required on the reference substrate.

ii) In order to reduce the burden to the user, the size of this
set should be significantly smaller than that of the
original characterization data set.

iii) The patches should be chosen to ensure that T has
sufficient rank. This basically means that each of the C,
M, Y, K colorants should be sufficiently represented.

To this end, a set of 26 CMYK values was selected
comprising the 16 Neugebauer primaries (i.e. all combina-
tions of 0 and 100% area coverage of C, M, Y, K) and two
levels of pure C, M, Y and K, and has two levels along the
C � M � Y axis. Once the transformation T is computed,
the set-up procedure is complete. One can now estimate the
spectral reflectance of a patch printed on the test substrate.
Figure 5 illustrates this procedure. In order to estimate the

a It is conceptually feasible to eliminate the PCA data reduction and still
employ the methodology presented here: In which case, the xi’s would
correspond to individual sampled spectra and the matrix T would be a
36	36 matrix. This, however, poses two challenges, firstly a minimum of
36 corresponding measurements on both substrates are required and sec-
ondly, the 36	36 matrix (X XT) is highly ill-conditioned, making the
solution in Eq. 10 extremely sensitive to the chosen sample set. This
approach was therefore not pursued in this research.

FIG. 5. Process for prediction of reflectance spectra on test spectra.
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reflectance value for a patch printed on the test substrate
having specified CMYK values, the method begins with the
reflectance spectrum for the patch on the reference substrate
with the same CMYK values ❶. The spectrum reflectance is
normalized ❷ as described in Eq. 8 and PCA weights
required for approximating this normalized spectrum are
determined using the basis vectors selected in the set-up
phase ❸. The transformation matrix T computed in the
set-up stage is then used to estimate the corresponding PCA
weights for the test substrate ❹ as in Eq. 9. The estimated
PCA weights for the test medium are used for reconstruct-
ing the PCA approximation to the normalized spectrum
under for the test substrate ❺ using Eq. 6. The normalization
procedure is inverted ❻ to obtain a reflectance estimate ❼
for the given CMYK patch printed on the test substrate. The
inversion normalization can be expressed mathematically
as:

Rpredicted��� � �Rnormalized����
n � Rpaper��� (12)

Since measurements for a complete printer characterization
target are available for the reference substrate, estimates for
the corresponding (having identical CMYK values) charac-
terization target generated on the test substrate can be ob-
tained using the procedure outlined above. The estimated
values can then be used to characterize the printer for the
new test substrate. Note also that the measurements of the
complete characterization target on the reference medium
can be used for the determination of the PCA representation
in the set-up phase and a subset of these patches can be
printed on the test medium and measured for estimating the
transformation T. This process ensures that the additional
prints and measurements required are only the small subset
for the test substrate.

EXPERIMENTAL RESULTS AND ANALYSIS

All experiments were conducted on a four colorant CMYK
Xerographic printer. Twelve different substrates varying in
coating characteristics, weight, and paper color were chosen
for the experimental investigation. Table I lists the sub-
strates grouping them by coated and uncoated types and

indicating their specified weight in grams per square meter
(gsm).

For each of the substrates included in the study, a printer
characterization target comprising 289 patches was printed
and spectral measurements were made using a GretagMac-
beth Spetralino device. The latter reports spectral data in the
range 380–730nm in 10nm increments The spectral data
was used to derive the parameters for the various models in
this study.

The optimal Yule-Neilsen factor for the Neugebauer
model is included in Table I for each substrate. It should be
noted that this factor is derived from a mathematical opti-
mization, and is only approximately related to the optical
scattering phenomenon. The different values in Table I are
roughly indicative of differences in optical scattering prop-
erties of the various substrates.

The spectral reflectance values corresponding to the char-
acterization target on the test substrate were predicted from
the spectral reflectance values on the reference target using
each of the aforementioned techniques. The color error in
these spectral estimates in comparison to the measured
values was used as a figure of merit for comparing the
different schemes. An exhaustive test was conducted in
which each of the substrates was designated the reference
substrate in turn and used to predict the measurements
corresponding to the characterization target for each of the
remaining 11 substrates. The results for this exhaustive
pair-wise test are included in the appendix for each of the
methods used for adjustment of the characterization for a
test substrate. Only a small subset of representative results
are presented here to illustrate the observed trends.

The techniques compared are (roughly in order of in-
creasing effort): a) no adjustment, i.e., using the character-
ization for the reference substrate with no alteration for the
test substrate; b) adjustment based on Beer’s law using
measured test substrate reflectance; c) adjustment based on
the KM Model for predicting the Neugebauer primaries and
a Neugebauer model for estimating the spectra of halftone
tints, where the substrate reflectance and colorant K and S
spectra are assumed known; d) adjustment based on the
Neugebauer model for halftones with actual measuments of
the 16 Neugebauer primaries; and e) adjustment based on

TABLE I. Substrate names, coating characteristics weights, and optimum Yule-Nielsen value.

