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Abstract: The use of linear algebra and set theoretic esti-spectral (reflectance/transmittance/radiance) domain, this is
mation for problems in color science and imaging is re-usually not true of subtractive systems. Consequently, the
viewed. Through a product-space formalism, the powerfubexamples presented®it focused on additive systems, and
projections onto convex sets (POCS) algorithm is extended/hile some problems in subtractive systems were men-
to subtractive color systems satisfying convex constraints ifioned, computational methods for solving those problems
the density domain. Several convex sets are defined, whiGflere not addressed in detail.
are useful in color science and imaging, and projections Recent research has enlarged the class of problems for
onto these sets are presented. The usefulness of the ngyich robust set theoretic estimation schemes are available.
methods is demonstrated by applying them to three practim particular, the generalized product space formulation
cal problems: (1) model-based scanner calibration, (2) deproposed by Combettisallows general constraints to be
sign of color scanning filters that are color mixture curves, employed in a POCS framework, provided each constraint
and (3) colorant formulation® 2000 John Wiley & Sons, Inc. Col  an be made convex in its own Hilbert space. A number of
Res Appl, 25, 333-348, 2000 constraint sets arising in subtractive systems are convex in
the optical density (logarithmic) domain. However, appli-
INTRODUCTION cations typically require the use of these sets in conjunction
with other constraint sets that are convex in the spectral
Several researchers have used a vector-space framework f(%main, which is not possible in the conventional POCS

nti i 7
Ephe desirlptlon of ;:olor matli:hlﬁag@ and cotlor syTt_etn:ﬁﬁ algorithms that assume a single underlying Hilbert space. In
€ veclor space Tramework aflows one fo exploit the Vas[his article, a suitable Hilbert space structure is introduced,

body of mathematical results from linear algebra in the . . . . :
. . which yields convex representations for these subtractive
analysis and design of color system¥he power of the

. L systems’ constraint sets in the spectral domain. The product
vector space approach is further enhanced when it is com- . .

) ) . o . space formulation mentioned above then allows these sets to
bined with set theoretic estimation, which has proven

: : . : . rsbe combined effectively with other constraint sets that are
powerful technique for solving signhal and image processin

problems? The vector space and set theoretic approache onvex in the Spe,\?tral domgln under the normal H'I_bert
were combined and successfully applied to several propSPace structure ii®™. The utility of the new algorithms is
lems in color science and color systems by Trusaid demonstrat(_ad by applying them to.three pracpcal problems
later by other other researchéfs. that are of interest to the color science and imaging com-
One limitation of set-theoretic schemes is the lack ofMUNity: model-based scanner calibration, the design of
globally convergent estimation algorithms for general con-color s-canning.filters that are linear combinations pf color-
straint sets. The most powerful and useful algorithms arénatching-functions (CMFs), and colorant formulation.
variants of the method of successive projections onto con- Th? rest Of_ this artllcle is Organlz.ed as fqllows_ The
vex sets (POCS)t which requires constraint sets to be following section provides a very brief overview of the
closed and convex. While additive color systems naturally/€ctor space description of color matching and colorimetry.

yield constraint sets that are closed and convex in thd he description of color systems in the vector space nota-
tion is presented next. Set theoretic estimation and the
~omesaond oG <h Dicital Imading Technical Cent generalized product space formulation are then described
orresponaence to: Gaurav arma, Digital Imaging lechnical Centen, . . . . f
Xerox Corporation MS0128-27E, 800 Phillips Rd., Webster NY 14580 bneﬂy’ with partlcglar emphaS|s on F,)OCS' The, Con_veXIty
(e-mail: g.sharma@ieee.org) of several sets of interest in color science and imaging are

© 2000 John Wiley & Sons, Inc. then examined. Then an alterate Hilbert space structure is
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introduced over the space of (positive) color spectra, whictout this article. Thus, two spectfaeandg match in color if
yields convex representations for several constraint sets iand only if (iff)

subtractive systems. Specific applications that exploit this

Hilbert space (in the product space formulation) to solve S'f = S'g. (2)
problems in subtractive color are presented in the last sec- : .
tion. Finally, the appendix describes mathematical details Of\lternately, one can say that two spectra maich in color iff

projection operators that are omitted from the main text. their prqecﬂons on'Fo the_ HVSS are identical. _Smce the
HVSS is only a 3-dimensional subspace of thealimen-

sional spectral space, there are multiple spectra that match
VECTOR SPACE DESCRIPTION OF COLORIMETRY in color. These are known as metamers.
The differences between the spectral sensitivities of peo-

The color sensation produced by light incident on the hu- le with normal color vision are (relatively) smaf#izo[See

man eye depends on its power spectral distribution, i.e., thpo¢ 21, pp. 343]. Hence, the color-matching characteristics

distribution ofengrgy as af_unction of the wavelength. Inair ¢ - ior-normal observers can be captured through the def-
or vacuum, the visible region of the glectromagnetlc SPECinition of a standard HVSS. The HVSS may be defined by
trum corresponds to the wavelength interval from 400_70%sing the cone sensitivity matri, or more generally, any

nm. Physical dev!qes that resPO”d to I|g_ht energy maynonsingular transformation & of the formSQ, whereQ is
hoyvever, be sensitive over a different region. For compu, (possibly unknown) nonsingular’8 3 matrix. The cone
tational purposes, (;[r:Ie spe?tra may hbe reprtlasentﬁt_il-by responses themselves are difficult to measure/compute di-
vectors consisting oN samples over the wavelength inter- rectly, but nonsingular transformations of the above type,
val of Interest. Fo_r_most color spectra, a _sampllng rate of 19 nown as color-matching functions (CMFs), can be readily
nm prowd(_as sufficient accuracy, but a h_|gher sampll_ng "l etermined through color matching experiments. (see Refs.
or altgrnauve approaches may be required for apphcatmna 7 for a description of color-matching experiments that
II’]V0||(VII’;916 fluorescent lamps that have sharp spectrabses notation and terminology consistent with that used in
peaxs: this article). The CIE (Commission Internationale de

The fact that the human eye has three distinct COIOrI’Iéclairage)XYZCMFs form one such set of CMFs that is

sensing cones in the retina that respond in a linear fashion Qsed as a standard for colorimet&yIn this article, the

incident light* forms the basis of the vector space approach, ...« of CIE XYZ CMEs is denoted byA. For a given
to coIo_r matching. 'I_'he_ responses _O_f the cones to incident giant color spectruni, the 3-vectorA™f specifies the
light with spectral distribution specified by the-vectorf .\ ¢t in the CIEXYZ space and is referred to as the

can be expressed mathematically as (CIE XY2) tristimulus off. Two spectrad andg match in
¢ = STf, (1) color if and only if their tristimuli are equal, i.eA™f =
ATg. Also, the HVSS is identical to the column spacefof
where the superscrifdt denotes the transpose= [c,, C.,
c,] " is the vector of cone respons&is anN X 3 matrix
whosei'" columns; is the spectral sensitivity of tH&' cone. DESCRIPTION OF COLOR SYSTEMS IN VECTOR
Mathematically, from Eq. (1) it is apparent that the cone SPACE NOTATION
responses are the inner-prodliot$ the cone sensitivities
and the incident spectrufn Hence, the cone responses canlf a reflective nonluminous object with reflectanceis
be used to determine the projection of the spectrum onto thiuminated by an illuminant with spectrui the spectrum
space spanned by three sensitivity functios§ 1, (i.e.,  of the reflected light is given bir, whereL is a diagonal
the column space @), and vice versa. This space is called matrix with | as the diagonal. The CIKYZ tristimulus
the human visual subspadqélVSS)4.1.5.18 values of the reflective object under the viewing-illuminant
In normal human observers, the spectral sensitivities of are, therefore, given by = A'Lr = Alr, whereA =
the three cones are linearly independent, so the HVSS is lA.
3-dimensional subspace of thW-dimensional spectral The process of recording a color image on a color camera
space. While the final perception of color depends on noner a scanner can also be described in a manner analogous to
linear processing of the retinal responses in the neurdhe cone response mechanism mentioned in the last section.
pathways and the brain, to a first order of approximation, thé=or a K channel color recording device, the vector of
sensation of color (under similar conditions of adaptation)recorded values can be written as
may be specified by the responses of the cones. This is the
basis of all colorimetry and is implicitly assumed through- ts=MJr + € 3)

