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Abstract: The use of linear algebra and set theoretic esti-
mation for problems in color science and imaging is re-
viewed. Through a product-space formalism, the powerful
projections onto convex sets (POCS) algorithm is extended
to subtractive color systems satisfying convex constraints in
the density domain. Several convex sets are defined, which
are useful in color science and imaging, and projections
onto these sets are presented. The usefulness of the new
methods is demonstrated by applying them to three practi-
cal problems: (1) model-based scanner calibration, (2) de-
sign of color scanning filters that are color mixture curves,
and (3) colorant formulation.© 2000 John Wiley & Sons, Inc. Col
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INTRODUCTION

Several researchers have used a vector-space framework for
the description of color matching1–3 and color systems.4–7

The vector space framework allows one to exploit the vast
body of mathematical results from linear algebra in the
analysis and design of color systems.7 The power of the
vector space approach is further enhanced when it is com-
bined with set theoretic estimation, which has proven a
powerful technique for solving signal and image processing
problems.8 The vector space and set theoretic approaches
were combined and successfully applied to several prob-
lems in color science and color systems by Trussell9 and
later by other other researchers.10

One limitation of set-theoretic schemes is the lack of
globally convergent estimation algorithms for general con-
straint sets. The most powerful and useful algorithms are
variants of the method of successive projections onto con-
vex sets (POCS),11 which requires constraint sets to be
closed and convex. While additive color systems naturally
yield constraint sets that are closed and convex in the

spectral (reflectance/transmittance/radiance) domain, this is
usually not true of subtractive systems. Consequently, the
examples presented in9,10 focused on additive systems, and
while some problems in subtractive systems were men-
tioned, computational methods for solving those problems
were not addressed in detail.

Recent research has enlarged the class of problems for
which robust set theoretic estimation schemes are available.
In particular, the generalized product space formulation
proposed by Combettes12 allows general constraints to be
employed in a POCS framework, provided each constraint
can be made convex in its own Hilbert space. A number of
constraint sets arising in subtractive systems are convex in
the optical density (logarithmic) domain. However, appli-
cations typically require the use of these sets in conjunction
with other constraint sets that are convex in the spectral
domain, which is not possible in the conventional POCS
algorithms that assume a single underlying Hilbert space. In
this article, a suitable Hilbert space structure is introduced,
which yields convex representations for these subtractive
systems’ constraint sets in the spectral domain. The product
space formulation mentioned above then allows these sets to
be combined effectively with other constraint sets that are
convex in the spectral domain under the normal Hilbert
space structure inRN. The utility of the new algorithms is
demonstrated by applying them to three practical problems
that are of interest to the color science and imaging com-
munity: model-based scanner calibration, the design of
color scanning filters that are linear combinations of color-
matching-functions (CMFs), and colorant formulation.

The rest of this article is organized as follows. The
following section provides a very brief overview of the
vector space description of color matching and colorimetry.
The description of color systems in the vector space nota-
tion is presented next. Set theoretic estimation and the
generalized product space formulation are then described
briefly, with particular emphasis on POCS. The convexity
of several sets of interest in color science and imaging are
then examined. Then an alterate Hilbert space structure is
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introduced over the space of (positive) color spectra, which
yields convex representations for several constraint sets in
subtractive systems. Specific applications that exploit this
Hilbert space (in the product space formulation) to solve
problems in subtractive color are presented in the last sec-
tion. Finally, the appendix describes mathematical details of
projection operators that are omitted from the main text.

VECTOR SPACE DESCRIPTION OF COLORIMETRY

The color sensation produced by light incident on the hu-
man eye depends on its power spectral distribution, i.e., the
distribution of energy as a function of the wavelength. In air
or vacuum, the visible region of the electromagnetic spec-
trum corresponds to the wavelength interval from 400–700
nm. Physical devices that respond to light energy may,
however, be sensitive over a different region. For compu-
tational purposes, the spectra may be represented byN-
vectors consisting ofN samples over the wavelength inter-
val of interest. For most color spectra, a sampling rate of 10
nm provides sufficient accuracy, but a higher sampling rate
or alternative approaches may be required for applications
involving fluorescent lamps that have sharp spectral
peaks.13–16

The fact that the human eye has three distinct color
sensing cones in the retina that respond in a linear fashion to
incident light* forms the basis of the vector space approach
to color matching. The responses of the cones to incident
light with spectral distribution specified by theN-vector f
can be expressed mathematically as

c 5 STf , (1)

where the superscriptT denotes the transpose,c 5 [c1, c2,
c3]T is the vector of cone responses,S is anN 3 3 matrix
whosei th columnsi is the spectral sensitivity of thei th cone.

