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Abstract

Color scanners are becoming quite popular as input de-
vices for desktop publishing. In many applications it is
desirable to obtain calibrated color from them. In order to
properly calibrate the device for a variety of illuminants,
it is necessary to estimate the spectral sensitivity of the
scanner. This paper describes a set theoretic approach
to this problem. This method is shown to have increased
accuracy compared to present methods.

1 Introduction

The output of a color scanner is a three band image. The
value of each of the three bands at a pixel is given by
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where f1(\), f2(A\) and f3(A) are the transmittances of the
three color filters, () is the sensitivity of the detector
used in the measurements, () is the illuminant spectrum,
r(A) is the reflectance spectrum of the pixel and ¢; is the
measurement noise. In practice, the spectra in the equa-
tion above can be represented in terms of their samples,
and the integral may be approximated by a summation. If
samples are available at N equi-spaced wavelengths (typ-
ically spectra are sampled from 400 to 700 nm at 10 nm
increments so that N = 31), the scanning process can be
represented algebraically as

t=MT"Lr+f (2)

where M is an IV x 3 matrix which includes the effect of the
filters and the detector sensitivity, L is an N x N diagonal
matrix representing the spectrum of the illuminant, r is
the vector of reflectance samples, t is a 3 x 1 vector of
tristimulus values and fflis the 3 x 1 noise vector. For
the treatment in this paper it is convenient to write this
equation in the form

t=S"w+M (3)

where S = LM, w = r if the illuminant spectrum is not
known a priori and S = M, w = Lr if the illuminant is
known a priori.

In order to characterize the scanner completely, one
needs to know S = [s;sys3]. For initial calibration, the
individual quantities may be measured before assembly,
and the scanner sensitivity computed from those. How-
ever, such a calibration would deteriorate with time due
the aging of the components. Besides, this would repre-
sent a significant expense for these low cost devices and is
rarely done. A straightforward approach to in situ mea-
surement of the scanner sensitivity is to scan a number of
samples with known reflectance spectra, {r;}%_, (K > N)
and solve the least squares problem

K
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where the minimization is performed over all possible NV x 3
matrices, and wy, is computed from ry as indicated earlier.

The least squares approach suffers from a serious prac-
tical problem in that the spectra of natural objects do
not have sufficient dimensionality to yield a good esti-
mate of S. Typically, the matrix of reflectance spectra
R = [riry...rx] is highly ill-conditioned and has only
seven to eight significant singular values [11]. As a result,
the matrix W = [w; wy ... wg] is also ill-conditioned and
the least squares solution to Eqn. (4) is highly sensitive to
noise and yields poor estimates of S at noise levels typical
in desktop scanners.

2 Principal Eigenvector (PE)

Method

One way of reducing the sensitivity of the pseudoinverse
solution to noise is to use only the singular vectors corre-
sponding to the significant singular values in the solution.
Cousider the singular value decomposition of W [5]

W = UAV! (5)
U'U = UU'=Iyxn (6)
VIV = VV!i=Ig.xk (7)

A = [Enxv  Onxr-n] (8)

where Oy xx—n 1s an N x K — N matrix of all zeros and
¥ is the diagonal matrix of the singular values {o;}Y

¥ = diag (o1, 02, ... ON) 9)
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In terms of these vectors the least squares solution can be
written as

j=1...3 (11)
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where P (< N) is the rank of W i.e., the largest value of i
such that o; > 0; {u;}}¥, and {v;}}¥, are the columns of
Uand V respectively (the left and right singular vectors
of W) and t; = [tj,,tj,,..-tjx]’ is the vector of the K
measurements made using the j* filter.

If the noise is assumed to be uncorrelated and signal
independent, the mean squared estimation error can be
written as
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where E denotes the expectation operator, and o? is the
noise variance.

It is clear from this equation that the mean squared es-
timation error is large if any of the singular values {o;}f
is small. From the expression one can also see that the
mean squared estimation error is reduced if the singular
vectors for which o; is small are not included in the solu-
tion. Thus if the singular values beyond o p0 are insignifi-
cant the estimate of the sensitivity becomes
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This solution, referred to as the ‘Principal Eigenvector
(PE) solution’, is far less sensitive to noise than the least-
squares solution. However, this method still suffers from
several limitations. The physical situation affords consid-
erable a priori knowledge, and the method fails to take
this into account. For instance, except for the illuminant
(which may be a fluorescent or gas discharge lamp with
sharp peaks in its spectrum) the scanner sensitivity is a
fairly smooth function of wavelength. Hence if the illumi-
nant is known a priori the functions {s;}?_, to be esti-
mated are smooth functions. However, if the illuminant
has sharp peaks in its spectrum the principal eigenvectors
of W = L R will also have sharp peaks and will there-
fore yield estimates of {sj}§:1 that have sharp spectral
peaks. Other a priori information such as non-negativity
and boundedness is also not incorporated in the estimation
process discussed so far.

