
Universal Image Steganalysis Using Rate-Distortion Curves

Mehmet U. Celika, Gaurav Sharmaa, A. Murat Tekalpa,b

aUniversity of Rochester, Rochester, NY, USA
bKoc University, Istanbul, Turkey

ABSTRACT

The goal of image steganography is to embed information in a cover image using modifications that are unde-
tectable. In actual practice, however, most techniques produce stego images that are perceptually identical to
the cover images but exhibit statistical irregularities that distinguish them from cover images. Statistical ste-
ganalysis exploits these irregularities in order to provide the best discrimination between cover and stego images.
In general, the process utilizes a heuristically chosen feature set along with a classifier trained on suitable data
sets. In this paper, we propose an alternative feature set for steganalysis based on rate-distortion characteristics
of images. Our features are based on two key observations: i) data hiding methods typically increase the image
entropy in order to encode hidden messages; ii) data hiding methods are limited to the set of small, impercepti-
ble distortions. The proposed feature set is used as the basis of a steganalysis algorithm and its performance is
investigated using different data hiding methods.
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1. INTRODUCTION

In many applications, concealing the message content using cryptographic techniques guarantees the security
and secrecy of the communications. However, it is sometimes necessary to conceal the very existence of the
communications—often to guard against traffic analysis. Steganography refers to the techniques that establish a
covert (subliminal) communications channel within regular, innocuous message traffic.1–3

The basic principles of steganography are best demonstrated with the Prisoners’ Problem by Simmons.4 In
this scenario, Alice and Bob would like to plan a break out from the prison. However, all their communications are
monitored by Willy—the warden. Therefore, they can neither discuss their plans openly, nor can they establish
an encrypted channel. In the latter case, Willy will suspect the worst and block their communication. So, the only
avenue left to Alice and Bob is to establish a subliminal channel where they conceal their escape correspondence
among innocuous looking messages. Note that the requirements for steganography are fundamentally different
than cryptography,5, 6 where it is important to prevent the warden from deciphering messages. However, Alice
and Bob may want to encrypt their messages before sending them through the cover channel as a secondary line
of defense—in case their steganographic technique fails and the warden gets suspicious.

Stated version of the Prisoners’ Problem, where Willy can only monitor the messages, is known as the passive

warden scenario. In some cases, the warden is allowed to alter the messages as he sees fit, but often under some
maximum distortion constraints. The latter scenario is known as the active warden scenario and often requires
a different set of solutions. In this paper, we will focus on the passive warden scenario. As Alice and Bob try
to establish a covert communications channel, the task for Willy is to prevent such communications. He has to
inspect contents of each message and decide if it contains hidden secondary messages. The task of the passive
warden is referred as steganalysis.

As digital communications and digital audio-visual signals came into widespread use, the research on steganog-
raphy and steganalysis is focused on methods that use audio-visual signals as the cover medium. High data rates
required by these signals make them especially attractive as a cover medium. For instance, significant amounts
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of data can be hidden in digital images without causing any visible artifacts. A good steganography method,
however, should also be undetectable by other means, such as steganalysis algorithms.

In this paper, we look at the image steganalysis problem and develop new algorithms based on rate-distortion
concepts. In particular, we observe the effect of different steganographic methods on image rate-distortion
characteristics and construct detectors to separate innocuous cover images from message bearing stego images.
A brief overview of existing steganography and steganalysis methods is presented in Sec. 2. The proposed
detection methods are described in Sec. 3, while performance evaluation of said methods is presented in Sec. 4.
Finally, we conclude with a discussion on our future work.

2. BACKGROUND

2.1. Steganography using compressed vs. uncompressed images

Lossy compression is an effective means of reducing the channel capacity requirements for image transmission
while simultaneously preserving the perceptual quality of the images. A compact representation is achieved
by discarding the perceptually redundant portions of the image data. As steganographic methods are often
limited to imperceptible changes of the image data, compressed images provide an unfavorable medium for
image steganography with significantly lower stego-channel capacities. As the compression schemes approach
to the ideal case where all perceptually redundant data is eliminated, the stego-channel capacity approaches to
zero∗. As a result, uncompressed images pose a more challenging steganalysis problem and we focus on related
methods in this paper.