Mathematically, from Eq. (1) it is apparent that the cone
responses are the inner-products† of the cone sensitivities
and the incident spectrumf. Hence, the cone responses can
be used to determine the projection of the spectrum onto the
space spanned by three sensitivity functions {si} i51

3 (i.e.,
the column space ofS), and vice versa. This space is called
the human visual subspace(HVSS).4,1,5,18

In normal human observers, the spectral sensitivities of
the three cones are linearly independent, so the HVSS is a
3-dimensional subspace of theN-dimensional spectral
space. While the final perception of color depends on non-
linear processing of the retinal responses in the neural
pathways and the brain, to a first order of approximation, the
sensation of color (under similar conditions of adaptation)
may be specified by the responses of the cones. This is the
basis of all colorimetry and is implicitly assumed through-

out this article. Thus, two spectraf andg match in color if
and only if (iff)

STf 5 STg. (2)

Alternately, one can say that two spectra match in color iff
their projections onto the HVSS are identical. Since the
HVSS is only a 3-dimensional subspace of theN-dimen-
sional spectral space, there are multiple spectra that match
in color. These are known as metamers.

The differences between the spectral sensitivities of peo-
ple with normal color vision are (relatively) small.19,20 [See
Ref. 21, pp. 343]. Hence, the color-matching characteristics
of color-normal observers can be captured through the def-
inition of a standard HVSS. The HVSS may be defined by
using the cone sensitivity matrixS, or more generally, any
nonsingular transformation ofS of the formSQ, whereQ is
a (possibly unknown) nonsingular 33 3 matrix. The cone
responses themselves are difficult to measure/compute di-
rectly, but nonsingular transformations of the above type,
known as color-matching functions (CMFs), can be readily
determined through color matching experiments. (see Refs.
6, 7 for a description of color-matching experiments that
uses notation and terminology consistent with that used in
this article). The CIE (Commission Internationale de
l’Éclairage)XYZCMFs form one such set of CMFs that is
used as a standard for colorimetry.22 In this article, the
matrix of CIE XYZ CMFs is denoted byA. For a given
irradiant color spectrumf, the 3-vectorATf specifies the
color of f in the CIE XYZ space and is referred to as the
(CIE XYZ) tristimulus of f. Two spectraf andg match in
color if and only if their tristimuli are equal, i.e.,ATf 5
ATg. Also, the HVSS is identical to the column space ofA.

DESCRIPTION OF COLOR SYSTEMS IN VECTOR
SPACE NOTATION

If a reflective nonluminous object with reflectancer is
illuminated by an illuminant with spectruml, the spectrum
of the reflected light is given byLr , whereL is a diagonal
matrix with l as the diagonal. The CIEXYZ tristimulus
values of the reflective object under the viewing-illuminant
l are, therefore, given byt 5 ATLr 5 AL

Tr , whereAL 5
LA .

The process of recording a color image on a color camera
or a scanner can also be described in a manner analogous to
the cone response mechanism mentioned in the last section.
For a K channel color recording device, the vector of
recorded values can be written as

t s 5 M s
Tr 1 e, (3)

wherer is theN 3 1 vector of reflectance samples,Ms is
an N 3 K matrix whosei th column, mi is the spectral
sensitivity of thei th channel (including effects of the re-
cording illuminant, filter transmittance and the detector sen-
sitivity), and e is theK 3 1 measurement noise vector. In
the absence of noise, the process of color recording in (3)

* Strictly speaking the cones do not respond linearly, but for a fixed state
of adaptation, the linear approximation models the first stage of the color
sensing process fairly accurately.

† For concise definitions of terms from mathematical analysis used in
this paper, the reader is referred to [17].
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may be interpreted as the projection of the reflectance
spectrum onto the recording device’s “visual subspace.”

Additive color reproduction systems such as CRT dis-
plays and projection television produce colors through the
additive combination of primary spectra in varying ampli-
tudes. Thus, the range of spectra producible on anM-
primary additive device can be represented asSP

a 5 { Pxux
[ RM, 0 # xi # 1}, where P 5 [p1, p2, . . . pM] is the
matrix of the primary spectrapi at their maximum ampli-
tudes. The corresponding gamut in CIEXYZspace is given
by ST

a 5 { ATPxux [ RM, 0 # xi # 1} 5 { Tpxux [
RM0 # xi # 1}, whereTp 5 [ t1, t2, . . . tM] 5 ATP is the
matrix of primary tristimuli {t i} i51

M . As an interesting aside,
note that the volume of the gamut in CIEXYZspace can be
expressed as¥ i[Cdet([t i1t i2t i3]), whereC is the set of all
possible three-element combinations from the index set {1,
2, . . .M}, det[ represents the determinant, andi 5 { i1,
i2, i3} is a combination fromC.