3 The Method of Projections onto
Convex Sets (POCS)

The problem of estimating the scanner sensitivity can al-
ternately be formulated using set theory. Based on each

constraint that the scanner sensitivity must satisfy, a con-
straint set may be defined in which the true value of the
sensitivity must lie. Any element in the intersection of the
constraint sets is called a feasible solution and may be used
as an estimate of the sensitivity. Based on the physical
nature of the problem, it can be said that the sensitiv-
ity function s; (for each j) probably lies in the following
constraint sets:

1. The set of non-negative vectors

Ap={y € R|y: 20, VI<i<N} (14)
2. The noise variance set
Ac={y e RY|lIt; - W'y |’<wv} (15)
where usually the value of v is set to N o2
3. The noise outlier sets
Al ={y e RN |t;, -WIy|<g} i= L2 K
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where £ = 3 o is used for Gaussian noise.

Additionally, if the illuminant is known a priori, the
combined effect of the passive filter and detector responses
is to be determined. The estimate should therefore lie in
the set of passive spectral responses

Ay={yeR"y; <1, VI<i<N} (17)

In either of the cases when the illuminant is known a
priori or when it is known to be smooth the sensitivities
{sj}3-, are known to be smooth functions of wavelength.
This can be incorporated in the estimation process by plac-
ing a bound on the second order difference of the compo-
nents of s; (for each j). Let h = (1,—2,1)7 represent the
Laplacian filter impulse response. Then the filtered output
can be represented as [10]

fj =H Sj (18)
where H represents the convolution operator for convolu-
tion kernel h. The set of smooth spectra can then be
defined in terms of an upper bound on the energy in the
filtered output

As={y eRY[| Hy |’<u} (19)

where p > 0 is suitably chosen so as to impose the desired
degree of smoothness.

The sets defined here are all closed, convex sets.
Hence, a point in the intersection can be found by the
method of successive projections, i.e., starting from any ar-
bitrary point in RV a point in the intersection of these sets
can be determined by successively projecting onto each of
them. This is called the method of Projections Onto Con-
vex Sets (POCS). Since the sets are closed and convex,
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Figure 1: Spectrum of Illuminant used in Simulations

the iterative process of successive projections is guaran-
teed to converge to a point in the intersection provided
the intersection is non-empty [6, 7]. If the sets have been
defined properly and the model is accurate, the fact that
the measurements arise from a physical experiment implies
that to a high degree of probability the intersection of the
constraint sets is non-empty and hence the algorithm will
converge.

POCS is a powerful estimation technique that com-
bines a priori information with the measurements to ob-
tain the estimates. Since estimates obtained using POCS
conform to all the known constraints that the true vector
obeys it is expected that the estimates will be better than
those obtained by other methods. It may also be noted
that if the intersection of the constraint sets is non-empty
it will rarely be a singleton and hence the POCS estimate
is non-unique. In particular, the POCS estimate can de-
pend considerably on the initial point chosen to start the
iterations.

4 Experimental Results

For illustrating the performance of the estimation tech-
niques developed here simulations were conducted for a
calibration problem. A set of red, green and blue filter
transmittances were chosen from the ‘Wratten’ filter set.
In particular, the WR-25 red, WR-40 green and WR-39
blue filters were chosen for comparing the estimation meth-
ods. The spectrum of a lamp used in an existing desktop
scanner was used as the illuminant. The illuminant spec-
trum is shown in Fig. 1

To minimize the dimensionality problem a special
data set was chosen from a collection of actual measured

spectra. The set was chosen to maximize the smallest sin-
gular value of R. A set of simulated noisy measurements
were made using the model of Eqn. (2). A Gaussian ran-
dom number generator was used to generate noise sam-
ples ¢;. The value of the noise variance o? was calculated
assuming a Signal-to-Noise Ratio (SNR) of 40 dB in con-

junction with the definition

T Ls. 2
SNR (dB) = 10l0gy [ IR LI (20)
N o2

For POCS it was assumed that the filter function un-
der consideration is known to be red, green or blue. Ac-
cordingly, the initial estimates were taken to be nearly rect-
angular functions with transmittance windows positioned
approximately in the red, green or blue region. The detec-
tor response was assumed to be uniform.