wherer is theN X 1 vector of reflectance sampldd, is

———— . th .
* Strictly speaking the cones do not respond linearly, but for a fixed state? N_ _X_ K matr'?(thWhose' C_Olumr?’ m; is the spectral
of adaptation, the linear approximation models the first stage of the coloS€nsitivity of thei™ channel (including effects of the re

sensing process fairly accurately. cording illuminant, filter transmittance and the detector sen-
* For concise definitions of terms from mathematical analysis used irSitivity), and e is theK X 1 measurement noise vector. In
this paper, the reader is referred to [17]. the absence of noise, the process of color recording in (3)
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1 can be shown that (Ref. 23, Chap. 7) thgical densityof
thei'" colorant layer, which is defined as the negation of the
natural logarithm* of its transmittance, is given by

di(m) = —In ui(m) = nd;, (4)

Cyan Layer u

whereu;(n;) is the transmittance of thé" colorant layern,
is the normalized concentration of th® colorant, which
lou, varies between 0 and 1, amtl = d,(1) is the density at
maximum concentration. The spectrum of the transmitted
light can, therefore, be expressedla® expE3_; nd,).
While the above discussion focused on color spectra in
transmissive media, the same model is valid for reflective
prints on paper employing transparent colordrpsovided
that the reflectance of the paper substrate is accounted for
along with the spectrum of incident light and the densities
are doubled to account for the two-way transmission
through the mediur.

If K colorant layers are used in a subtractive system, the
set of reflectance spectra producible in the medium can be
expressed as

S=1{r=r, ® exfd—Dc)[ce R, 0=c =1}, (5)

Magenta Layer u,

l®u]®u2

Yellow Layer uj

lgu,0u,; ou,

FIG. 1. Subtractive color reproduction. wherer , is the spectral reflectance of the paper substrate,
) o D = [d,, d, ...dK] is the matrix of colorant densities at
may be interpreted as the projection of the reflectancen,yimum concentrations, amds the vector of normalized
spectrum onto the recording device’s “visual subspace.” qorant concentrations corresponding to the reflectance

Additive color reproduction systems such as CRT diSyjle the assumption of transparent layers with no scatter-
plays and projection television produce colors through th§,, and no interaction between layers is sometimes too
additive combination of primary spectra in varying ampli- 5 pjistic (for instance, for halftone prints and/or pigmented
tudes. Thus, the range of spectra producible onM&n . qrants), it is also fairly accurate for a number of useful
primary additive device can be representeds= {PXx  cases including typical photographic slides and (to a lesser
€ R, 0=x = 1}, whereP = [py, P, ...Pul IS the  gegree) photographic prints.
matrix of the primary spectrg; at their maximum ampli The Bouguer—Beer law is also applicable for homoge-
tudes. The corresponding gamut in G¥ Zspace is given  ,qq5 jsotropic absorption color filters with low and mod-

_ T M _
b){f’? = {APxx € RY, 0 = x; = 1} = {IpXJX € erate concentrations of the absorbing solute in the filter.
R¥O0 = x; = 1}, whereT,, = [ty, L5, .. .ty] = A'Pisthe  pperefore; these can also be represented by model very

B B . B . M . B .
matrix of primary tristimuli {}{=,. As an interesting aside, gjmilar to (5). The set of filter spectral transmittances that
note that the volume of the gamut in CKY Zspace canbe .o pe synthesized by usirg absorbing solutes in a me-

expressed a3;c <det([tistiotis]), where€'is the set of all  qjym whose thickness may be varied betw&®h andt™
possible three-element combinations from the index set {1;5 given by (see Ref. 21, pp. 30-32):

2, ...M}, det(-) represents the determinant, ane- {il,

i2, i3} is a combination frome. K
Subtractive color reproduction systems produce colors by = { u = u, ® ex;{ -> aitei>

overlaying layers that absorb (subtract out) light in different i=1

regions of the visible spectrum. Most subtractive color

reproduction systems, are inherently nonlinear and cannot

be modeled as easily/accurately as additive systems. Figure

1 illustrates the subtractive principle for a transmissive

system. The incident light with spectral distributibpasses whereu, is a transmittance factor determined by the reflec

through a number of layers (three in the figure) containingions from the surfaces of the filter medium, is the

colorants that absorb light in specific regions of the specextinction of thei'" solute,«; denotes the concentration of

trum. The spectrum of the light transmitted through the

.three layers is given .bg = 1® uy ®u; ® U, wherevu, Ttethat conventionally the logarithm to the base 10 is used in

is the spectral transmittance of tﬁ%layer and® represents defining density, but for notational simplicity the natural logarithm is used

the term by term multiplication operator fdd-vectors. If  throughout this article.

the colorants are transparent (i.e., do not scatter |nC|dent¢Technica”yy the Kubelka-Munk model (Ref. 23, Chap. 7) should be

light) and their absorption coefficients are assumed to bsed with the scattering terms set to zero. The mathematical details are,
proportional to their concentration (Bouguer—Beer law), ithowever, unaffected by this technicality.

o = o, = o

tmin =t< tmax

.+ (6)
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thei'" solute, ande™" and «™® are the lower and upper
limits on «;, respectively.

SET THEORETIC ESTIMATION AND THE
GENERALIZED PRODUCT SPACE FORMULATION

The goal of set theoretic estimation is to obtain a feasible
solution satisfying multiple constraints. Though set theo-
retic schemes have been investigated in more general set-
tingsg the scope of the discussion here is limited to methods
applicable in a Hilbert space (see Ref. 17, pp. 201) setting.
A Hilbert space is a linear vector space endowed with the
geometric notions of distance (norm) and orthogonality
(inner-product) with the additional desirable property of Convex Non-convex
“completeness.” A simple example of a Hilbert space* is the
space ofN-vectorsRN with the following defined opera
tions and functions:

FIG. 2. Examples of convex and nonconvex sets.

e Addition and subtraction operators for vectors: compo-straint setS, then denotes the set of vectors R that
nent-wise addition and subtraction. satisfy this nonnegativity constraint, i.e., the set of nonnega-

e “Scalar” multiplication operator: scaling all the compo- tive N-vectors. The notatiora* in (7), then denotes an
nents of a vector by the given “scalar”, i.e., real number.N-vector that satisfies all the constraint®$™ ,, and,

¢ “Inner-product” of two-vectors: the real number obtainedtherefore, lies in all the constraint set§){" ;, and, there
by term-wise multiplication and summation of the vectorsfore, in the intersectiors® of these constraint sets.