Subtractive color reproduction systems produce colors by
overlaying layers that absorb (subtract out) light in different
regions of the visible spectrum. Most subtractive color
reproduction systems, are inherently nonlinear and cannot
be modeled as easily/accurately as additive systems. Figure
1 illustrates the subtractive principle for a transmissive
system. The incident light with spectral distributionl passes
through a number of layers (three in the figure) containing
colorants that absorb light in specific regions of the spec-
trum. The spectrum of the light transmitted through the
three layers is given byg 5 l V u1 V u2 V u3, whereui

is the spectral transmittance of thei th layer andV represents
the term by term multiplication operator forN-vectors. If
the colorants are transparent (i.e., do not scatter incident
light) and their absorption coefficients are assumed to be
proportional to their concentration (Bouguer–Beer law), it

can be shown that (Ref. 23, Chap. 7) theoptical densityof
the i th colorant layer, which is defined as the negation of the
natural logarithm* of its transmittance, is given by

d i~ni! 5 2ln u i~ni! 5 nid i, (4)

whereui(ni) is the transmittance of thei th colorant layer,ni

is the normalized concentration of thei th colorant, which
varies between 0 and 1, anddi 5 di(1) is the density at
maximum concentration. The spectrum of the transmitted
light can, therefore, be expressed asl V exp(¥ i51

3 nidi).
While the above discussion focused on color spectra in
transmissive media, the same model is valid for reflective
prints on paper employing transparent colorants,† provided
that the reflectance of the paper substrate is accounted for
along with the spectrum of incident light and the densities
are doubled to account for the two-way transmission
through the medium.7

If K colorant layers are used in a subtractive system, the
set of reflectance spectra producible in the medium can be
expressed as

SD
s 5 $r 5 r p # exp~2Dc!uc [ RK, 0 # ci # 1%, (5)

whererp is the spectral reflectance of the paper substrate,
D 5 [d1, d2 . . . dK] is the matrix of colorant densities at
maximum concentrations, andc is the vector of normalized
colorant concentrations corresponding to the reflectancer .
While the assumption of transparent layers with no scatter-
ing and no interaction between layers is sometimes too
simplistic (for instance, for halftone prints and/or pigmented
colorants), it is also fairly accurate for a number of useful
cases including typical photographic slides and (to a lesser
degree) photographic prints.

The Bouguer–Beer law is also applicable for homoge-
neous isotropic absorption color filters with low and mod-
erate concentrations of the absorbing solute in the filter.
Therefore, these can also be represented by model very
similar to (5). The set of filter spectral transmittances that
can be synthesized by usingK absorbing solutes in a me-
dium whose thickness may be varied betweentmin andtmax

is given by (see Ref. 21, pp. 30–32):

Sf 5 Hu 5 u0 # expS2 O
i51

K

a iteiDUa i
min # a i # a i

max;

tmin # t # tmaxJ , (6)

whereu0 is a transmittance factor determined by the reflec-
tions from the surfaces of the filter medium,ei is the
extinction of thei th solute,a i denotes the concentration of

* Note that conventionally the logarithm to the base 10 is used in
defining density, but for notational simplicity the natural logarithm is used
throughout this article.

† Technically, the Kubelka–Munk model (Ref. 23, Chap. 7) should be
used with the scattering terms set to zero. The mathematical details are,
however, unaffected by this technicality.

FIG. 1. Subtractive color reproduction.
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the i th solute, anda i
min and a i

max are the lower and upper
limits on a i, respectively.

SET THEORETIC ESTIMATION AND THE
GENERALIZED PRODUCT SPACE FORMULATION

The goal of set theoretic estimation is to obtain a feasible
solution satisfying multiple constraints. Though set theo-
retic schemes have been investigated in more general set-
tings,8 the scope of the discussion here is limited to methods
applicable in a Hilbert space (see Ref. 17, pp. 201) setting.
A Hilbert space is a linear vector space endowed with the
geometric notions of distance (norm) and orthogonality
(inner-product) with the additional desirable property of
“completeness.” A simple example of a Hilbert space* is the
space ofN-vectorsRN with the following defined opera-
tions and functions:

● Addition and subtraction operators for vectors: compo-
nent-wise addition and subtraction.

● “Scalar” multiplication operator: scaling all the compo-
nents of a vector by the given “scalar”, i.e., real number.

● “Inner-product” of two-vectors: the real number obtained
by term-wise multiplication and summation of the vectors

^x, y&5O
i51

N

xiyi.

The “inner-product” is indicative of the alignment of the
two vectors and is zero when the vectors are orthogonal
(perpendicular).

● “Norm” or length of a vector:

ixi5Î^x, x&.

