
Characterization of Scanner SensitivityGaurav SharmaH. J. TrussellElectrical & Computer Engineering Dept.North Carolina State University, Raleigh, NC 27695-7911AbstractColor scanners are becoming quite popular as input de-vices for desktop publishing. In many applications it isdesirable to obtain calibrated color from them. In order toproperly calibrate the device for a variety of illuminants,it is necessary to estimate the spectral sensitivity of thescanner. This paper describes a set theoretic approachto this problem. This method is shown to have increasedaccuracy compared to present methods.1 IntroductionThe output of a color scanner is a three band image. Thevalue of each of the three bands at a pixel is given byti = Z 1�1 fi(�) �(�) r(�) l(�) d� + �i i = 1; 2; 3 (1)where f1(�), f2(�) and f3(�) are the transmittances of thethree color �lters, �(�) is the sensitivity of the detectorused in the measurements, l(�) is the illuminant spectrum,r(�) is the re
ectance spectrum of the pixel and �i is themeasurement noise. In practice, the spectra in the equa-tion above can be represented in terms of their samples,and the integral may be approximated by a summation. Ifsamples are available at N equi-spaced wavelengths (typ-ically spectra are sampled from 400 to 700 nm at 10 nmincrements so that N = 31), the scanning process can berepresented algebraically ast =MT Lr+� (2)whereM is anN�3 matrix which includes the e�ect of the�lters and the detector sensitivity, L is an N �N diagonalmatrix representing the spectrum of the illuminant, r isthe vector of re
ectance samples, t is a 3 � 1 vector oftristimulus values and �is the 3 � 1 noise vector. Forthe treatment in this paper it is convenient to write thisequation in the form t = ST w+� (3)where S = LM, w = r if the illuminant spectrum is notknown a priori and S = M, w = Lr if the illuminant isknown a priori.

In order to characterize the scanner completely, oneneeds to know S = [s1 s2 s3]. For initial calibration, theindividual quantities may be measured before assembly,and the scanner sensitivity computed from those. How-ever, such a calibration would deteriorate with time duethe aging of the components. Besides, this would repre-sent a signi�cant expense for these low cost devices and israrely done. A straightforward approach to in situ mea-surement of the scanner sensitivity is to scan a number ofsamples with known re
ectance spectra, frkgKk=1 (K � N)and solve the least squares problemSopt = arg minS KXk=1 k tk � STwk k2 (4)where the minimization is performed over all possibleN�3matrices, and wk is computed from rk as indicated earlier.The least squares approach su�ers from a serious prac-tical problem in that the spectra of natural objects donot have su�cient dimensionality to yield a good esti-mate of S. Typically, the matrix of re
ectance spectraR = [r1 r2 : : : rK ] is highly ill-conditioned and has onlyseven to eight signi�cant singular values [11]. As a result,the matrixW = [w1w2 : : :wK ] is also ill-conditioned andthe least squares solution to Eqn. (4) is highly sensitive tonoise and yields poor estimates of S at noise levels typicalin desktop scanners.2 Principal Eigenvector (PE)MethodOne way of reducing the sensitivity of the pseudoinversesolution to noise is to use only the singular vectors corre-sponding to the signi�cant singular values in the solution.Consider the singular value decomposition of W [5]W = U � V t (5)U tU = U U t = IN�N (6)V tV = V V t = IK�K (7)� = [�N�N 0N�K�N ] (8)where 0N�K�N is an N �K �N matrix of all zeros and� is the diagonal matrix of the singular values f�igNi=1� = diag (�1; �2; : : : �N ) (9)1



