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ABSTRACT

We present a novel reversible (lossless) data hiding (embedding)
technique, which enables the exact recovery of the original host
signal upon extraction of the embedded information. A general-
ization of the well-known LSB (least significant bit) modification
is proposed as the data embedding method, which introduces addi-
tional operating points on the capacity-distortion curve. Lossless
recovery of the original is achieved by compressing portions of
the signal that are susceptible to embedding distortion, and trans-
mitting these compressed descriptions as a part of the embedded
payload. A prediction-based conditional entropy coder which uti-
lizes static portions of the host as side-information improves the
compression efficiency, and thus the lossless data embedding ca-
pacity.

1. INTRODUCTION

Most multimedia data embedding techniques modify, and hence
distort, the host signal in order to insert the additional information.
Often, this embedding distortion is small, yet irreversible, i.e. it
cannot be removed to recover the original host signal. In many ap-
plications, the loss of host signal fidelity is not prohibitive as long
as original and modified signals are perceptually equivalent. How-
ever, in a number of domains -such as military, legal and medical
imaging- although some embedding distortion is admissible, per-
manent loss of signal fidelity is undesirable. This highlights the
need for Reversible (Lossless) Data Embedding techniques. These
techniques, like their lossy counterparts, insert information bits by
modifying the host signal, thus induce an embedding distortion.
Nevertheless, they also enable the removal of such distortions and
the exact- lossless- restoration of the original host signal after ex-
traction of embedded information.
Lossless data embedding techniques may be classified into one of
the following two categories: Type I algorithms [1] employ addi-
tive spread spectrum techniques, where a spread spectrum signal
corresponding to the information payload is superimposed on the
host in the embedding phase. At the decoder, detection of the em-
bedded information is followed by a restoration step where water-
mark signal is removed, i.e. subtracted, to restore the original host
signal. Potential problems associated with the limited range of val-
ues in the digital representation of the host signal, e.g. overflows
and underflows during addition and subtraction, are prevented by
adopting modulo arithmetic. Payload extraction in Type-I algo-
rithms is robust. On the other hand, modulo arithmetic may cause
disturbing salt-and-pepper artifacts.

In Type II algorithms [2, 3], information bits are embedded by
modifying, e.g. overwriting, selected features (portions) of the
host signal -for instance least significant bits or high frequency
wavelet coefficients-. Since the embedding function is inherently
irreversible, recovery of the original host is achieved by compress-
ing the original features and transmitting the compressed bit-stream
as a part of the embedded payload. At the decoder, the embedded
payload- including the compressed bit-stream- is extracted, and
original host signal is restored by replacing the modified features
with the decompressed original features. In general, Type II al-
gorithms do not cause salt-and-pepper artifacts and can facilitate
higher embedding capacities, albeit at the loss of the robustness of
the first group.
This paper presents a high-capacity, low-distortion, Type-II loss-
less data embedding algorithm. First, we will introduce a gener-
alization of the well-known LSB (least significant bit) modifica-
tion method as the underlying irreversible (lossy) embedding tech-
nique. This technique, modifies the lowest levels- instead of bit
planes- of the host signal to accommodate the payload informa-
tion. In the second part, a lossless data embedding algorithm for
continuous-tone images is built on the generalized LSB modifica-
tion method. This spatial domain algorithm modifies the lowest
levels of the raw pixel values as signal features. As in all Type-II
algorithms, recovery of the original image is enabled by compress-
ing, transmitting, and recovering these features. This property
of the proposed method provides excellent compression of rela-
tively simple image features. Earlier algorithms in the literature
tend to select more complex features to improve the compression
performance- thus the lossless embedding capacity-.

2. GENERALIZED LSB EMBEDDING

One of the earliest data embedding methods is the LSB (least sig-
nificant bit) modification. In this well-known method, the LSB
of each signal sample is replaced (over-written) by a payload data
bit. During extraction, these bits are read in the same scanning
order, and payload data is reconstructed. A generalization of the
LSB embedding method is employed here. If the host signal is
represented by a vector � , the generalized LSB embedding and ex-
traction processes can be represented as

� � � 	 
 � � � � � (1)

� � � � � 	 
 � � � � � � � � 	 
 � � � (2)

where � � represents the signal containing the embedded informa-
tion, � represents the embedded payload vector of L-ary symbols,
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i.e. � � ! # % ' ) ' + + + ' . � ) 2 , and 	 
 � 4 � � . 9 :
 ; is an L-level
scalar quantization function.
In the embedding phase, the lowest L-levels of the signal samples
are replaced (over-written) by the watermark payload. During ex-
traction, watermark payload is extracted by obtaining the quantiza-
tion error- or simply reading lowest L-levels- of the watermarked
signal. The classical LSB modification is a special case where. � < . Generalized LSB embedding enables embedding of non-
integral number of bits in each signal sample and thus introduces
new operating points along the rate (capacity)-distortion curve.