N The method of successive projections onto convex sets
(X, Y)=2, Xyi. (POCS) and its variants are powerful algorithms for solving
i=1 set theoretic estimation problems. The POCS algorithms

The “inner-product” is indicative of the alignment of the typically require that §}, be all closed convex sets in

two vectors and is zero when the vectors are orthogondhe Hilbert space=. A set is said to be convex if, for any
(perpendicular). pair of elements andb and any real numbex between 0

e “Norm” or length of a vector: and 1, the elementa + (1 — p)b also lies in the set.
Intuitively speaking, a set is convex if, for any two elements
) ) in the set, the line segment joining the elements lies com-
The quantity[x — ] represents the “distance” between yjately in the set. Two-dimensional examples of convex and
the vectorsc andy. nonconvex sets are shown in Fig. 2, where for each of the
) ) _ _ nonconvex sets a broken line has been superposed on the
Given a set of constraints in a Hilbert spage set-  figyre. The broken line segment joins two points within the
theoretic estimation tries to determine a feasible “solut|on”set, but contains points outside the set, thereby establishing

that satisfies all the constraints. Mathematically, the Setihe nonconvexity. Intuitively, a set is closed if it includes its
theoretic estimation problem can be stated as follows: G'Ve'Boundary. The interval of real numbers defined as & =

IXll= x, ).

m constraints {P;}2, 1 is an example of a closed set, whereas the set®d< 1
m is an example of a nonclosed set (because it does not include
Finda* €= N s, (7) 1, which lies at the boundary).
=1 If the sets §§} " ; are all closed convex sets in the Hilbert

where {S}™ , are the constraint sets defined by space=, the POCS esFimatg is determiqed as the limit of the
sequence ¥,}, which is defined recursively by
S = {a € E|a satisfies®;}. (8)

The abstract notation used above is better understood by Yir1 = Ps(Ps, (- . . Pg(Ps(yi). . ), 9)

using a concrete example for the involved terms. For in- ) ] } .
stance, consider that the Hilbert space is the spgalle Whereyo is an arbitrary starting point, aniéls(z) denotes

defined earlier. A specific constraint (represented above by€ Projection ofz onto the constraint s&, defined as
say, ®,) could then represent the physical constraint that

reflectance vectors are nonnegative. The corresponding con- P<(2) = arg mir|x — ],
XES

*The purpose of this example is to aid intuitive understanding. For Which can be described in words as the poinBiclosest to
precise and complete definitions, the reader is referred to Ref. 17. z. The iterative process of successive projections in (9) is
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Yo Let @;, ©;, (- |-, || - [l denote the addition, scalar
multiplication, scalar product, and the norm in the Hilbert

|
|
t . Ly
. space=;. Consider the 2-set convex feasibility problem
: e Ry 0) _
| Finda*e S w, (11)

B(R(E ()

in the product Hilbert spacg,

f—t

I E=E.XE,X...XE, 12)
1 with the addition, scalar multiplication, inner product, and
norm defined in the standard component-wise fashion for
product space¥, where

S S=S§XSX...XS,
3
SZ is the product constraint set, and
FIG. 3. Simple POCS example. W= {(a a..  aezlac N E}
i=1

guaranteed to converge* to a point in the intersec&8n 1S the diagonal subspace H.

provided that the intersection is nonemptg The same ~_ BY definition, elements of the product Hilbert spaare
convergence result holds for several variants of the basif-tuples with thei®™ component as an element &;.

method that use relaxation/parallelization to speed up conk/KEWise, an el_etrr]nent of the product constraint Ses an
vergencess m-tuple whosei"" component is an element &; and

A simple example of the POCS algorithm with three Satisfies the constraiig. The diagonal subspad¥ is the
constraint sets is shown in Fig. 3. The region inside the>et ofM-tuples from= whosem components are identical.

ellipse represents the first constraintSgtthe region inside | N€ Solutiona to the above 2-set convex feasibility prob-
the circle represents the second constraintSsetand the €M liés inW and can be, therefore, written as=(a", a*,

line segment represents the third constraint Sgt The - - - @%): @ ENZ; 5. Sincea” also “rfs inS, it follows
intersection of the three sets is the region of the line segmerif@t @ € SVi, or equivalently a&N;Z, Si. Hence, the
that lies both within the circle and the ellipse. One iteration2P0Ve feasibility problem is equivalent to the convex feasi-
of the POCS algorithm in Eq. (9) starting from the pojgt 2111ty problem (7).

is shown in the figure, where the poiwt, is projected

Since (11) represents a 2-set convex feasibility problem
successively onts,, S,, andS, by finding, sequentially for in the product spacg, it can be solved using the method of
each set, the point that is closest to the “current” point and®

uccessive projections onto convex sets (POCS). From the
using that as the “current” point for the next set. For this

definition of the product Hilbert space, it directly follows
choice of initial point, constraint sets, and sequence offat the projection o

£ =(z,2,...2,) €E EontoSis
projections, the single iteration converges to a point in thd s(2 = (Ps(21), Ps(25), .

..Ps (zy), i.e., the compo
intersection of the constraint sets. Typically, however, mul-N€Nt-Wise projection onto the corresponding convex sets in
tiple POCS iterations are required.

their respective Hilbert spaces. If the Hilbert spaces
=m
The requirement of convexity of the constraint sets is d Ziki=

, are all identicallyRN with the usual inner product
major limitation of most of the algorithms and restricts their @"d  Euclidean norm, the ~projection oz B (21,
applicability to more general problems. The recently develZ2 - - -Zm) € = onto W is simply P,(2) = (z.
oped generalized product space formalisirelps in partly

Z,, ...Z,), wherez=1/mx, z, i.e., the average of the
overcoming this limitation by allowing the use of multiple M-components ofz. One iteration of the POCS method
Hilbert spaces, such that each constrdmnis convex in its

consisting of a projection ont8 followed by a projection
Hilbert space=;. Let {E;}™; be m (not necessarily dis

ontoW is then equivalent to projecting onto the individual
tinct) Hilbert spaces chosen so that fHeconstraint yields ~ constraint sets (in paraliel) followed by averaging of the
a closed convex set i&;. Define

projections, which may be viewed as a parallel POCS
scheme. For the general case, when the Hilbert spaces
S = {a € E|a satisfiesd;}, 1 =i =m. (10) {E;}, are not identical, the mathematical expression for
the projection ontdV is given in the appendix. This pro-
jection operation can be interpreted as the “averaging” of
the components of a vector i using the corresponding
distance metric irE. Hence, the product space framework
Ttua“y, only weak convergenéé is assured for general Hilbert C_an b? mte_rpreted as a “ge_nerahzed Para”e_| POC_S” algo-
spaces, but for most cases of practical interest, the Hilbert space is finitithm, in which at each iteration the estimate is obtained by
dimensional and the notions of weak and strong convergence coincide. “averaging” the projections onto the constraint sesg {" ;

Then each of the sef§ is closed and convex in its corre
sponding Hilbert spacg;.
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in their respective Hilbert space&{} " ,.12261t may also  other physical constraints that apply to color spectra. Two
be noted that even if the constraints are inconsistent, i.eyseful constraints in this category are nonnegativity and
S° = ¢, the product space formulation determines an-opti smoothness. A smoothness constraint set can also be ex-
mal estimate in the sense that the estimate minimizes theressed in the form of the generic set (13)Sg$", 0, w),
sum of squares of distances from the estimate to the corwhereH is a high-pass operator apdis an upper bound on
straint sets, where the distances are computed in the respdbe high-pass energy (as determinedHbythat ensures a
tive Hilbert spaces® desired degree of smoothné3sA general form of the
nonnegativity constraint on the spectra can be defined by the
constraint set

Si(B,y) = {x e RYBx =y}, (14)

CONVEXITY OF SETS IN COLOR SYSTEMS

The vector space description of colorimetry and color sys-
tems naturally leads to a number of sets that are of interesthereB is an arbitraryN X M matrix andy is aM X 1
in color science and imaging. Some of these sets have beector of upper bounds. The sg{(B, y) is a closed convex
defined earlier. Several other sets are defined here and theiet in RN and can be used to express several useful con
convexity is examined, to evaluate their suitability for straints including the se§,(—1, 0) of nonnegative spectra,
POCS based set theoretic estimation schemes. the setS,(l, 1) of spectral transmittances and reflectances
Consider the abstract set definition, that are bounded above by unity, and the set of transmit-
tances/reflectance spectra that are concave over a specified
SB,y, ) = xR [BX —y| = v}, (13) spectral region, which is obtained by settB§equal to the
wherey is some vector ifRM, B is anN x M matrix, ||| ~ first derivative operator ang = 0.2” The last set was used
denotes the Euclidean vector norm, amd= 0 is some in Ref. 27 to approximate a unimodality constraint on filter
nonnegative real constant. It can be readily established th&tansmittances. For general valuesBofthe projection onto
S(B, v, v) is a closed convex set in the Hilbert spal.  S(B, y) cannot be evaluated analytically. However, the set
Several sets that are of interest in color problems can bgan be meaningfully decomposed into the intersection of
shown to be specific instances of the S¢B, y, v). Exam  several sets as
ples include the set of radiant spectra having a specified M
tristimulus valuet (metamers), S(B,y) = M Ss(b, vy, (15)
i=1