2.2. Image steganography methods

A basic and well-known steganography technique for hiding messages into uncompressed digital images is the least
significant bit (LSB) embedding method. In LSB embedding, image pixels are traversed in a pre-determined—
often pseudo-random—order and LSB value of each pixel is modified to reflect the corresponding bit in the
message payload. LSB embedding is preferred in many cases for its simplicity and high embedding rate (up-to
1 bpp when all pixels are used). The process amounts to introducing a small amplitude noise signal and the
resulting stego image is visually identical to the cover image (PSNR is above 48 dB for 8 bpp images). However,
highly structured nature of the noise signal can be effectively used for steganalysis at high payloads.

Stochastic embedding7 is proposed by Fridrich et al. to remedy the problems of LSB embedding. The
embedding artifacts mimic statistics of noise processes naturally encountered in image acquisition devices. In
this method, two pseudo-noise sequences with some specified statistics are generated. At each pixel position, one
or the other noise sample is added to the pixel value based on the payload bit (and the position of the resulting
value in a look-up table). If noise samples are equal, the process does not encode any payload bits, but the noise
sample is added regardless. Stochastic embedding achieves high embedding rates (typically above 0.5 bpp) with
relatively small distortions.

2.3. Image steganalysis methods

Although stego images are perceptually identical to cover images, they often exhibit statistical irregularities
that distinguish them from cover images. Statistical steganalysis methods exploit these irregularities in order to
provide the best discrimination power between stego and cover images.

Steganalysis algorithms can be classified as universal or model-based algorithms depending on the steganog-
raphy methods they target. Universal steganalysis methods try to detect a number of steganographic methods—
including yet unknown ones— in a common framework. While they may be preferred for their versatility, their
performance is often inferior to model-based algorithms, which specifically target a single steganographic method.

Westfield and Pfitzmann’s histogram analysis8 and Fridrich’s RS-steganalysis9 algorithms are well-known
model-based methods that target LSB embedding. Westfield and Pfitzmann’s technique is based on analyzing

∗Nonetheless, as Anderson and Petitcolas have observed,1 it is possible to achieve 100% stego-channel capacity in
the existence of ideal compression. In that case, any stego-message will decompress into a regular stego image making it
impossible to distinguish it from other cover images.



the pair of values (PoVs) in the image histogram. The presence of an embedded message is detected with a Chi-
Square test8 that evaluates the (dis)similarity between consecutive histogram bins. The method is most effective
for images with high payloads, i.e. when most or all pixels are used for LSB embedding. In RS-steganalysis,9

Fridrich et al. classify each pixel into Regular and Singular groups and perform detection based on the relative
number of such groups. A pixel is classified into a Regular (Singular) group if its clique potential is more (less)
than its LSB flipped version. Computation of the potential over different cliques takes the spatial distribution of
pixels into account and imposes a smoothness constraint. As a result, the algorithm is especially accurate when
images conform with the smoothness assumptions.

On the other hand, Farid10 and Avcibas et al.11 proposed universal steganalysis methods that are capable of
detecting various steganography algorithms. These methods utilize a heuristically chosen image feature set along
with a classifier trained on suitable data sets and a given steganographic method. Farid utilizes the first and
higher order statistics of a multi-level wavelet transform. In particular, various moments of wavelet coefficients
are computed. Resulting feature vector is used to train a linear classifier based on Fisher discriminant. Avcibas
et al. have proposed a similar approach that utilizes image quality measures. In particular, various image quality
metrics are used to compute the distance between the image under test and its low-pass filtered versions. A
classifier is built using linear regression and can successfully detect LSB embedding and some digital watermarking
methods.