For the dataset reflectance vectors, the singular values
of the reflectance matrix drop sharply after the first few
singular values and values beyond the 8" are negligibly
small as compared to the first singular value!. Hence, in
the principal eigenvector method P’ = 8 was used.

In the simulations conducted, the illuminant spectrum
was assumed to be a part of the a priori knowledge so that
the sensitivity matrix S was the same as the matrix M of
filter transmittances. For this case both the smoothness
and passivity constraints can be imposed.

The estimates obtained for the sensitivity functions
of the three color bands are shown in Figure 2 for the
PE method and in Figure 3 for POCS. The parts (a), (b)
and (c) of each of these figures show the results for the
red, green and blue filters respectively. It is interesting to
note the differences between the PE and POCS estimates.
Since the illuminant has sharp peaks in its spectrum the
left singular vectors of W(= L R) are not smooth. There-
fore, the estimates of {s;}?_, obtained by the PE method
(see Eqn. (13) ) also exhibit sharp peaks. However, since
POCS imposes an explicit smoothness constraint in this
case the POCS estimates are smooth. Since the POCS
estimates also meet the other known constraints on the
sensitivity, they are much better than the PE estimates.
The PE method provides no natural way for incorporat-
ing the fact that the sensitivity functions are smooth into
the estimation process and therefore yields poor estimates.
Using a smooth basis set and attempting to estimate the
filter sensitivities in the span of the smooth set also does
not yield good results. It can also be seen that the PE
estimates fail to meet other physical criteria required of
transmittances as they becomes negative in certain region
of the spectrum.

In order to quantify the accuracy of the estimates,
mean squared tristimulus errors between the actual model

IThe nature of the results does not change if any integer between
6 and 10 is used instead of 8
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Figure 2: PE Estimate (a) Red (b) Green (c) Blue
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Table 1: Mean Squared Error for the Tristimulus Values
Obtained from the PE and POCS estimates

Mean Squared Error (dB)
Estimate | Red | Green Blue
PE -33.31 | -31.25 -18.37
POCS -37.24 | -36.78 | -37.26

tristimuli and the tristimuli resulting from the estimated
sensitivity functions were computed. For the computation
a set of reflectances corresponding to 12 Color and Inter-
change standard color chips, 64 Munsell chips, 120 Dupont
paint chips and 170 natural objects were used in the model
of Equ. (2) with the noise term set to zero. Note this
is a different set from the set of reflectance vectors used
for determining the filter transmittances. ‘Measurements’
were generated (using the model) with the actual sensi-
tivity, and with the estimated sensitivity. Mean squared
error between these values was obtained by averaging over
the entire set of reflectances for each of the three filters
for both the POCS estimate and the PE estimate. The
resulting mean squared errors are summarized in Table 1.
From the tabulation it can be seen that the POCS estimate
performs significantly better than the PE estimate.

It may be noted here that the true strength of the
POCS estimation procedure lies in its exploitation of a
priori knowledge. An experiment was conducted in an
identical manner to the one described above except the
illuminant was not assumed to be a part of the a priori
knowledge and was included in the sensitivity. Since the il-
luminant has sharp spectral peaks, the sensitivities for the
three channels also have sharp spectral peaks. However,
since most real world reflectances (including the dataset
reflectance vectors) are smooth functions of wavelength,
the principal left singular vectors of W (= R) are also
smooth and are not able to capture the sharp peaks in
the spectral response in the PE method. Since the fil-
ter sensitivities were not smooth functions the smoothness
constraint was not used in POCS. However, the statistical
information from the measurements leads to smooth esti-
mates of the sensitivities for POCS also. The estimates
for the PE and the POCS method are very similar, and
both are rather poor approximations to the actual sensi-
tivities. It may be possible to use information about the
location of the illuminant spectral peaks (which are usu-
ally known) to produce a better estimate. This approach
is under investigation.

5 Conclusions

This paper looked at the performance of two estimation
methods, viz., PE and POCS, applied to the problem
of color scanner characterization. We compared the two

methods through simulations. From the results it is ap-
parent that when greater a priori information is available
the method of POCS outperforms the PE method, yielding
significantly better estimates of the scanner sensitivities.
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