2.1. Binary to L-ary (L-ary to Binary) Conversion

In the preceding section, we assumed that the watermark payload
is presented as a string of L-ary symbols � � . In typical practi-
cal applications payload data is input and output as binary strings.
Therefore, a binary to L-ary (and L-ary to binary) pre(post) conver-
sion utility is required. Moreover, in practice signal values are gen-
erally represented by finite number of bits, which can afford only a
limited range of sample values. In certain cases, embedding proce-
dure outlined above may generate out-of-range sample values. For
instance, in a 8 bpp representation (range is > % ' < A A C ) the embed-
ding algorithm with operating parameters . � D , 	 
 � F � � < A <
and � � A will output F � � < A K , which cannot be represented
by an 8 bit value. In general, for a given signal value watermark
symbols can only take M values ( � is an M-ary symbol) whereL M . .
In order to address these concerns, we employ the following algo-
rithm which converts binary input O into a L-ary symbols while
preventing over-flows. We start by interpreting the binary input
string as the binary representation of a number P in the interval> % ' ) � , i.e. P � + R S R U R W + + + and P ! > % ' ) � . Furthermore, we letZ

represent this interval ( > % ' ) � ).

1. Given F and
L [ 4 � F � , determine 	 
 � F � and number of pos-

sible levels
L M . ,

2. Divide
Z

into
L

equal sub-intervals,
Z S to

Z ] _ U
3. Select the sub-interval that satisfies P ! Z a
4. Next watermark symbol is � � c
5. Set

Z � Z a
and goto step 1, for the next sample

Note that the inverse conversion is performed by the dual of the
above algorithm. In particular, watermark symbols, � , are con-
verted into a binary number P by successively partitioning the
interval

Z � > % ' ) � . Number of partitions (active levels),
L

, on a
given signal sample F � are obtained from 	 
 � F � � � 	 
 � F � .

2.2. Embedding Capacity and Distortion

In Generalized-LSB embedding (Eqn. 1), each signal sample car-
ries an L-ary watermark symbol � � , which represents e f h W � . � bits
of information. Therefore, the embedding capacity of the system
is k l 
 n o � e f h W � . � bits per sample (bps).
A closed form expression for the expected mean square and mean
absolute error distortions may be obtained if we assume that: i)
data symbols � are equiprobable, which is reasonable if input data
is compressed and/or encrypted, as in many data embedding appli-
cations; and ii) the residual signal representing the L-lowest levels
of the original host signal ( p � F � 	 
 � F � ), is uniformly dis-
tributed, which is a reasonable approximation for natural imagery,

especially for small . .

s � L t u � � ). W

 _ Uw

x y S

 _ Uw

� y S � p � � � W � . W � )D (3)

s � L { u � � ). W

 _ Uw

x y S

 _ Uw

� y S } p � � } � . W � )� . (4)

3. LOSSLESS GENERALIZED-LSB DATA EMBEDDING

The G-LSB embedding algorithm can be directly used for data em-
bedding with low distortion. However, the method is irreversible,
i.e., the host signal is permanently distorted when its lowest levels
containing the residual signal are replaced with the watermark sig-
nal. This shortcoming can be remedied by including information
for reconstruction of the residual signal along with the embedded
data in the payload.
Fig. 1 shows a block diagram of the proposed algorithm. In the
embedding phase, the host signal � is quantized and the residual �
is obtained (Eqn. 5). The residual is then compressed in order to
create capacity for the payload data O . The compressed residual
and the payload data are concatenated and embedded into the host
signal via G-LSB modification. In particular, resulting bit-stream
is converted to L-ary symbols � and added to the quantized host
to form the watermarked signal � � (Eqn. 1). Note that the com-
pression block uses the rest of the host signal, 	 
 � � � , as side-
information, in order to facilitate better compression and higher
capacity.
In the extraction phase, the watermarked signal � � is quantized
and the watermark payload (the compressed residual and the pay-
load data O ) is extracted (Eqn. 2). A desirable property of the
proposed algorithm is that the payload data extraction is relatively
simple and it is independent of the recovery step. If desired, the
algorithm proceeds with the reconstruction of the original host � .
In particular, the residual, � , is decompressed using 	 
 � � � � �	 
 � � � as side-information. Original host, � , is reconstructed by
replacing the lowest levels of the watermarked signal with the
residual (Eqn. 6).