�1 � �2 � : : : � �N � 0 (10)In terms of these vectors the least squares solution can bewritten as ŝj = PXi=1 (vTi tj)�i ui j = 1 : : : 3 (11)where P (� N) is the rank ofW, i.e., the largest value of isuch that �i > 0; fuigNi=1 and fvigNi=1 are the columns ofU and V respectively (the left and right singular vectorsof W) and tj = [tj1 ; tj2 ; : : : tjK ]T is the vector of the Kmeasurements made using the jth �lter.If the noise is assumed to be uncorrelated and signalindependent, the mean squared estimation error can bewritten asE �k sj � ŝj k2	 = NXi=P+1 E �(uTi sj)2	 + PXi=1 �2��2i (12)where E denotes the expectation operator, and �2� is thenoise variance.It is clear from this equation that the mean squared es-timation error is large if any of the singular values f�igPi=1is small. From the expression one can also see that themean squared estimation error is reduced if the singularvectors for which �i is small are not included in the solu-tion. Thus if the singular values beyond �P0 are insigni�-cant the estimate of the sensitivity becomesŝj = P0Xi=1 (vTi tj)�i ui j = 1; 2; 3 (13)This solution, referred to as the `Principal Eigenvector(PE) solution', is far less sensitive to noise than the least-squares solution. However, this method still su�ers fromseveral limitations. The physical situation a�ords consid-erable a priori knowledge, and the method fails to takethis into account. For instance, except for the illuminant(which may be a 
uorescent or gas discharge lamp withsharp peaks in its spectrum) the scanner sensitivity is afairly smooth function of wavelength. Hence if the illumi-nant is known a priori the functions fsjg3j=1 to be esti-mated are smooth functions. However, if the illuminanthas sharp peaks in its spectrum the principal eigenvectorsof W = L R will also have sharp peaks and will there-fore yield estimates of fsjg3j=1 that have sharp spectralpeaks. Other a priori information such as non-negativityand boundedness is also not incorporated in the estimationprocess discussed so far.3 The Method of Projections ontoConvex Sets (POCS)The problem of estimating the scanner sensitivity can al-ternately be formulated using set theory. Based on each

constraint that the scanner sensitivity must satisfy, a con-straint set may be de�ned in which the true value of thesensitivity must lie. Any element in the intersection of theconstraint sets is called a feasible solution and may be usedas an estimate of the sensitivity. Based on the physicalnature of the problem, it can be said that the sensitiv-ity function sj (for each j) probably lies in the followingconstraint sets:1. The set of non-negative vectorsAn = fy 2 RN jyi � 0; 81 � i � Ng (14)2. The noise variance setA� = fy 2 RN j k tj �W T y k2� �g (15)where usually the value of � is set to N �2�3. The noise outlier setsAio = fy 2 RN j jtji �WTi y j � �g i = 1; 2; : : : K(16)where � = 3 �� is used for Gaussian noise.Additionally, if the illuminant is known a priori, thecombined e�ect of the passive �lter and detector responsesis to be determined. The estimate should therefore lie inthe set of passive spectral responsesAp = fy 2 RN jyi � 1; 81 � i � Ng (17)In either of the cases when the illuminant is known apriori or when it is known to be smooth the sensitivitiesfsjg3j=1 are known to be smooth functions of wavelength.This can be incorporated in the estimation process by plac-ing a bound on the second order di�erence of the compo-nents of sj (for each j). Let h = (1;�2; 1)T represent theLaplacian �lter impulse response. Then the �ltered outputcan be represented as [10]f j =H sj (18)where H represents the convolution operator for convolu-tion kernel h. The set of smooth spectra can then bede�ned in terms of an upper bound on the energy in the�ltered outputAs = fy 2 RN j k H y k2� �g (19)where � > 0 is suitably chosen so as to impose the desireddegree of smoothness.The sets de�ned here are all closed, convex sets.Hence, a point in the intersection can be found by themethod of successive projections, i.e., starting from any ar-bitrary point in RN a point in the intersection of these setscan be determined by successively projecting onto each ofthem. This is called the method of Projections Onto Con-vex Sets (POCS). Since the sets are closed and convex,2