S(A, t, 0) = {f|ATf = t},

whereb, is thei'" row of B (anN X 1 row-vector), and),
the set of irradiant spectra whose tristimuli are close tgs theit" element ofy. Therefore, the single constraint set
(within a specified distancg) of the target tristimulug, S,(B, y) may be replaced by thél sets {S,(b;, y))} M ;.
S(A, t, 8) = {f| |ATF — t]| = 8}, . In_ the design of filters for three channel-colqr'recording
evices such as colorimeters and scanners, it is useful to
the set of reflectance spectra that produce a tristimulus clodegave sensitivities that are linear transformations of the
to t under the illuminant, i.e., CMFs. Hence, the set of device spectral sensitivities that are
- . a linear combination of the CMFs is a useful set in filter-
S(LA, t,8) = {r| [ATLr —t] =3}, design applications. This set is the specific instance of the

the set of reflectance spectra with specified chromaticitFolumn space (or range) of a matrix, which may be ex-

values , y) under the illuminant, pressed generically as
1-x —-x —x]T Sk(B) ={y € R"ly = Bx, x € R"},
s(ea] "5 02y Sk | | |
y y) Yy whereB is anM X N matrix andy andx are vectors ift™

(1-x) —X —X ; andRN, respectively. For any arbitraiyl, N, andB; Sg(B)
= {r ’ [ -y (1-y) -y }A Lr = O}' is a closed convex set RM. The set of linear combinations
of CMFs is thenSz(A). Note that instead of requiring an
and the set of reflectance spectra that could give rise t@yact color mixture curve, the design requirement may be
scanner measuremeiy relaxed somewhat to allow filter transmittances that are
SMg ty 7 ={r| [MIr — t = 7}, fairly close to being color mixture curves. This set can be
expressed aS((I — P,), 0, 7), whereP, is the orthogonal
where 7 is a parameter that may be determined from theprojection matrix that projects onto the column spacé of
statistics of the noise at an appropriate confidence le¢él. (the HVSS in this case) and is a suitably small upper
More often the value ofr is empirically set equal to the bound for the filter transmittance “energy” outside this
noise variance. From the fact that the genericy@, vy, v) space. Such a set was also proposed in Ref. 27 for use in
is a closed convex set, it follows that all these spectral setscanner spectral characterization.
are closed convex sets R. For additive systems, it can be readily seen that both the
The utility of the above sets in set theoretic estimation isset of producible spectr& and the gamut in tristimulus
further enhanced when they are used in conjunction wittspaceS? are convex closed sets in the Hilbert spag&sand
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FIG. 4. Example demonstrating nonconvexity of Sg.

R3, respectively. It can be readily seen tS8tC Sg(P) and tively (note that the spectral absorptance bands for C and
St C Sx(T), hence as a first approximation these columnM overlap). Figure 4 shows the reflectances for C, M, and
spaces may be used instead of the gamut sets. This approx-at . concentrations and also the average of the C and
imation is particularly appropriate and useful in situationsM reflectances (at concentration). Note that the average
where the limits on the primary amplitudes are unknown. of the C and M reflectances is the midpoint of the
The projection onto the generic s&¢B, vy, v), S,(b, y), “line-segment” joining these reflectances and should lie
and Sg(B) can be computed analytically using the methodin the setS} of realizable reflectances, if the set is convex
of Lagrange multipliers and the Kuhn—Tucker conditionsin R™. With a little logic, it can be seen that no combi
for constrained optimization (see Ref. 28, p. 295-321) andhation of the C, M, and Y dyes in accordance with the
these are tabulated in the appendix. The projections onto thmodel used inS can produce the average of C and M
specific instances of these sets that are relevant in colaeflectances shown in Fig. 4. This demonstrates that the
applications are readily computed from these tabulationsthe setS) is nonconvex inRN for these dye densities.
For the set$S3 andS?, analytic expressions for the projec  Therefore, it is clear that the constraint of reproducibility
tions cannot be determined and the projections must ben a subtractive media cannot be used in the traditional
determined computationally. POCS algorithm. In the next section, a Hilbert space is
For subtractive color systems, the &tof producible  presented which makes this constraint convex allowing it
spectra is generally* not convex R. A simple example to be used in the generalized product space framework
demonstrating the nonconvexity & in RN is shown in  mentioned in the previous section.
Fig. 4, where a set of three idealized cyan (C), magenta
(M), and yellow (Y) dyes are considered. Each dye has a
spectrally flat absorptance over its absorption band and HILBERT SPACE THAT MAKES CERTAIN
zero abso.rptance outside of this band; and the prm'ungCONSTRAINTS IN SUBTRACTIVE COLOR CONVEX
substrate is assumed to be a perfect reflector. The absorp-
tion bands for C, M, and Y are the wavelength InterValsSeveraI constraints in subtractive color can be expressed as
[550, =] nm, [500, 600] nm, and [0, 500] nm, respec- convex constraints in the density domain. Note that both the
set Sy of spectral reflectances producible on a given-sub
* |t can be seen tha& is convex if the dyes have nonoverlapping t_ractlve meqlum def'_ned In (5) and the Q_mf real_lz_able
spectral bands, such as dyes that satisfy the “block-dye assumption.filter transmittances in (6) can be treated in a unified fash-
However, for most practical cases, is not convex inR". ion, by defining the generic set of spectra

Volume 25, Number 5, October 2000 339



S(do, D, ¢™, ¢c™) = {x € RY|x = APPLICATIONS

exp(—(dy + Dc)), c"=c = cM™4, (16) As outlined above, several constraint sets in subtractive
) - N color are convex in the Hilbert spac&’, ®, ©). The

whereR._is the set of positive real numberk, € R, D generalized product space formulation can, therefore, be
is anN X M matrix, andc™", ¢™, ¢ € R". Its equivalent  seqd to combine these sets with the other sets described
in the density domain is the corresponding set of produciblgyreyiously that are convex in the spectral reflectance/trans-
densities mittance domain. The application of such an approach to
S(do, D, ™, c™) = {d|d = d, + Dc, specific_proplems @n color sci_ence a_nd imaging is demon-
_ strated in this section. Three illustrative examples are con-
c"=c=c"}. (17) sidered here: model based scanner calibration, design of

color scanning filters, and colorant formulation for trans-

H H S min maxy ;
It is readily seen thaBj(dy, D, c™", ¢™®) is a convex parent colorants.

closed set inRN. However, since this constraint set is

defined in the density domain, it cannot be used in conjunc-

_tion with the other sets defined earlier, vyhiqh were conveX\jodel-Based Spectral Scanner Calibration

in the reflectance/transmittance domain in the original

POCS formulation. The goal of scanner calibration is to provide a transfor-

To see how the product space formalism can be exploitethation from the scanner measurements (typically, RGB

to make the se(d,, D, c™", ¢™®) convex, define the values in three channel scanners) to a device-independent

Hilbert spaceZ’ over the field of real numbers by the set of color space (such as CIKYZ space) or to spectral reflec-

vectors tance (from which tristimuli can be readily computed).
_ Typically, this transformation takes the form of a look-up
E' = {xeRx >0} (18)  table or regression polynomi&land is determined by scan-

ning a calibration target and establishing the correspon-

dence between the scanner output and independently mea-

sured colorimetric/spectral data from the target.