The quantityix 2 yi represents the “distance” between
the vectorsx andy.

Given a set of constraints in a Hilbert spaceJ, set-
theoretic estimation tries to determine a feasible “solution”
that satisfies all the constraints. Mathematically, the set-
theoretic estimation problem can be stated as follows: Given
m constraints {Fi} i51

m ,

Find a* [ S0 5 ù
i51

m

Si, (7)

where {Si} i51
m are the constraint sets defined by

Si 5 $a [ Jua satisfiesF i%. (8)

The abstract notation used above is better understood by
using a concrete example for the involved terms. For in-
stance, consider that the Hilbert space is the spaceRN

defined earlier. A specific constraint (represented above by,
say, Fk) could then represent the physical constraint that
reflectance vectors are nonnegative. The corresponding con-

straint setSk then denotes the set of vectors inRN that
satisfy this nonnegativity constraint, i.e., the set of nonnega-
tive N-vectors. The notationa* in (7), then denotes an
N-vector that satisfies all the constraints {Fi} i51

m , and,
therefore, lies in all the constraint sets {Si} i51

m , and, there-
fore, in the intersectionS0 of these constraint sets.

The method of successive projections onto convex sets
(POCS) and its variants are powerful algorithms for solving
set theoretic estimation problems. The POCS algorithms
typically require that {Si} i51

m be all closed convex sets in
the Hilbert spaceJ. A set is said to be convex if, for any
pair of elementsa andb and any real numberm between 0
and 1, the elementma 1 (1 2 m)b also lies in the set.
Intuitively speaking, a set is convex if, for any two elements
in the set, the line segment joining the elements lies com-
pletely in the set. Two-dimensional examples of convex and
nonconvex sets are shown in Fig. 2, where for each of the
nonconvex sets a broken line has been superposed on the
figure. The broken line segment joins two points within the
set, but contains points outside the set, thereby establishing
the nonconvexity. Intuitively, a set is closed if it includes its
boundary. The interval of real numbers defined as 0# a #
1 is an example of a closed set, whereas the set 0# a , 1
is an example of a nonclosed set (because it does not include
1, which lies at the boundary).

If the sets {Si} i51
m are all closed convex sets in the Hilbert

spaceJ, the POCS estimate is determined as the limit of the
sequence {yk}, which is defined recursively by

yk11 5 PSn
~PSn21~. . . PS2~PS1~ yk!!. . .!!, (9)

wherey0 is an arbitrary starting point, andPS( z) denotes
the projection ofz onto the constraint setS, defined as

PS~ z! 5 arg min
x[S

i x 2 zi,

which can be described in words as the point inS closest to
z. The iterative process of successive projections in (9) is

* The purpose of this example is to aid intuitive understanding. For
precise and complete definitions, the reader is referred to Ref. 17.

FIG. 2. Examples of convex and nonconvex sets.
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guaranteed to converge* to a point in the intersectionS0,
provided that the intersection is nonempty.11,24 The same
convergence result holds for several variants of the basic
method that use relaxation/parallelization to speed up con-
vergence.25,8

A simple example of the POCS algorithm with three
constraint sets is shown in Fig. 3. The region inside the
ellipse represents the first constraint setS1, the region inside
the circle represents the second constraint setS2, and the
line segment represents the third constraint setS3. The
intersection of the three sets is the region of the line segment
that lies both within the circle and the ellipse. One iteration
of the POCS algorithm in Eq. (9) starting from the pointy0

is shown in the figure, where the pointy0 is projected
successively ontoS1, S2, andS3 by finding, sequentially for
each set, the point that is closest to the “current” point and
using that as the “current” point for the next set. For this
choice of initial point, constraint sets, and sequence of
projections, the single iteration converges to a point in the
intersection of the constraint sets. Typically, however, mul-
tiple POCS iterations are required.

The requirement of convexity of the constraint sets is a
major limitation of most of the algorithms and restricts their
applicability to more general problems. The recently devel-
oped generalized product space formalism12 helps in partly
overcoming this limitation by allowing the use of multiple
Hilbert spaces, such that each constraintFi is convex in its
Hilbert spaceJi. Let {J i} i51

m be m (not necessarily dis-
tinct) Hilbert spaces chosen so that thei th constraint yields
a closed convex set inJi. Define

Si 5 $a [ J iua satisfiesF i%, 1 # i # m. (10)

Then each of the setsSi is closed and convex in its corre-
sponding Hilbert spaceJi.