3. PROPOSED METHOD

We propose novel steganalysis algorithms based on the effect of data hiding process on image rate-distortion
characteristics. In particular, we make the following assumptions/observations about the data embedding process:

1. Data embedding typically increases the image entropy: In order to encode the hidden messages, steganog-
raphy methods modify parts of the image data. These modifications typically do not conform with the
existing image statistics and therefore result in a net increase in the image entropy.

2. Data embedding methods are limited to the set of small, imperceptible distortions: Typical steganography
methods make only small modifications to ensure perceptual transparency. Perceptually significant parts
of the image remain intact.

In the next sections, we built on these observations to develop steganalysis tools targeted at stochastic and LSB
embedding methods.

3.1. Detection of Stochastic Embedding

3.1.1. Overview and Rate-Distortion Features

Stochastic embedding does not result in artifacts with known structures, therefore we develop a generalized
method to detect the changes in the rate-distortion characteristics. Since real rate-distortion points for signals
with unknown probability distributions—such as natural images—cannot be reliably calculated, we use the data
rates achieved by lossy compression schemes.

The flow chart of the detection process is seen in Fig. 1. Detector structure is similar to Farid’s and Avcibas’s
detectors. An image feature extraction phase is followed by a classifier that is trained on relevant data sets. As
image features, we use the distortion values at different rate points. Mean square error (MSE), mean absolute
error (MAE) and weighted mean square error (wMSE) are used as distortion metrics. In order to reduce the
within class variability of cover image rate-distortion characteristics, the rate points are defined relative to the
lossless rate. That is, instead of compressing images at fixed rates, we compress them at a rate that is a fixed
percentage of the lossless rate. The advantage of this approach is empirically verified. We use a Bayesian classifier
preceded by a KL transform, which reduces the dimensionality of the feature vector. A detailed explanation of
the classifier and the KL transform is provided in the next section.



Figure 1. Flow chart describing detection of the stochastic embedding.

3.1.2. Classifier

Let us begin by denoting different classes by wi, where each wi corresponds to a different stego method. We also
assume 1 ≤ i ≤M that M such classes exist. We denote the L dimensional feature vector by x.

p(x|wi) =
1
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where bfµi = E[x] is the mean value of the wi class and Σi is the covariance matrix defined as

Σi = E[(x− µi)(x− µi)
T ] (2)

and |Σi| denotes the determinant of Σi and E[·] denotes the expected value.

We also define the discriminant function in the logarithmic form as

gi(x) = ln(p(x|wi)P (wi)) (3)
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Assuming equiprobable classes and eliminating constant terms, Eqn. 3 can be reduced to

gi(x) = (x− µi)
TΣi

−1(x− µi) + ln(|Σi|) (5)

µi and Σi are estimated from the training samples for each class during the training phase.

When the classifier has to operate on a limited number of training samples with relatively small number of
classes, the high dimensionality of the problem adversely affects the classifier performance. In particular, the
covariance matrix becomes nearly singular and classification results become sensitive to acquisition noise. A
method of reducing the dimensionality of the classification problem while keeping the discriminatory power of
the feature vector is to project the feature vector onto a proper subspace.

Let us define the within class and between class scatter matrices, Sw and Sb as,

Sw =
M
∑

i=1

PiE[(x− µi)(x− µi)
T ] (6)

Sb =

M
∑

i=1

Pi(µi − µ0)(µi − µ0)
T (7)

where µ0 is the global mean vector

µ0 =

M
∑

i=1

Piµi (8)



We further define the scattering matrix criterion J3 as

J3 = trace{S−1
w Sb} (9)

We can now define a linear projection from the L dimensional feature space to N dimensional sub-space.

ŷ = CTx (10)

The optimal projection matrix with respect to the scattering matrix criterion J3 is the eigenvectors cor-
responding to the largest eigenvalues of the system S−1

w Sb. As the individual scatter matrices Si, the within
class scatter matrix may also be ill conditioned. Therefore, in practice we use the pseudo-inverse of Sw in our
calculations.