and the addition and scalar product operatéesand ©,
respectively, as

X @ y=expIn(x) +In(y)) =x ® vy (29) For a noiseless scanner, it can be readily seen that exact
3 CIE XYZ tristimulus values (under a specified viewing
a © x = expa In(x)) = x*, (20)  jlluminant) can be obtained from the scanner measurements

by means of a linear transformation, if the product of the
viewing illuminant and the CIEXYZ CMFs are linear
X, y)' = In(x)"In(y). (21) combinations of the scanner sensitivitfs34 Since most
present day scanners do not satisfy this condition, indepen-
dent calibrations for different input media (for instance,
photographic/xerographic/lithographic prints) yield signifi-
cantly better results than a single calibration over multiple
Ix|” = \JW = [In(x)||. (22) media. Therefor_e, in _order to ok_)tain accurate colors from a
scanner for a given input medium, the scanner should be
It can also be seen that the {(d,, D, c™", ¢™) is a  calibrated with a calibration target with spectral character-
closed convex set in the Hilbert spage. istics similar to that of the input medium. The largest single
The projection ontc8*(dy, D, ¢™", ¢™) in 2’ can be class of scanner inputs is probably photographic prints. A
determined only numerically for general valuesyfc™", number of manufacturers of photo-processing products are
andc™® However, two special cases for which the prejec offering photographic scanner calibration targét$iow-
tion can be determined analytically are of practical interestever, the targets typically correspond to a single type and
The first case is the one in which there are no limits on thébatch of photographic paper and dyes, and can vary consid-
densities, i.e.c™" = —o, ¢™™ = o, and the second in erably in their spectral characteristics from each other and
which the matrixD has orthonormal columns. The latter from photographic prints from the same and other manu-
case is of interest in applications in which the densitiedfacturers. As a result, scanner calibration targets are often
constitutingD have been indirectly determined through aunavailable for the specific medium on which the input
principal components analysis of the speétrdhe projec- images are produced. This is a fundamental limitation of the
tions for these two cases are listed in the appendix. “measurement-based” scanner calibration scheme described
Note that the distance metric proposed above is simply thabove, and model-based calibration is therefore an attractive
Euclidean distance in logarithmic (density) space. Alternatalternative.
definitions of the inner product and norm can be readily ob- The idea behind model-based scanner calibration is to
tained by introducing a positive spectral weighting function forexploit models for the medium and the scanner to obtain a
the norm and inner product. Examples of applications wherealibration transformation. First, from direct measurements
such weighting functions have been successfully used (thougbr indirect estimation methods, spectral models are obtained
not in a set theoretic framework) can be found in Ref. 30. for the scanner and for the medium of interest. The calibra-

and the inner-product

Then it can be readily verified thaE(, @, ©®) defines an
Hilbert space with the inner produc¢t , - )’ and the norm
defined as
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tion is then performed by determining for each set of scan- ==

ner measurements a feasible reflectance spectrum for tt £

given medium that would give rise to specified scanner o+ N Y am T

measurements. The calibration process thus defines a trar .,

formation from scanner measurements to spectra (on th eosr i ‘

given medium) that result in those measurements. The spe: '

tra can be readily used to obtain tristimuli under any desirec L J J .

illuminant and, therefore, the spectral calibration has ar § N ! ‘

advantage over schemes that transform scanner measui” o Yo ! .

ments into tristimuli under a particular viewing illuminant. N , et

To illustrate the idea of model-based scanner calibration, thr -0t :

specific case of scanning images on photographic media | ' i

used in the remainder of this section, and results from -as

simulations and actual experiments are presented. This a| '

plication is also presented in greater detail in Refs. 36, 37 i 5 5 =
As mentioned earlier, the Bouguer—Beer subtractive Hhavetingdt (o)

model of (5) holds fairly well for photographic media; FIG. 5. Densities for the three principal dyes.

where cyan, magenta, and yellow dyes are used for obtain-

ing the color prints. Since pure cyan, magenta, and yellow

tone prints are not normally available in images, the densimodel for the medium, it is known that the input spectra lie

ties corresponding to the dyes cannot be directly measureéth S(In(r,), O, —, *). Since§(Mj, t,, 7) is a convex

Note, however, that the spectra in the model of (5) can belosed set inRN and S¥(In(rp), O, —=, =) is a convex

rewritten as closed set ing’, the method of POCS can be used in the
generalized product space framework to obtain feasible
3 spectra that agree with both the scanner model and the
In(r) —In(r,) = — 2 cd,. (23) model for the input medium, thereby yielding a spectral
i=1 scanner calibration.

The results of applying this method to the calibration of
The left-hand side of the above equation represents tha simulated scanner and to an actual scanner are described
density corresponding to the reflectarceelative to the in the next two sections. In both cases, the Kodak IT8
white paper reflectance,. From the above equation, it is photographic targét is used for testing the model-based
clear that these paper-relative spectral densities are lineaalibration scheme. The reflectance spectra for the 264
combinations of the densitiesd$ > ,. Hence, the paper- patches in the Kodak IT8 target were measured indepen-
relative spectral densities lie in a three-dimensional spacdently using a spectrophotometer. The reflectance of the
(excluding noise effects), and principal components analywhite patch in the gray-wedge on the target is used as the
sis can be used to determine an orthonormal set of basieflectance of the paper substratgin computing paper-
vectors for this space. This set of vectors serves as “princirelative spectral densities in (23). The first three principal
pal dye” densities and is a linearly transformed version ofcomponents of the 264 densities account for 97.2% of the
the actual dye densities. This idea of utilizing principal signal energy in density space, and are used as the (or-
components analysis in the density domain has been usedonormal) densities,, 0,, 05 of three principal dyes cen
earlier22:38The “principal dye” densities can be determined stituting the prints. These densities are shown in Fig. 5. The
from a small number of spectral measurements from the&onstraint that spectra obey the media model is represented
images to be scanned and, therefore, do not require a calpy the setS(In(r,), O, —=, =), whereO = [0;, 0,, 03].
bration target with uniform patches. Also note that, while Simulation ResultsA three-channel color scanner is
the concentrations corresponding to the real dye densities ifsynthesized” by defining sensitivities for its channels as the
(5) were subject to simple upper and lower bounds, similacombination of the Wrattei WR-26 red, WR-49 green,
bounds cannot be obtained for the virtual dyes obtaine@nd WR-52 blue filters with a cool white fluorescent lamp
from the principal components analysis and the informatior(the scanning illuminant). The resulting scanner sensitivities
in the bounds is, therefore, lost. @ = [0,, 0,, 04] is the  for the three channels are shown in Fig. 6. To test the
matrix of the (orthonormal) virtual dye densities obtainedmodel-based calibration scheme, scanner RGB valiee
through the principal components analysis, the constraingenerated using the model of (3) and the measured reflec-
setS*(In(r,,), O, —=, ) can be used to describe producible tancer for each patch on the Kodak IT8 target. For the
spectra. purpose of the simulations, the noise term was set to zero. A

Now consider the process of scanning a photographispectral reflectance estimdteorresponding to the scanner

print characterized by the above media model on a colomeasurement, is then obtained by computing a feasible
scanner that is accurately represented by the model of (3). Apectrum lying in the constraint seg§(In(r,), O, —, =)
specific scanner measurement vedtocan arise from re  and S(Mg, t,, 0). For this purpose, the POCS algorithm
flectances in the séj(Mg, t,, 7). In addition, from the was applied in the generalized product space framework. An
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outline of the complete algorithm is given in Table I. Note TABLE I. Algorithm for model-based scanner calibra-

that in this algorithm the projection onto the diagonal sub-tion.

space has been replaced by a simpler averaging step, tr11eS M. as th wal ity of th "

. . . . . . . . . O€ s as the spectral sensitivity O € scanner, r, as the

mOt'Vatlo_n behind which is described in the append_lx. . white paper reflectance of the scanned medium, O as the
To estimate the accuracy of the model-based calibration matrix of orthonormal principal dye densities for the scanned

Scheme, the Computed Spectrlj"ms Compared with the medium, and t; as the set of scanner RGB values for which a