Let !i, J i, ^ z u z & i, i z i i denote the addition, scalar
multiplication, scalar product, and the norm in the Hilbert
spaceJ i. Consider the 2-set convex feasibility problem

Find a* [ S ù W , (11)

in the product Hilbert spaceJ,

J 5 J1 3 J2 3 . . . 3 Jm (12)

with the addition, scalar multiplication, inner product, and
norm defined in the standard component-wise fashion for
product spaces,17 where

S 5 S1 3 S2 3 . . . 3 Sm

is the product constraint set, and

W 5 H ~a, a, . . . , a! [ JUa [ ù
i51

m

J iJ
is the diagonal subspace inJ.

By definition, elements of the product Hilbert spaceJ are
m-tuples with the i th component as an element ofJi.
Likewise, an element of the product constraint setS is an
m-tuple whosei th component is an element ofJ i and
satisfies the constraintSi. The diagonal subspaceW is the
set ofm-tuples fromJ whosem components are identical.
The solutiona* to the above 2-set convex feasibility prob-
lem lies inW and can be, therefore, written asa*5(a*, a*,
. . . , a*); a* [ù i51

m Ji. Sincea* also lies inS, it follows
that a* [ Si@i , or equivalently a*[ùi51

m Si. Hence, the
above feasibility problem is equivalent to the convex feasi-
bility problem (7).

Since (11) represents a 2-set convex feasibility problem
in the product spaceJ, it can be solved using the method of
successive projections onto convex sets (POCS). From the
definition of the product Hilbert space, it directly follows
that the projection ofz 5 ( z1, z2, . . . zm) [ J onto S is
PS(z) 5 (PS1

( z1), PS2
( z2), . . . PSm

( zm)), i.e., the compo-
nent-wise projection onto the corresponding convex sets in
their respective Hilbert spaces. If the Hilbert spaces
{ Ji} i51

m are all identicallyRN with the usual inner product
and Euclidean norm, the projection ofz 5 ( z1,
z2, . . . zm) [ J onto W is simply Pw(z) 5 ( za,
za, . . . za), whereza51/mSi51

m zi, i.e., the average of the
m-components ofz. One iteration of the POCS method
consisting of a projection ontoS followed by a projection
onto W is then equivalent to projecting onto the individual
constraint sets (in parallel) followed by averaging of the
projections, which may be viewed as a parallel POCS
scheme. For the general case, when the Hilbert spaces
{ Ji} i51

m are not identical, the mathematical expression for
the projection ontoW is given in the appendix. This pro-
jection operation can be interpreted as the “averaging” of
the components of a vector inJ using the corresponding
distance metric inJ. Hence, the product space framework
can be interpreted as a “generalized parallel POCS” algo-
rithm, in which at each iteration the estimate is obtained by
“averaging” the projections onto the constraint sets {Si} i51

m

* Actually, only weak convergence17 is assured for general Hilbert
spaces, but for most cases of practical interest, the Hilbert space is finite
dimensional and the notions of weak and strong convergence coincide.

FIG. 3. Simple POCS example.
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in their respective Hilbert spaces {J i} i51
m .12,26 It may also

be noted that even if the constraints are inconsistent, i.e.,
S0 5 f, the product space formulation determines an opti-
mal estimate in the sense that the estimate minimizes the
sum of squares of distances from the estimate to the con-
straint sets, where the distances are computed in the respec-
tive Hilbert spaces.26

CONVEXITY OF SETS IN COLOR SYSTEMS

The vector space description of colorimetry and color sys-
tems naturally leads to a number of sets that are of interest
in color science and imaging. Some of these sets have been
defined earlier. Several other sets are defined here and their
convexity is examined, to evaluate their suitability for
POCS based set theoretic estimation schemes.

Consider the abstract set definition,

Sl~B, y, n! 5 $x [ RNu iBTx 2 yi # n%, (13)

wherey is some vector inRM, B is anN 3 M matrix, i z i
denotes the Euclidean vector norm, andn $ 0 is some
nonnegative real constant. It can be readily established that
Sl(B, y, n) is a closed convex set in the Hilbert spaceRN.
Several sets that are of interest in color problems can be
shown to be specific instances of the setSl(B, y, n). Exam-
ples include the set of radiant spectra having a specified
tristimulus valuet (metamers),

Sl~A , t , 0! 5 $f uATf 5 t %,

the set of irradiant spectra whose tristimuli are close to
(within a specified distanced) of the target tristimulust,

Sl~A , t , d! 5 $f u iATf 2 t i # d%,

the set of reflectance spectra that produce a tristimulus close
to t under the illuminantl, i.e.,

Sl~LA , t , d! 5 $r u iATLr 2 t i # d%,

the set of reflectance spectra with specified chromaticity
values (x, y) under the illuminantl,

SlSLA F ~1 2 x! 2x 2x
2y ~1 2 y! 2y GT

, t , 0D
5 H r UF ~1 2 x! 2x 2x

2y ~1 2 y! 2y GATLr 5 0J ,

and the set of reflectance spectra that could give rise to
scanner measurementts,

Sl~M s, t s, t! 5 $r u iM s
Tr 2 t si # t%,

where t is a parameter that may be determined from the
statistics of the noisee at an appropriate confidence level.27

More often the value oft is empirically set equal to the
noise variance. From the fact that the generic setSl(B, y, n)
is a closed convex set, it follows that all these spectral sets
are closed convex sets inRN.