3.2. Detection of LSB Embedding

As stated earlier, LSB embedding modifications are highly structured, and therefore result in statistical irregu-
larities that may be exploited for steganalysis. In order to benefit from this structure, we employ an alternative,
heuristic detection mechanism that is based on level-embedded (bit-plane scalable) compression.

Let us define the rate required for representing the 7 most significant bits of an image I as R7MSB(I).
Similarly, R7MSB(I + 1) denotes the rate required to represent 7 MSBs of the image after adding one to all
pixels. An increase in the DC bias should have an insignificant effect on the rate-distortion characteristics of a
natural image. As the statistics of a natural image is unrelated to its binary representation, we expect

R7MSB(I) ≈ R7MSB(I + 1). (11)

However, the LSB embedding process introduces an artificial relation between the image statistics and its binary
representation. In particular, Eqn. 11 does not necessarily hold for the stego image Is. In general,

R7MSB(Is) ≤ R7MSB(Is + 1). (12)

We define the difference between these two rates as

∆(I) = |R7MSB(I + 1)−R7MSB(I)|. (13)

∆(I) turns out to be a good discriminant for LSB steganalysis. However, this feature is susceptible to false
positives if a cover image has under/over exposed regions. We partially remedy this problem by an additional
normalization step. In particular, for a given image we randomize all the LSBs and obtain Ĩ. Note that Ĩ has
similar statistics to a stego image with a full payload. As a result,

Ψ(I) =
∆(I)

∆(Ĩ)
(14)

provides a rough estimate of the payload ratio. In our experiments, Ψ(I) provided the necessary discrimination
power. We provide details of our empirical findings in the next section.

4. EXPERIMENTAL RESULTS

4.1. Image Database

Successful evaluation of steganalysis algorithms largely depends on the selection of a proper image database.
The chosen database should be representative of the images that will be observed in the real world. Nonetheless,
the number of different image acquisition devices, common pre/post-processing operations, and the diversity of
image subjects make the formation of such a database a significant challenge. While it is immensely important,
undertaking such a challenge is beyond the scope of this paper. Therefore, we utilize an existing collection from
Kodak’s ftp site.12 This collection consists of 108 images in Kodak PhotoCD format and spans a large variety
of image subjects (see Fig. 2 for sample images). In fact, the collection even includes some digitally manipulated
images (see Fig. 2 top-right). We assume that these images have not been modified by a steganography software
and hence represent the set of cover images.

All images are converted from their original PhotoCD format to RGB TIFF images at the base resolution
of 768× 512 pixels. As the proposed methods operate on mono-chrome images, only the Green channel is used.
Furthermore, we crop the image to remove the black boundary regions (30 and 20 pixels).



Figure 2. A subset of images used for performance evaluation.



−0.015 −0.01 −0.005 0 0.005 0.01
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025
Scatter Matrix

Orig
41 dB
38 dB

Figure 3. Scatter matrix showing three classes. Axes correspond to feature values after projection into the two dimen-
sional eigen-space.

4.2. Detection of Stochastic Embedding

Stochastic embedding process can be modeled by noise addition, without loss of generality. Although, the
method allows for alternative noise statistics, we use a Gaussian noise in our experiments. We use two different
embedding strengths at σ2 = 3 and σ2 = 9, corresponding to PSNR of 41dB and 38dB, and embedding rates of
0.84bpp and 0.91bpp, respectively†.

Training and test sets are formed randomly and contain equal number of images. In addition to its original
form, each image is modified by the low and high payload stochastic embedding processes. For each image, mean
square error (MSE), mean absolute error (MAE) and weighted mean square error (wMSE) between the image
and its compressed versions are computed. Compression is performed with JPEG200013 at 95, 90, 85, 80, 70,
60, 50% of the lossless rates.