. . . calibration is desired.
actual spectrumn. Two metrics are used for this compari- , |niiajize i = 0; and spectral estimate r, = (MI)'t,, where
son: (1) the normalized mean squared spectral error indicates the pseudo-inverse. Set components of r; that are

(NMSSE) defined (in dB) as zers ?r qegative to a small positive value and values above
unity to 1.
E{||r . sz} 3. Determine projection onto the set of spectra that produce the
_ given scanner measurement in RV (see the appendix for details
NMSSE= 10 lOQlO( E{HI’ ||2} ) ! (24) on the projection):

X = Pgmgt,0(F)-

where E{- } denotes the average over the spectral ensemble. Determine projection onto the set of spectra producible on the
(in this case the Kodak IT8 target spectra), and (Z)NE%[) given medlum in £’ (see the appendix for details on the
color-differencé? under CIE D50 daylight illuminant, ~ Proiection:
which approximates the perceived magnitude of the color5
difference and is frequently used in comparison of calibra-—
tions. For the simulated model-based scanner calibration, .
over the 264 patches in the Kodak IT8 target, the NMSSE Set components of ;.. ; that are zero or negative to a small
. * positive value.
is —33.84 dB and the\E%, error has an average value of g ypdate iteration count: i = i + 1.
0.62 and a maximum value of 2.59. 7. Check for convergence: If r; is not in S%(n(r,), O, — <, =) N

The number of iterations required in the algorithm of . S(Ms t, 0) return to 3; otherwise, proceed to 8. .

8. Set ¥ = r,. This is the estimate of the reflectance on the given

Tabl? | depends on the C.hosen tolerqnce for the CONVErgence medium corresponding to the scanner measurement t;.
test in step 7. For the implementation of this section, an
average of 53 iterations per sample were required to achieve

convergence. Note, however, that the rate of convergence of
the algorithm is not a serious concern, because in a practicampler alternative is to utilize a linear model for the spectra
application the algorithm would be utilized to build a producible on the media. Since the scanner has three chan-
IOOk-Up table for the scanner Calibration, which would thenne|3’ if reflectance spectra producib|e on the media are
be used to transform the data from the scanner. Details ofgpresented as linear combinations of three basis vectors
the use of the method in a praCtical application can be fOUan\Nhose scanner responses are |inear|y independent)’ the
in Refs. 36 & 37. scanner measurements can be used to estimate the linear
Linear Media Model. The model-based calibration combination of the basis vectors that results in the given
scheme presented above utilizes a linear model for th@canner respongeln this section, a scanner calibration
scanner and a nonlinear model for the spectra producible o§cheme based on this idea is described and compared with
the media, which are combined in a POCS estimatiorthe method of the last section. This scheme, based on purely
scheme using the generalized product space framework. fnear models, is of interest because a large body of research
has explored linear models for object reflectance spec-
tra40-42
X107 If the spectra on the scanned media are expressed as
' ' ' ' ' linear combinations of three basis spectra, the set of pro-
| ducible spectra can be expressedSals), whereG is the
7 N X 3 matrix with the basis spectra as its columns. The
i optimal (in the mean-squared error sense) set of basis vec-
. tors for representing a given ensemble of spectra can be
‘ obtained through principal components analy3i& A
spectral reflectance estimdteorresponding to the scanner
measuremernt, can then be obtained by computing a-fea
sible spectrum lying in the constraint s&gG) andS (M,
1 t,, 0) representing, respectively, the spectra producible on
the media and the spectra capable of producing the given
scanner measurement. For this simple case, however, the
POCS method is not required, because the problem can be
solved analytically. The estimated spectrum corresponding

Y = Psiinry),0,—)(Fi)-
Constrain to lie in the diagonal subspace W in RV x =
Fi1 = (X + y)/2

’
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FIG. 6. Sensitivities for the simulated scanner channels. F= G(MIG)_lts- (25)
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Note that (25) is derived on the premise that the matrix '« B E— T A— —

M{G is nonsingular, which is mathematically equivalent to 20001 - N gafgmi

. H 1| === a |
the requirement that the scanner responses corresponding Y &
the basis vectors are linearly independent. This corresponc oo -~ oo

to the requirement for colorimetric independence for prima-
ries used in a color-matching experimént.

The previous simulation was repeated using the scannez sxo;
calibration scheme based on the purely linear models. Thz
first three principal components for the Kodak IT8 target
spectra were determined and used as the Wasisr the 2000}
spectra producible on the media. As previously scanne
RGB values corresponding to the reflectances of the Koda
IT8 target were generated using the scanner sensitivitie .z
shown in Fig. 6. From each scanner RGB tripilethe input
spectral reflectance was estimated using (25). The accurac % @ w0 wE we  w v
of the calibration was then computed using the metrics '
introduced earlier. For the scanner calibration scheme basedFIG. 7. Estimated sensitivities for the UMAX scanner.
on purely linear models, NMSSE is24.22 dB and the
AE%, error has an average value of 3.60 and a maximum
value of 23.56 over the 264 patches in the Kodak IT8 target. One may note that the errors in the calibration of the
The errors are significantly larger than the corresponding/ MAX scanner are larger than those obtained in the simu-
errors in the previous simulation and the accuracy of thdations. One probable cause of the larger errors is the
calibration is unacceptable for most applications. The caliestimation error in the scanner sensitivity. An inspection of
bration error is largely attributable to the use of the threethe Fig. 7 shows that the estimated sensitivities for the
dimensional linear model for input reflectance spectraUMAX scanner have a number of negative and positive
which does not provide sufficient accuracy. To obtain aclobes, which are highly improbable in the actual scanner.
curacy comparable to the previous nonlinear model, i.e., aRther potential causes include measurement noise and de-
averageAE*, error under 0.62, for the reflectances in the Viations from the scanner model of (3) due to fluorescence,
Kodak 1T8 target, 6 or more principa| components arestray ||ght, and other nonlinear effectsTo Verify that the
required. Note, however, that such a linear model cannot b#icreased error is indeed due to these factors, the first
used in the model-based calibration for a scanner with onlypimulation was repeated using the estimated scanner sensi-
three channels. The nonlinear model for the media usedlVvity of Fig. 7. For this simulation, the model-based scanner
previously provides a more accurate and parsimonious reg:alibration yielded a NMSSE of-33.53 dB and average
resentation for the spectra producible on the media, which i@nd maximumAE?%, errors of 0.76 and 5.37, respectively.
more appropriate and provides much greater accuracy, alhese values are consistent with those obtained for the first

beit through the use of a more complicated algorithm for theSimulation.
model-based calibration. One may also note that model-based spectral scanner
Experimental Result&he model-based spectral scannercalibration for photographic media was used as an illustra-
calibration was also tested on an actual three-channdlve €xample in this section and the same method can be
UMAX color scanner with 10 bits per channel. Since theused in several other applications. In particular, the model-
scanner sensitivities for the red, green, and blue channeli@sed calibration framework can be used to obtain spectro-
were not directly available, these were first estimated by th@hotometric data from densitometers, colorimeters, and
principal eigenvector technique* described in Ref. 27. Thecolor cameras, which can also be represented by the model
estimated sensitivities are shown in Fig. 7. The model-baself (3)- The algorithms can also be readily modified to
calibration was performed for the Kodak 178 in a mannerincorporate the use of more scanner channels and more than
identical to that employed for the simulation and the saméhree “principal dyes” for media that have more physical
metrics computed for evaluation of the calibration accuracydyes or do not obey the Bouguer—Beer law exactly. The set
The NMSSE was-31.03 dB, and the average and maxi- of producible spectra could also be made more precise by
mum AE*,, errors were 1.76 and 7.15, respectively Forincluding bounds on the concentrations of the principal dyes
comparison, the scanner was also calibrated directly using at are determined statistically.
neural-network based technique with the complete Kodak
IT8 target as the training set. The average and maximunpesign of Color-Mixture-Curve Filters
AE%, errors (over the Kodak IT8 target) for the direct
calibration were 1.05 and 4.40, respectively.