The utility of the above sets in set theoretic estimation is
further enhanced when they are used in conjunction with

other physical constraints that apply to color spectra. Two
useful constraints in this category are nonnegativity and
smoothness. A smoothness constraint set can also be ex-
pressed in the form of the generic set (13) asSl(H

T, 0, m),
whereH is a high-pass operator andm is an upper bound on
the high-pass energy (as determined byH) that ensures a
desired degree of smoothness.27 A general form of the
nonnegativity constraint on the spectra can be defined by the
constraint set

Sn~B, y! 5 $x [ RNuBTx # y%, (14)

whereB is an arbitraryN 3 M matrix andy is a M 3 1
vector of upper bounds. The setSn(B, y) is a closed convex
set in RN and can be used to express several useful con-
straints including the setSn(2I , 0) of nonnegative spectra,
the setSn(I , 1) of spectral transmittances and reflectances
that are bounded above by unity, and the set of transmit-
tances/reflectance spectra that are concave over a specified
spectral region, which is obtained by settingBT equal to the
first derivative operator andy 5 0.27 The last set was used
in Ref. 27 to approximate a unimodality constraint on filter
transmittances. For general values ofB, the projection onto
Sn(B, y) cannot be evaluated analytically. However, the set
can be meaningfully decomposed into the intersection of
several sets as

Sn~B, y! 5 ù
i51

M

Sn~b i, yi!, (15)

wherebi is the i th row of B (anN 3 1 row-vector), andyi

is the i th element ofy. Therefore, the single constraint set
Sn(B, y) may be replaced by theM sets {Sn(bi, yi)} i51

M .
In the design of filters for three channel-color recording

devices such as colorimeters and scanners, it is useful to
have sensitivities that are linear transformations of the
CMFs. Hence, the set of device spectral sensitivities that are
a linear combination of the CMFs is a useful set in filter-
design applications. This set is the specific instance of the
column space (or range) of a matrix, which may be ex-
pressed generically as

SR~B! 5 $y [ RMuy 5 Bx, x [ RN%,

whereB is anM 3 N matrix andy andx are vectors inRM

andRN, respectively. For any arbitraryM, N, andB; SR(B)
is a closed convex set inRM. The set of linear combinations
of CMFs is thenSR(A). Note that instead of requiring an
exact color mixture curve, the design requirement may be
relaxed somewhat to allow filter transmittances that are
fairly close to being color mixture curves. This set can be
expressed asSl((I 2 PA), 0, t), wherePA is the orthogonal
projection matrix that projects onto the column space ofA
(the HVSS in this case) andt is a suitably small upper
bound for the filter transmittance “energy” outside this
space. Such a set was also proposed in Ref. 27 for use in
scanner spectral characterization.

For additive systems, it can be readily seen that both the
set of producible spectraSP

a and the gamut in tristimulus
spaceST

a are convex closed sets in the Hilbert spacesRN and
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R3, respectively. It can be readily seen thatSP
a , SR(P) and

ST
a , SR(T), hence as a first approximation these column

spaces may be used instead of the gamut sets. This approx-
imation is particularly appropriate and useful in situations
where the limits on the primary amplitudes are unknown.

The projection onto the generic setsSl(B, y, n), Sn(b, y),
andSR(B) can be computed analytically using the method
of Lagrange multipliers and the Kuhn–Tucker conditions
for constrained optimization (see Ref. 28, p. 295–321) and
these are tabulated in the appendix. The projections onto the
specific instances of these sets that are relevant in color
applications are readily computed from these tabulations.
For the setsSP

a andST
a, analytic expressions for the projec-

tions cannot be determined and the projections must be
determined computationally.