Substrate Coated Weight
Yule-Nielsen

value (n)

Paper 01 3R54 No 75 gsm 5.5
Paper 02 3R3874 No 90 gsm 5.0
Paper 03 Mead Moistrite Matte Yes 80 gsm 1.0
Paper 04 Potltach Vintage Velvet Crème Yes 80 gsm 2.0
Paper 05 S.D.Warren Strobe Yes 80 gsm 2.0
Paper 06 Xerox Ultraspec Gloss Yes 80 gsm 4.5
Paper 07 S.D.Warren Lustro Gloss Text lot sourced from Economy Paper Yes 80 gsm 2.0
Paper 08 S.D.Warren Lustro Gloss Text Alling & Corey Lot Yes 80 gsm 4.0
Paper 09 Consolidated Centure Gloss Yes 80 gsm 3.0
Paper 10 Mead Vision Yes 80 gsm 2.0
Paper 11 Westvaco Sterling Web Gloss Yes 80 gsm 4.0
Paper 12 Mead Richgloss Yes 80 gsm 1.0
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the PCA based empirical regression technique, where the
transformation T was determined using a subset of 26
patches from the printer characterization target, printed on
the respective substrates.

Figure 6a depicts a plot of the average color error of these
compensation techniques for four substrates chosen to rep-
resent the improvements obtained with the prediction pro-
cess. The abscissa of the plot represents the test substrate for
which reflectance values are estimated using each of the
other substrates as reference substrates in turn. The ordinate
represents the average color error in the estimates in CIE

�E*94 units across all the patches in the target and across the
three choices of the reference substrate. The five individual
curves in the plot represent the different adjustment tech-
niques and are identified in the legend. Figure 6b is a
corresponding plot with the 95th percentile values of the
same set of color errors along the ordinate axis. From the
curve corresponding to no adjustment (none), we can see
that there are significant differences among the different
substrates with average color difference around 3.5 �E*94

units and a 95-percentile value for the color difference
around 6.0 �E*94 units. The curves for the minimal mea-
surement model-based approaches (Beer’s Law and KM) on
these plots are quite close to the case of no adjustment,
indicating that these approaches offer very marginal im-

FIG. 6. (a) Average and (b) 95 percentile color error (�E*94)
for predicted test substrate reflectances.

FIG. 7. Effort vs accuracy for prediction techniques.

FIG. 8. (a) Histogram of �E*94 errors between CIE Lab val-
ues measured on the reference (substrate 1) and test (sub-
strate 4); (b) Histogram of �E*94 errors between the CIE Lab
values predicted by PCA and values measured on the text
substrate.
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provements at best. The approach based on the Neugebauer
model incorporating actual measurements of the 16 Neuge-
bauer primaries offers reasonable improvement for sub-
strates 2, 4, and 9 but only a minor improvement for
substrate 6. The empirical regression technique based on
PCA consistently provides significantly lower error than the
case of no adjustment, and among the techniques investi-
gated, it is the most successful at predicting the colors for
the characterization target on the test substrate.

Figure 7 summarizes the performance of each of the
techniques for prediction of test substrate reflectance based
on a reference substrate in a bar graph. The abscissa of the
bar graph is a rough depiction of the effort required in terms
of additional measurements on the test substrate and the
height of the bars indicate the average and 95-percentile
values of the �E*94 color error in the prediction. The short
bar in each pair is the mean color error of all patches
predicted using the model, and the tall bar the 95 percentile
error. At the lowest end of the effort scale is the case of no
adjustment, and at the highest end is the case of complete

re-characterization on the test substrate by re-measuring the
entire characterization target. Figure 7 shows that as the
number of measurements increases, the accuracy of the
spectral prediction increases.