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Figure 1: Spectrum of Illuminant used in Simulationsthe iterative process of successive projections is guaran-teed to converge to a point in the intersection providedthe intersection is non-empty [6, 7]. If the sets have beende�ned properly and the model is accurate, the fact thatthe measurements arise from a physical experiment impliesthat to a high degree of probability the intersection of theconstraint sets is non-empty and hence the algorithm willconverge.POCS is a powerful estimation technique that com-bines a priori information with the measurements to ob-tain the estimates. Since estimates obtained using POCSconform to all the known constraints that the true vectorobeys it is expected that the estimates will be better thanthose obtained by other methods. It may also be notedthat if the intersection of the constraint sets is non-emptyit will rarely be a singleton and hence the POCS estimateis non-unique. In particular, the POCS estimate can de-pend considerably on the initial point chosen to start theiterations.4 Experimental ResultsFor illustrating the performance of the estimation tech-niques developed here simulations were conducted for acalibration problem. A set of red, green and blue �ltertransmittances were chosen from the `Wratten' �lter set.In particular, the WR-25 red, WR-40 green and WR-39blue �lters were chosen for comparing the estimation meth-ods. The spectrum of a lamp used in an existing desktopscanner was used as the illuminant. The illuminant spec-trum is shown in Fig. 1To minimize the dimensionality problem a specialdata set was chosen from a collection of actual measured

spectra. The set was chosen to maximize the smallest sin-gular value of R . A set of simulated noisy measurementswere made using the model of Eqn. (2). A Gaussian ran-dom number generator was used to generate noise sam-ples �i. The value of the noise variance �2� was calculatedassuming a Signal-to-Noise Ratio (SNR) of 40 dB in con-junction with the de�nitionSNR (dB) = 10 log10  k R T Lsj k2N �2� ! (20)For POCS it was assumed that the �lter function un-der consideration is known to be red, green or blue. Ac-cordingly, the initial estimates were taken to be nearly rect-angular functions with transmittance windows positionedapproximately in the red, green or blue region. The detec-tor response was assumed to be uniform.For the dataset re
ectance vectors, the singular valuesof the re
ectance matrix drop sharply after the �rst fewsingular values and values beyond the 8th are negligiblysmall as compared to the �rst singular value1. Hence, inthe principal eigenvector method P 0 = 8 was used.In the simulations conducted, the illuminant spectrumwas assumed to be a part of the a priori knowledge so thatthe sensitivity matrix S was the same as the matrix M of�lter transmittances. For this case both the smoothnessand passivity constraints can be imposed.The estimates obtained for the sensitivity functionsof the three color bands are shown in Figure 2 for thePE method and in Figure 3 for POCS. The parts (a), (b)and (c) of each of these �gures show the results for thered, green and blue �lters respectively. It is interesting tonote the di�erences between the PE and POCS estimates.Since the illuminant has sharp peaks in its spectrum theleft singular vectors ofW(= L R ) are not smooth. There-fore, the estimates of fsjg3j=1 obtained by the PE method(see Eqn. (13) ) also exhibit sharp peaks. However, sincePOCS imposes an explicit smoothness constraint in thiscase the POCS estimates are smooth. Since the POCSestimates also meet the other known constraints on thesensitivity, they are much better than the PE estimates.The PE method provides no natural way for incorporat-ing the fact that the sensitivity functions are smooth intothe estimation process and therefore yields poor estimates.Using a smooth basis set and attempting to estimate the�lter sensitivities in the span of the smooth set also doesnot yield good results. It can also be seen that the PEestimates fail to meet other physical criteria required oftransmittances as they becomes negative in certain regionof the spectrum.In order to quantify the accuracy of the estimates,mean squared tristimulus errors between the actual model1The nature of the results does not change if any integer between6 and 10 is used instead of 83
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(c)Figure 2: PE Estimate (a) Red (b) Green (c) Blue
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(c)Figure 3: POCS Estimate (a) Red (b) Green (c) Blue4