For subtractive color systems, the setSD
s of producible

spectra is generally* not convex inRN. A simple example
demonstrating the nonconvexity ofSD

s in RN is shown in
Fig. 4, where a set of three idealized cyan (C), magenta
(M), and yellow (Y) dyes are considered. Each dye has a
spectrally flat absorptance over its absorption band and
zero absorptance outside of this band; and the printing
substrate is assumed to be a perfect reflector. The absorp-
tion bands for C, M, and Y are the wavelength intervals
[550, `] nm, [500, 600] nm, and [0, 500] nm, respec-

tively (note that the spectral absorptance bands for C and
M overlap). Figure 4 shows the reflectances for C, M, and
Y at ` concentrations and also the average of the C and
M reflectances (at̀ concentration). Note that the average
of the C and M reflectances is the midpoint of the
“line-segment” joining these reflectances and should lie
in the setSD

s of realizable reflectances, if the set is convex
in RN. With a little logic, it can be seen that no combi-
nation of the C, M, and Y dyes in accordance with the
model used inSD

s can produce the average of C and M
reflectances shown in Fig. 4. This demonstrates that the
the setSD

s is nonconvex inRN for these dye densities.
Therefore, it is clear that the constraint of reproducibility
on a subtractive media cannot be used in the traditional
POCS algorithm. In the next section, a Hilbert space is
presented which makes this constraint convex allowing it
to be used in the generalized product space framework
mentioned in the previous section.

HILBERT SPACE THAT MAKES CERTAIN
CONSTRAINTS IN SUBTRACTIVE COLOR CONVEX

Several constraints in subtractive color can be expressed as
convex constraints in the density domain. Note that both the
set SD

s of spectral reflectances producible on a given sub-
tractive medium defined in (5) and the setSf of realizable
filter transmittances in (6) can be treated in a unified fash-
ion, by defining the generic set of spectra

* It can be seen thatSD
s is convex if the dyes have nonoverlapping

spectral bands, such as dyes that satisfy the “block-dye assumption.”6

However, for most practical cases,SD
s is not convex inRN.

FIG. 4. Example demonstrating nonconvexity of SD
s .
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Ss~d0, D, cmin, cmax! 5 $x [ R1
N ux 5

exp~2~d0 1 Dc!!, ci
min # ci # ci

max%, (16)

whereR1 is the set of positive real numbers,d0 [ RN, D
is anN 3 M matrix, andcmin, cmax, c [ RM. Its equivalent
in the density domain is the corresponding set of producible
densities

Sd
s~d0, D, cmin, cmax! 5 $dud 5 d0 1 Dc,

ci
min # ci # ci

max%. (17)

It is readily seen thatSd
s(d0, D, cmin, cmax) is a convex

closed set inRN. However, since this constraint set is
defined in the density domain, it cannot be used in conjunc-
tion with the other sets defined earlier, which were convex
in the reflectance/transmittance domain in the original
POCS formulation.

To see how the product space formalism can be exploited
to make the setSs(d0, D, cmin, cmax) convex, define the
Hilbert spaceJ9 over the field of real numbers by the set of
vectors

J9 5 $x [ Rnuxi . 0% (18)

and the addition and scalar product operators,! and J,
respectively, as

x ! y 5 exp~ln~x! 1 ln~y!! 5 x # y (19)

a J x 5 exp~a ln~x!! 5 xa, (20)

and the inner-product

^x, y&9 5 ln~x!Tln~y!. (21)

Then it can be readily verified that (J9, !, J) defines an
Hilbert space with the inner product^ z , z &9 and the norm
defined as

ixi9 5 Î^x, x&9 5 iln~x!i. (22)

It can also be seen that the setSs(d0, D, cmin, cmax) is a
closed convex set in the Hilbert spaceJ9.

The projection ontoSs(d0, D, cmin, cmax) in J9 can be
determined only numerically for general values ofD, cmin,
andcmax. However, two special cases for which the projec-
tion can be determined analytically are of practical interest.
The first case is the one in which there are no limits on the
densities, i.e.,cmin 5 2`, cmax 5 `, and the second in
which the matrixD has orthonormal columns. The latter
case is of interest in applications in which the densities
constitutingD have been indirectly determined through a
principal components analysis of the spectra.29 The projec-
tions for these two cases are listed in the appendix.

Note that the distance metric proposed above is simply the
Euclidean distance in logarithmic (density) space. Alternate
definitions of the inner product and norm can be readily ob-
tained by introducing a positive spectral weighting function for
the norm and inner product. Examples of applications where
such weighting functions have been successfully used (though
not in a set theoretic framework) can be found in Ref. 30.

APPLICATIONS

As outlined above, several constraint sets in subtractive
color are convex in the Hilbert space (J9, !, J). The
generalized product space formulation can, therefore, be
used to combine these sets with the other sets described
previously that are convex in the spectral reflectance/trans-
mittance domain. The application of such an approach to
specific problems in color science and imaging is demon-
strated in this section. Three illustrative examples are con-
sidered here: model based scanner calibration, design of
color scanning filters, and colorant formulation for trans-
parent colorants.