� � � � 	 
 � � � (5)� � 	 
 � � � � � � 	 
 � � � � � �
Note that the lossless embedding system has significantly smaller
capacity than the raw G-LSB scheme, since the compressed resid-
ual typically consumes a large part of the available capacity. The
lossless embedding capacity of the system is given by,k 
 � � � � � � � � k l 
 n o � k � � � � � � � � . This observation emphasizes
the importance of the residual compression algorithm.
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Fig. 1. Embedding (top) and extraction (bottom) phases of the
proposed lossless data embedding algorithm.
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3.1. Compression of the Residual

Efficient compression of the residual is the key to obtaining high
lossless embedding capacity. Since the residual signal represents
the lowest levels of a continuous-tone image (Eqn. 5), the com-
pression is a challenging task. For small values of . , the residual
typically has no structure and its samples are virtually uniformly
distributed and uncorrelated from sample to sample. Direct com-
pression of the residual therefore results in rather small lossless
embedding capacity. However, if the rest of the image informa-
tion is used as side-information, significant coding gains can be
achieved in the compression of the residual, by exploiting the spa-
tial correlation among pixel values and the correlation between
high and low levels (bit-planes) of the image.
The proposed method adapts the CALIC lossless image compres-
sion algorithm [4] for the lossless embedding scenario. The al-
gorithm comprises of three main components: i) prediction, ii)
context modeling and quantization, iii) conditional entropy cod-
ing. The prediction step reduces spatial redundancy in the image.
The context modeling stage further exploits spatial correlation and
the correlation between different image levels. Finally, conditional
entropy coding based on selected contexts translates these correla-
tions into smaller code-lengths. The algorithm is presented below
in pseudo-code:

1. �F � = Predict Current Pixel();

2. � � ' � � = Determine Context D,T( �F � );

3. �F � = Refine Prediction( �F � ' � ' � );

4. c = Determine Context M( �F � );

5. If ( c � % ), Encode/Decode Residual(p � ' � ' c );
else, Encode/Decode Residual( . � ) � p � ' � ' } c } );

3.1.1. Prediction

Let us assume that the residual samples, p , are encoded and de-
coded in the raster scan order and denote a pixel position and
its 8-connected neighbors by their relative directions, i.e. � , � ,� � ,

�
,

� u
,

u
,

t u
,

t
,

t � , respectively. The prediction uses
the quantized pixel values, 	 
 � F � , at these positions and addi-
tionally the already reconstructed residual in the causal neighbor-
hood ( � ,

� � ,
�

,
� u

). We define a reconstruction function � � + � ,
which gives the best known value of a neighboring pixel, exact
value if known, or the quantized value (plus 
 W to compensate for
the bias in the truncation 	 
 � + � ).

� � F � � �   F � if ¢ ! # � ' � � ' � ' � u 2	 
 � F � � � 
 W o/w
(6)

An initial linear prediction of the current pixel value based on 4-
connected neighbors is given by,

�F � � )¥ w
� ¦ § ¨ © ª © « © n ¬ � � F � � (7)

However, this predictor is often biased, resulting in a non-zero
mean for the prediction error, F � �F . As in [4], we refine this predic-
tion and remove its bias using a feed-back loop, on a per-context
basis. The new prediction is calculated as,

�F � � 9 �F � � ­® � � ' � � ; (8)

where ­® � � ' � � is the average prediction error ( ® � F � � �F � ) of all
previous pixels in the given context � � ' � � .

3.1.2. Context Modeling and Quantization

Typical natural images exhibit non-stationary characteristics with
varying statistics in different regions. This causes significant degra-
dation in performance of compression algorithms that model the
image pixels with a single statistical model such as a universal
probability distribution. If the pixels can be partitioned into a set
of contexts, such that within each context the statistics are fairly
regular, the statistics of the individual contexts, may be exploited
in encoding the corresponding pixels. If the contexts and the corre-
sponding statistical models are chosen appropriately, this process
can yield significant improvements in coding efficiency.
We adopt a variant of � and � contexts from [4]. These contexts
correspond to local activity and texture measures.° � w

� ¦ § ¨ © ª ¨ © ª © ª « © « © n « © n © n ¨ ¬
)² } � � F � � � �F � } (9)

� � 	 � ° � (10)

� � �   ) if � � F � � µ �F �% o/w
(11)

� � � ¨ · � ª · � « · � n (12)

where � is obtained by concatenating � � bits (16 values), and 	 � ° �
is a scalar non-uniform quantizer with