Of the four techniques implemented, the best results were
obtained with the empirical regression technique using
PCA. The performance of the model based Beer’s law and
KM techniques is poor and offers only slight improvement
over direct use of the reference substrate data. Several
modeling assumptions and uncontrollable variables contrib-
ute to the poor performance of the model-based schemes.
Beer’s law assumes that the toners are transparent, exhibit
zero scattering and have constant thickness across changes
in substrates. All of these are unrealistic assumptions. Al-
though the KM model eliminates some of Beer’s law’s
deficiencies by compensating for absorption and scattering
coefficients separately, it also makes several restrictive as-
sumptions: e.g. a medium that is isotropic and homoge-
neous, no specular reflection, a planar non-interspersed con-
figuration for the colorant layers, and thicknesses for the

FIG. 9. CIE Lab values measured on a reference substrate (x) when compared to the CIE Lab values (•) measured on the
test substrate.
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layers that are invariant under change in substrate and
constant over the spatial extent of a patch. These assump-
tions are also unrealistic, but cannot be readily improved
upon without additional measurement data for the test sub-
strate. Note that if additional information is available the
performance of the model based approaches can be im-
proved. In particular, significant improvements have been
demonstrated in situations where the statistical characteris-
tics of the the mixing of the colorant layers and variations in
thickness are known.9

Both the Neugebauer model with measured primaries,
and PCA techniques improve prediction accuracy signifi-
cantly. While these techniques do require additional mea-
surements, the number of measurements (16 and 26, respec-
tively) is much smaller than the 289 measurements required
for complete characterization, and can significantly reduce
the effort for re-characterizing the printer when a large
number of substrates is involved.

Figure 8 shows histograms of the color errors for the case
of no compensation and compensation based on the PCA

technique. From the histograms, it is clear that the use of an
incorrect substrate characterization will result in significant
errors. The PCA model significantly reduces both the mean
color difference and the standard deviation.

The distribution of errors in color space is further illus-
trated in Figs. 9 and 10. The errors for the individual patches
on the printer characterization target for a sample reference
and test substrate are shown in CIELAB space for the case
of no compensation and for the PCA technique, respec-
tively. In both figures the errors are depicted in plots of a*
vs L*, b* vs L*, and a* vs b* so that the three dimensional
distribution of the errors may be visualized. In the plots of
Fig. 9, one can see that the dominant error caused by the
direct use of the reference substrate characterization on the
test substrate is a decrease in lightness. One can also see that
the change in substrate causes a change in the black point.
If not accounted for correctly, this will result in a reduction
of the substrate’s characterized dynamic range. In addition
to the change in lightness, systematic trends in the color
errors can also be seen in the a* vs b* plot. By using the

FIG. 10. CIE Lab values measured on a reference substrate (x) when compared to the reconstruction CIE Lab values (•)
predicted using the model.
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PCA based empirical regression technique to compensate
for the change in substrate, it is possible to significantly
improve the characterization for the new substrate. This can
be seen in Fig. 10, where the errors are significantly smaller
than those in Fig. 9 and only relatively minor trends can be
seen. The algorithm compensates for the change in black
point of the substrate, and significantly reduces the magni-
tude of the errors in hue and chroma.

CONCLUSIONS

In this article several techniques were evaluated for estimat-
ing the printer characterization for a new substrate based on
the available characterization for a reference substrate and a
small number of measurements on the new substrate. This
effort was motivated by the need to provide accurate color
management for a large number of substrates in a typical
printing environment with minimal additional effort. The
proposed techniques included three model-based approach-
es: Beer’s Law, Kubelka-Munk theory, and Neugebauer
model; and an empirical regression technique that exploits
principal components analysis (PCA) for reducing the di-
mensionality of the problem to a tractable level. The tech-
niques were experimentally evaluated using a CMYK xero-
graphic printer. While the only knowledge required for the
Beer’s law and Kubelka-Munk methods is the reflectance of
the new substrate, these methods provided only small im-
provement over the direct use of the reference substrate
characterization on the test substrate. The unrealistic mod-
eling assumptions required in the absence of additional
measurement data on the new substrate are the primary
reason for the poor performance of these techniques. The
Neugebauer model and the empirical regression technique
based on PCA each utilize more measurements, 16 and 26,
respectively. Both provided a significant improvement over
the direct use of the reference substrate characterization,
with PCA providing a more consistent and robust improve-
ment than the Neugebauer model. While the techniques do
require measurement of additional patches on the test sub-
strate, the effort in measuring the additional patches is still
significantly smaller than the effort required for measuring
an entire printer characterization target on the test substrate.

Several advances of this research are conceivable. With
the PCA algorithm, using more general mappings such and
polynomials or neural-networks for the mapping from ref-
erence substrate PCA weights to test substrate PCA weights
might achieve a better trade-off between effort and accu-
racy. Instead of least-squares, the objective function may

also be changed to a more relevant metric with nonlinear
optimization techniques such as simulated annealing or
simplex methods in place of linear regression. Another
important extension would be to model the fluorescence
commonly encountered in substrates due to the presence of
optical brighteners. Finally, modeling of other substrate
properties such as surface roughness, gloss, etc. would
likely yield even greater improvements in characterization
accuracy, though this would also entail more sophisticated
analysis of the substrates, which is often impractical.
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