Table 1: Mean Squared Error for the Tristimulus ValuesObtained from the PE and POCS estimatesMean Squared Error (dB)Estimate Red Green BluePE -33.31 -31.25 -18.37POCS -37.24 -36.78 -37.26tristimuli and the tristimuli resulting from the estimatedsensitivity functions were computed. For the computationa set of re
ectances corresponding to 12 Color and Inter-change standard color chips, 64 Munsell chips, 120 Dupontpaint chips and 170 natural objects were used in the modelof Eqn. (2) with the noise term set to zero. Note thisis a di�erent set from the set of re
ectance vectors usedfor determining the �lter transmittances. `Measurements'were generated (using the model) with the actual sensi-tivity, and with the estimated sensitivity. Mean squarederror between these values was obtained by averaging overthe entire set of re
ectances for each of the three �ltersfor both the POCS estimate and the PE estimate. Theresulting mean squared errors are summarized in Table 1.From the tabulation it can be seen that the POCS estimateperforms signi�cantly better than the PE estimate.It may be noted here that the true strength of thePOCS estimation procedure lies in its exploitation of apriori knowledge. An experiment was conducted in anidentical manner to the one described above except theilluminant was not assumed to be a part of the a prioriknowledge and was included in the sensitivity. Since the il-luminant has sharp spectral peaks, the sensitivities for thethree channels also have sharp spectral peaks. However,since most real world re
ectances (including the datasetre
ectance vectors) are smooth functions of wavelength,the principal left singular vectors of W (= R) are alsosmooth and are not able to capture the sharp peaks inthe spectral response in the PE method. Since the �l-ter sensitivities were not smooth functions the smoothnessconstraint was not used in POCS. However, the statisticalinformation from the measurements leads to smooth esti-mates of the sensitivities for POCS also. The estimatesfor the PE and the POCS method are very similar, andboth are rather poor approximations to the actual sensi-tivities. It may be possible to use information about thelocation of the illuminant spectral peaks (which are usu-ally known) to produce a better estimate. This approachis under investigation.5 ConclusionsThis paper looked at the performance of two estimationmethods, viz., PE and POCS, applied to the problemof color scanner characterization. We compared the two

methods through simulations. From the results it is ap-parent that when greater a priori information is availablethe method of POCS outperforms the PE method, yieldingsigni�cantly better estimates of the scanner sensitivities.References[1] H. J. Trussell, \Application of Set Theoretic Modelsto Color Systems," COLOR research and application,Vol. 16, No. 1, February 1991,pp. 31-41.[2] H. J. Trussell and M.R. Civanlar, \The Feasible Solu-tion Set in Signal Restoration," IEEE Trans on ASSP,Vol. 32, No. 2, April 1984, pp. 201-212.[3] G. Wyszecki and W. S. Styles. Color Science: Con-cepts and Methods, Quantitative Data and Formulae,second edition, John Wiley & Sons, Inc., 1982.[4] J.E. Farell, G.Dispoto, J. Meyer, E.J. Chichilinskyand B. A. Wandell, \ Sources of Scanner CalibrationErrors," Color Conference,Williamsburg,North Car-olina, Oct. 1992.[5] G.W. Stewart, Introduction to Matrix Computations,Academic Press,New York, 1974.[6] L.M. Bregman, \The Method of Successive Projectionfor �nding a Common point of Convex Sets,"Dokl.Akad. Nauk. USSR, Vol. 162, No.3,1965,pp. 688-692.[7] L.G. Gubin, B.T. Polyak and E.T. Raik, \TheMethod of Projections for �nding the Common pointof Convex Sets,"USSR Comput. Math. and Phys., Vol.7,No. 6,1967,pp. 1-24.[8] H.L. Van Trees, Detection, Estimation and Modula-tion Theory, John Wiley & Sons,New York, 1968.[9] P.L. Combettes and H. J. Trussell, \ `The Method ofSuccessive Projection for �nding a Common point inMetric Spaces," Jnl. of Optim. Theory and Appl., Vol.67, No. 3, Dec. 1990,pp. 487-506.[10] Anil K. Jain, Fundamentals of Digital Image Process-ing, Prentice-Hall, Inc., 1989.[11] M. J. Vrhel and H. J. Trussell, \Color Correction Us-ing Principal Components," Color Research and Ap-plications, Vol. 17, No. 5, pp. 328-338, Oct. 1992.
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