During training, feature vectors are processed to obtain an optimal projection onto a two dimensional feature
space. Then a Bayesian classifier is trained on the reduced features using three classes (namely no embedding,
low embedding, high embedding). The scatter plot for these features are seen in Fig. 3. In the test phase, the
projection matrix obtained in the training phase is used to reduce the feature vector dimensions. Afterwards,
classification is performed using the previously learned parameters. The resulting confusion matrix is seen in
Fig. 4.

In summary, 9 cover images out of 54 are mis-labeled as a stego-image, while 13 stego-images are mis-labeled
as a cover image. Corresponding false alarm and miss rates are 16.7% and 12%, respectively.

4.3. Detection of LSB Embedding

We consider six different embedding strengths for LSB steganography. We set the embedding rate to 0.1, 0.2,
0.4, 0.6, 0.8, and 1.0 bits per pixel (bpp). An embedding rate below one bits per pixel implies that only a subset
of pixels are used for embedding. For instance, at 0.2 bpp, we set 20% of total pixel LSBs to corresponding
payload bits, flipping an estimated 10% of the image LSBs. All images are embedded at each of these rates.

We use the Ψ(·) discriminant as defined earlier (rates are obtained with JPEG-LS14), and set the cover/stego
image decision threshold to 0.1. That is, the algorithm is set to detect images with more than 10% payload.

†The spread-spectrum embedding method used in active warden scenarios may also be modeled as Gaussian noise
addition. While the payload for spread-spectrum embedding is significantly less than the stochastic embedding, two
schemes are equivalent for steganalysis purposes.
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Figure 4. Confusion matrix showing three classes.

In Table. 1, we see that 27% of the cover images are labeled as stego-images, while the miss rate decreases
with increasing embedding rate. False positive rate can be traded off for the miss rate by changing the decision
threshold. The receiver operating characteristics (ROC) for the overall false alarm and miss rates—as the decision
threshold is varied—is seen in Fig. 5.

Table 1. LSB detection results.

Embedding Rate (bpp) 0 0.1 0.2 0.4 0.6 0.8 1.0

Miss/ False Alarm (%) 27 (FA) 35 15 3 0 0 0

4.4. Effect of pre-processing on detector performance

In Sec. 4.1, we stated the importance of using a representative database for performance evaluation, as steganal-
ysis may be easier for a certain set of images. In general, steganalysis algorithms are more accurate for less noisy
images. Equivalently, noisy images tend to generate more false positives. In order to demonstrate this depen-
dence, we applied a number of pre-processing operations to our images. In particular, after converting images
to RGB TIFF files, we compressed them with JPEG (QF = 75), converted to gray-scale (Matlab rgb2gray com-
mand), and resized them to 600× 400 pixels (Matlab imresize with bicubic interpolation and anti-alias filtering).
We tested the LSB steganalysis algorithm with the same threshold. As seen from Table. 2 and Fig. 6, the false
alarm and miss rates have been significantly reduced.

Table 2. LSB detection results with (last row) and without pre-processing.

Embedding Rate (bpp) 0 0.1 0.2 0.4 0.6 0.8 1.0

Miss/ False Alarm (%) 27 (FA) 35 15 3 0 0 0

Miss/ False Alarm (%) 3 (FA) 13 6 0 0 0 0
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Figure 5. Receiver operating characteristics curve.
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Figure 6. Receiver operating characteristics curve when cover images are pre-processed by JPEG compression, color to
gray conversion, and re-sampling with anti-alias filtering.



5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed new steganalysis techniques based on rate-distortion arguments. Our techniques
are based on the observation that the steganographic algorithms invariably disturb the underlying signal statistics
and therefore change the rate-distortion characteristics of the signals. We demonstrated the effectiveness of the
proposed approach against least significant bit (LSB) embedding and stochastic embedding algorithms with
varying degrees of success. Finally, we highlighted the importance of image database selection on the evaluation
of steganalysis algorithms. In our future work, we will continue to analyze the effect of different database
selections. In addition, we will investigate the use of non-linear classifiers—such as support vector machines—to
improve the performance of our detection algorithms.
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