4000

As mentioned eatrlier, in designing filters for three-chan-
nel color recording devices such as colorimeters, cameras,
and scanners, it is useful to have transmittances that are

* Information on the internal scanner matrixing was not available and,linear combinations of the CMFs, which are commonly
therefore, the POCS technique described in Ref. 27 could not be employedieferred to as color mixture curves (CMCs). The set of
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CMCs was represented by the s®{(A). CMCs can be 1
readily generated by taking arbitrary linear combinations of
the CMFs. However, these CMCs need to be realizable a
physical filters in order for them to be useful. The set of v
realizable filters obtainable by using transparent absorbin
solutes in glass was represented by the $en (6). As
mentioned earlier, the s&f can also be represented in terms
of the generic se8%(d,, D, c™", c™®) of (16) by setting
do = In(uy), d, = g, D = [dy, d,...d,], cM" = M"
tMN andc"™ = oM tM3 SinceSk(A) is a closed convex
set inRN andS%(d,, D, ¢™", c"®) is a closed convex setin  oa+
E’, the product space framework can be used to determin
the transmittance (and also the dye concentrations) for
color scanning filter, which is a color mixture curve. o1f

In practice, additional constraints may be necessary & - .¢. 0 o _J. . . T
avoid undesirable “feasible solutions.” For instance, note " = T enim o ™
that a zero spectral transmittance is a CMC, because it can
be expressed as a linear combination of CMFs with zero
weighting for each of the CMFs. If the absorption bands of
the solutes cover the entire spectral region in consideration

and sufficiently high concentrations are allowed, a transmitMixture curve, it can be determined by using the POCS
tance close to zero can also be realized using the solute@90rithm in the generalized product space framework to

Thus, the zero (or practically, a near zero) transmittanc@Pt@in & transmittance i, N Sz(A). As previously men

represents an “solution” in the product space framewor

dioned, if the problem is infeasible, this algorithm still
mentioned above as it lies in the s&g(A) and S¥(do, D provides a useful result, because it converges to the trans-
cmin ¢M®) - Clearly this solution is undesirable because,

mittance that minimizes the sum of its squared distances
with a zero or near zero transmittance filter, the recorded©M the setsS, and Sx(A) (in E" and RY, respectively).
information is primarily noise. To avoid such a “solution,” 'NiS transmittance may then be projected onto thesgéo
additional constraints need to be incorporated in the desigRPt@in @ reasonable approximation to the filteSinthat is
process. For instance, the total concentration of the solutdd©Sest 10Sg(A). For the specific case of the Schott filters
may be limited (as is further illustrated in the example in theUSed here, an exact color-matching curve could not be found
next section) or additional constraint sets may be introducelf! S However, the transmittance obtained on convergence

that require the transmittance to be above and below apprd?@S extremely close to both the ses and Sg(A) and,
priately chosen thresholds in specified spectral regions. therefore, a fllter'transmlttance that is close to b'elng aCMC
Experimental ResultsTo investigate the feasibility of could be determined. The resulting filter transmittance from

synthesizing filter transmittances that are also CMCs, a sdf!€ Procedure outlined above is shown in Fig. 9. The values

of K = 15 filters was chosen from Schott's catalog of ofthg “s'olute concentrations'g{} £, in (26) corresponding
Optical glass filterés These filters are designated by the t© this filter were 1.0000, 0.0173, 0.5135, 0, 0, 0, 0.2441,

names BG18, BG38, BG39, VG4, GG10, GG420, GG4350-0156, 0.0661, 0.0732, 0.0432, and 0.0270. _
GG455, GG475, GG495, 0G515, 0G530, and OG550. The To evaluate the degree to which this transmittance is
transmittances 4} _,, respectively, for these filters were Cl0S€ t0 @ CMC, the Neugebauer quality-factor was used.
determined from tabulations in the catalog and these ar&n€ Neugebauer quality-factor is given by

shown in Fig. 8. The corresponding densities= —In(u;) [PAul]?

were calculated and the range of producible densities was q(u) = ulP

assumed to be the seXf ; ¢,d;; 0 = ¢; = 1}. To keep the

transmittance from taking an extremely low value, an addi-whereP, is the orthogonal projector onto the column space
tional constraint that the sum of the “solute concentrations’of A (the HVSS). The Neugebauer quality factor is bounded
is bounded above by,,,= 2.0 was utilized. Thus, the set between 0 and 1 and can be interpreted as the filter trans-
of realizable filter transmittances (with reasonably highmittance energy that lies in the HVSS (which is the same as

o7

Spactral Transmilkanos
=
&n

FIG. 8. Schott filters used in design of a CMC filter.

transmittance) was defined as Sk(A)). Thus, a CMC has a Neugebauer quality factor of 1.
For the designed filter, the Neugebauer quality factor had a
K K value of 0.99922, which indicates that it is extremely close
S = {u u=exp— > ¢d);0=¢=1; > ¢=Cun- tobeinga CMC.
i=1 i=1 Note that, in a practical application, one would require

(26)  three CMC filters with linearly independent filter transmit-

tances. The “solutes” for the filters shown in Fig. 8 were,

It can be readily verified th&d, is a closed convex set in the however, suitable only for the creation of a single CMC.
Hilbert space=’. Now, if S, has an element that is a color Therefore, results for the design of only one CMC have
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07 - - - - paper for the Kodak IT8 target arfdlis the matrix whose 3
columns are the densities of cyan, magenta, and yellow at
their maximum concentrations.

SinceS(LA, ATr,, 0) is a convex closed set RN and
S(do, D, O, 1) is a convex closed set ', the method of
POCS can be used in the generalized product space frame-
work to obtain a feasible spectrum that matches the 50%
spectrally flat reflectance under CIE D50 daylight illumina-
tion and is producible using the specified colorants. Figure
11 shows the results obtained, where the 50% spectrally flat
reflectance is shown along with its metamer (under D50)
produced with the Kodak IT8 colorants of Fig. 10. The
normalized concentrations corresponding to the cyan, ma-
genta, and yellow colorants for obtaining this spectral re-
o . . ; . . flectance were 0.0854, 0.0737, and 0.0500, respectively.
“w . P vaeergnim - " While the example presented here was a hypothetical one,
the method could be applied to several practical problems.
One potential application is in the color calibration of con-
tone printing systems (e.g., dye-sublimation/pictography)
whose colorant interactions closely follow the subtractive
been presented here. Conceptually, the design of additionghodel of (16). The above method would allow a complete
filters could be performed in a manner identical to the onecolor characterization of the system based on a simple
design presented here, provided that the available “solutesser-colorant calibration.
for creating the filters offered enough control for the design
of three CMC filters. The requirement for linearly indepen-
dent filter transmittances can be met by either incorporating

additional constraints in the design process or through &pjs article discusses the application of set theoretic esti-
ch0|ce_ of the filter solutes. For exampl_e, one might att_er_onnation schemes to problems in color science and imaging,
to de5|gn red,_green, and blue CMC filters by constrainingyith particular emphasis on subtractive color systems. Typ-
transmittance in these spectral regions to be above a thresfas| constraints arising in subtractive color systems are
old and in other spectral regions to be below another threshsonconvex in the space of spectral reflectance/transmit-
old, or by choosing solutes that allow only red, green, Ofignce, and, therefore, these constraints cannot be directly
blue filters to be realized for the three designs. incorporated into robust set-theoretic schemes. The article
describes how appropriate definition of a Hilbert space
structure on the space of color spectra makes several con-
straints in subtractive-color convex. This enables the use of

The POCS method using the generalized product SPacg pOCS algorithm in a generalized product space for solv-
framework can also be applied to solve colorant formulation

problems for transparent colorants following the model of
(5). A specific example is considered here for illustrating

Spacihred Transmiltance

[k

FIG. 9. CMC approximation designed using the Schott
filters.