²
levels. The thresholds

are determined experimentally as # ) ' < ' � ' ¥ ' D ' ) % ' ) A 2 , to include
approximately equal number of pixels in each bin.
Once these � � ' � � contexts are determined, prediction is refined as
in Eqn. 8. Typically the prediction error, ® � F � �F , will have
Laplacian statistics with zero mean and a small variance. Given �F ,
distribution of pixel values ¹ � F � �F � ® } � � is similar to the predic-
tion error distribution ¹ � ® } � � . It will have a peak at �F , and decreases
with increasing distance from �F . Moreover, given 	 
 � F � , limits F
to the range > 	 
 � F � ' 	 
 � F � � . � , and when normalized ¹ � F } � � in
this range gives the probability distribution of the corresponding
residuals, p ! > % ' . � .
A third context, c , groups each residual according to the shape of
the its probability distribution. This shape is mainly determined by
the position of its peak (see Fig. 2). If 	 
 � F � µ �F , the peak is atp � % and the distribution monotonically decreases. Likewise, if	 
 � F � � . � ) ¼ �F , the peak is at p � . � ) and the distribution
monotonically increases. Since the first is a mirror image of the
latter, it can be eliminated by re-mapping (flipping p ½ � � � . � ) �p � � � ) its values prior to coding. This information is encoded in the
sign of c , where magnitude of c is kept constant. In other cases,
when 	 
 � F � M �F M 	 
 � F � � . � ) , the peak is at p � �F � 	 
 � �F � .
Due to the symmetry of the Laplacian, distributions having peaks
at p Á and . � ) � p Á are mirror images and same reduction may
be applied (assign Ã c � ).
3.1.3. Conditional Entropy Coding

At the final step, residual values are entropy coded using estimated
probabilities conditioned on different contexts. In order to improve
efficiency, we use a context-dependent adaptive arithmetic coder.
For each coding context � � ' c � , conditional probabilities of resid-
uals are estimated from the previously encoded(decoded) samples.

4. EXPERIMENTAL RESULTS

The proposed algorithm was tested on the uncompressed A ) < ÄA ) < gray-scale images seen in Fig. 3. Table. 1 and Fig. 4 show
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Fig. 2. PMFs of p for contexts c � # Ã ) ' Ã < 2 ( . � ¥
).

the available lossless data embedding capacity (in Bytes (x8 bits))
obtained for various embedding strengths (levels . ).

Fig. 3. Test set: 512x512 gray-scale images

Level(L) 2 3 4 5 6
PSNR(db) 51.1 46.9 44.2 42.1 40.5
F-16 2223 4823 7685 10205 13479
Mandrill 83 248 459 753 1111
Boat 632 1703 3055 4578 6161
Barbara 561 1507 2689 4073 5525
Gold 310 882 1575 2448 3434
Lena 601 1543 2848 4286 5890

Level(L) 8 10 12 14 16
PSNR(db) 38.0 36.0 34.4 33.0 31.9
F-16 17877 22675 26860 30742 34083
Mandrill 1897 2796 3821 4603 5751
Boat 9783 13122 16272 18611 22225
Barbara 8264 11140 13624 16158 17593
Gold 5627 7955 10403 12328 14553
Lena 9325 12680 15774 19137 22130

Table 1. Lossless Embedding Capacity (in Bytes) vs. embedding
levels(L) and average PSNR(dB) at full capacity

In Fig. 4, we see that the capacity of the proposed method depends
largely on the characteristics of the host image. Images with large
smooth regions, e.g. F-16, accommodate higher capacities than
images with irregular textures, e.g. Mandrill. In smooth regions,
the predictor is more accurate and therefore conditional residual
distributions are steeper. These distributions result in shorter code-
lengths, and thus higher embedding capacities.
The capacity of the scheme increases roughly linearly with number
of levels (or exponentially with number of bit-planes). This is due
to stronger correlation among more significant levels (bit-planes)
of the image. The rate of the increase, however, is not constant
either among images or throughout the levels.
Note that the embedding capacities illustrated in Fig. 4 are achieved
because the conditional entropy coding scheme adopted here suc-
cessfully exploits the intra pixel correlation among the different
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Fig. 4. Capacity k 
 � � � � � � � vs Levels for all images

levels of the same pixel and the inter-pixel correlations among
neighbors. A direct compression approach that attempts to com-
press the residual signal alone without utilizing the rest of the im-
age performs significantly worse. For instance, the context-less
approach requires an embedding level . � ) A in order to achieve
capacities comparable to the presented scheme at . � < . The
higher embedding level implies significantly higher distortion in
the watermark bearing signal.

5. CONCLUSION

A novel lossless (reversible) data embedding (hiding) technique
is presented. The technique provides high embedding capacities,
allows complete recovery of the original host signal, and intro-
duces only a small distortion between the host and image bearing
the embedded data. The capacity of the scheme depends on the
statistics of the host image. For typical images, the scheme offers
adequate capacity to address most applications. In applications re-
quiring high capacities, the scheme can be modified to adjust the
embedding level to meet the capacity requirements, thus trading
off intermediate distortion for increased capacity. In such scenar-
ios, the generalized LSB embedding proposed in the current pa-
per is significantly advantaged over conventional LSB embedding
techniques because it offers finer granularity along the capacity
distortion curve.
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