CONCLUSIONS

Colorant Formulation

this application. Figure 10 shows the density for white pape ' ' ' ' ' L= a.a':,
and cyan, magenta, and yellow colorants (at maximun 1= Magenta

concentrations) as determined from measurements from tr 25
Kodak IT8 target> Consider the problem of finding the
colorant concentrations for the colorants to match a 50¥
spectrally flat reflectance under CIE D50 daylight illumina-
tion. Using the described notation, the set of spectra the
match a 50% spectrally flat reflectance is given by

S(LA, ATLr,, 0) = {f|ATLf = ATLr g},

wherelL is the diagonal matrix with the CIE D50 daylight
spectrum as its diagonal, denotes the spectrally flat 50%
reflectance, and is the matrix of CIEXY Zcolor-matching
functions as defined earlier.

The set of spectra that can be produced with the cyar 5 450 50 50 500 P 700
magenta, and yellow colorants from the Kodak IT8 target Harsiengh fnm)
can also be written in terms of the generic sets previousl¥|G. 10. Spectral densities for paper, cyan, magenta, and
defined asS*(d,, D, O, 1), whered,, is the density of white  yellow from the Kodak IT8 target.

Darily |-k (IrEnsmiltance])
: L]
-
-
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07— - . — - v ~——  whereB is anN X M matrix,y is some vector ifR™, || - ||
denotes the Euclidean vector norm, amd= 0 is some
nonnegative real constant.

Forz ¢ S(B, Yy, v) the projection ontd5(B, vy, v) is
calculated most readily using the singular value decompo-
sition (SVDY® of B. Let the SVD ofB be given by

0&F

05

04
% B = UnsnAnxmV b (29)
Eﬂa' _ DI OPX(M—P) ]
A = { On-pxp  On-pixm-p) (30)
oz
P e prp = dlag()'l, (0 T (Tp) (31)
— Hodak ITH metames jundir D50}
o 0'120'22...20'p>0, (32)
whereP (= min(M, N)) is the rank ofB, {o}_, are the

ol L 4 L
400 450 500 ] B0 E50 o0

waselenglh (nrm) nonzero singular values & (in decreasing order), ard =
FIG. 11. Example for colorant formulation problem: A 50% [us, U oo un] and V= [vy, Va, ... vy] are O.rthc’go_nal
spectrally flat reflectance and its metamer under D50 illumi- matrices whose columns are the left and right singular
nation produced using the Kodak IT8 colorants. vectors ofB, respectively. In terms of the SVD, the projec-

tion can be written as

ing problems involving these constraints in conjunction P To
with other constraints that naturally lead to convex sets in Pseyn(2) =2+ 2, m (Vieg)uj, (33)
the space of reflectance/transmittance spectra. i=1 i

The usefulness of the new methods is demonstrated b\X/hereeO — t — Bz, and the Kuhn—Tucker parametr is
applying them to three problems of interest to the color ’

; . . . ) L the positive root of
science and imaging community. First, it is shown that the P

methods can be applied for spectral calibration of color (Vie)? M
scanners using a model-based approach. The results indicate > '7022 + > (Ve)?— 12 =0. (34)
that accurate spectral data can be obtained from scans of i1 (1+707) i—p+1

photographic media, provided that the scanner spectral sen- o i )
sitivities are known. In the second application, the sameVote that ifv” is smaller than the second summation term in

methods are used to successfully design color filter trand34), the se§(B, y, v) is empty and the projection is not
mittances that are “almost” color mixture curves for use indefinéd. IfB has full column rank, i.ep = M, the second
colorimeters, scanners, or cameras. The third applicatiofummation in (34) is absent (i.e., zero) andvas> 0, the
demonstrates the use of the new methods to determirféuhn-Tucker parameter — . Therefore, ifB has full
colorant concentrations required to metamerically match £°lumn rank,

given spectrum. b

1 t
PS(B,y,O)(Z) =z+ E o (Vieg)u;. (35)
APPENDIX: PROJECTIONS ONTO THE j=1 !

NSTRAINT SET . . .
CONS SETS This case is mentioned separately, because thg(gett, 0)

The projection of an arbitrary poirztin a Hilbert spacés  of spectra that produce the tristimulus vatwsrresponds to
onto a convex closed sé&tis defined as this case.

P«(z) = arg mirly — Z|, (27)

ves 2. Projection onto §(b, y): Note that

= NIpTx=
where| - || is the norm in the Hilbert spacg. The convexity S, ) =xERTbx=y}, (36)
and closedness of the sBtensure that the projection is
we.II-defined and un.iq_u@. From the_definition and the prop- For anyN x 1 vectorb, the projection oz ¢ S.(b, y)
erties of the norm, it is clear thatf € SthenPg(z) = z. onto S.(b, y) is given by
For the generic sets defined previously, projections for a '
vector outside the constraint set are summarized below. In y—Db'z
order to facilitate reading, the definitions of the sets have Psoy =2+ W b. (37)
also been repeated in this appendix.

whereb is an arbitraryN X 1 vector andy is a real number.

— 3. Projection onto {(B):
1. Projection onto §B, vy, v):

S(B,y, v)={xeR" [B'x-y[=v},  (28) Si(B)={yeR"|y=Bx, xeR"}, (38)
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Note that if Hilbert spacesE,} ™ , are all identicallyRM
with the usual inner-product and Euclidean norm, the above
expression reduces to

whereB is anM X N matrix andy andx are vectors irR™
andRN, respectively.

The projection ontdSz(B) can be readily computed by
using an orthonormal basis set for the column spad &
particular, for the SVD oB defined in (29)—(32), the left
singular vectors §;} 7, provide one such orthonormal -ba a*
sis set. Using these, the projection oiBg(B) is given by

(45)

i.e., the average of the componentszof

For the applications discussed in this papét,is the
diagonal subspace of the product sp&e= RN x Z’'.
Thus,z € E can be written ag = (X, y), wherex € R and
y € R are themselvedN-tuples of real numbers. The
expression for the projection onW is, therefore, as given

in (43) above, with

(39)

whereU = [uy, U, . . . Up] is the submatrix of the matrik
in (29)—(32) containing the firR left singular vectors oB.

4. Projections for §(d,, D, c™", ¢™): Recall the defini

tion, a* = arg min(a — x|* + [[In(a) — In(y)|]?

N

S(dy, D, ¢, ") ={xeR"|x=exp(—(d,+ Dc)), aeRs
minS iS ima , 40 N
crse=eT (0 = arg min 2, [(a — x)? + (In(a) — In(y))?]. (46)
aE[R%'i i=1

whereR, is the set of positive real number, € R, D

is anN X M matrix, andc™, ¢ ¢ € R™. From the above equation, it is clear that the problem de-

In the Hilbert spac&’, the projection ont&*(do, D, =,  composes intdN simple one-dimensional minimizations,
) is computed readily from an orthonormal basis setgne for each indek above:

{o}M, for the column space db,

ar=arg mirf(a — x)*+ (In(a) — In(y;))*]. ~ (47)
M acR+
Psiao==(2) = €xpl —| do+ X aoi| [, (41) By differentiating the right-hand side above with respect to

=1 a and setting the result to zero, one can see that the mini-
wherea; = —0/(In(z) + dy). For a density matrix0 =  Mmizer above is a root of

[0y, 0, .. .0y] wWith orthonormal columns,

a?—ax + In(a) — In(y) = 0. (48)

It is worth noting that in most cases (45) provides a good
approximation to the projection in (46), and may be used
instead of the exact projection or as a starting point for the
wherea; = min(c™® max(— o/ (In(z) + do), c™M). Note  minimization in (47).

that these projections correspond to the operation of trans-
forming the spectral to the density domain, projecting with 1-
respect to the Euclidean norm in density space and trans-

do+ X2 a0] |, (42

i=1

Pg(do’o’cmm’cmax)(Z) = eX
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5. Projections folW: W is the diagonal subspace®) the
product Hilbert space of (12),
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m
aem E}

i=1
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