Model-Based Spectral Scanner Calibration

The goal of scanner calibration is to provide a transfor-
mation from the scanner measurements (typically, RGB
values in three channel scanners) to a device-independent
color space (such as CIEXYZ space) or to spectral reflec-
tance (from which tristimuli can be readily computed).
Typically, this transformation takes the form of a look-up
table or regression polynomial,31 and is determined by scan-
ning a calibration target and establishing the correspon-
dence between the scanner output and independently mea-
sured colorimetric/spectral data from the target.

For a noiseless scanner, it can be readily seen that exact
CIE XYZ tristimulus values (under a specified viewing
illuminant) can be obtained from the scanner measurements
by means of a linear transformation, if the product of the
viewing illuminant and the CIEXYZ CMFs are linear
combinations of the scanner sensitivities.32–34 Since most
present day scanners do not satisfy this condition, indepen-
dent calibrations for different input media (for instance,
photographic/xerographic/lithographic prints) yield signifi-
cantly better results than a single calibration over multiple
media. Therefore, in order to obtain accurate colors from a
scanner for a given input medium, the scanner should be
calibrated with a calibration target with spectral character-
istics similar to that of the input medium. The largest single
class of scanner inputs is probably photographic prints. A
number of manufacturers of photo-processing products are
offering photographic scanner calibration targets.35 How-
ever, the targets typically correspond to a single type and
batch of photographic paper and dyes, and can vary consid-
erably in their spectral characteristics from each other and
from photographic prints from the same and other manu-
facturers. As a result, scanner calibration targets are often
unavailable for the specific medium on which the input
images are produced. This is a fundamental limitation of the
“measurement-based” scanner calibration scheme described
above, and model-based calibration is therefore an attractive
alternative.

The idea behind model-based scanner calibration is to
exploit models for the medium and the scanner to obtain a
calibration transformation. First, from direct measurements
or indirect estimation methods, spectral models are obtained
for the scanner and for the medium of interest. The calibra-
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tion is then performed by determining for each set of scan-
ner measurements a feasible reflectance spectrum for the
given medium that would give rise to specified scanner
measurements. The calibration process thus defines a trans-
formation from scanner measurements to spectra (on the
given medium) that result in those measurements. The spec-
tra can be readily used to obtain tristimuli under any desired
illuminant and, therefore, the spectral calibration has an
advantage over schemes that transform scanner measure-
ments into tristimuli under a particular viewing illuminant.
To illustrate the idea of model-based scanner calibration, the
specific case of scanning images on photographic media is
used in the remainder of this section, and results from
simulations and actual experiments are presented. This ap-
plication is also presented in greater detail in Refs. 36, 37.

As mentioned earlier, the Bouguer–Beer subtractive
model of (5) holds fairly well for photographic media;
where cyan, magenta, and yellow dyes are used for obtain-
ing the color prints. Since pure cyan, magenta, and yellow
tone prints are not normally available in images, the densi-
ties corresponding to the dyes cannot be directly measured.
Note, however, that the spectra in the model of (5) can be
rewritten as

ln~r ! 2 ln~r p! 5 2 O
i51

3

cid i. (23)

The left-hand side of the above equation represents the
density corresponding to the reflectancer relative to the
white paper reflectancerp. From the above equation, it is
clear that these paper-relative spectral densities are linear
combinations of the densities {di} i51

3 . Hence, the paper-
relative spectral densities lie in a three-dimensional space
(excluding noise effects), and principal components analy-
sis can be used to determine an orthonormal set of basis
vectors for this space. This set of vectors serves as “princi-
pal dye” densities and is a linearly transformed version of
the actual dye densities. This idea of utilizing principal
components analysis in the density domain has been used
earlier.29,38The “principal dye” densities can be determined
from a small number of spectral measurements from the
images to be scanned and, therefore, do not require a cali-
bration target with uniform patches. Also note that, while
the concentrations corresponding to the real dye densities in
(5) were subject to simple upper and lower bounds, similar
bounds cannot be obtained for the virtual dyes obtained
from the principal components analysis and the information
in the bounds is, therefore, lost. IfO 5 [o1, o2, o3] is the
matrix of the (orthonormal) virtual dye densities obtained
through the principal components analysis, the constraint
setSs(ln(rp), O, 2`, `) can be used to describe producible
spectra.

Now consider the process of scanning a photographic
print characterized by the above media model on a color
scanner that is accurately represented by the model of (3). A
specific scanner measurement vectorts can arise from re-
flectances in the setSl(Ms, ts, t). In addition, from the

model for the medium, it is known that the input spectra lie
in Ss(ln(rp), O, 2`, `). SinceSl(Ms, ts, t) is a convex
closed set inRN and Ss(ln(rp), O, 2`, `) is a convex
closed set inJ9, the method of POCS can be used in the
generalized product space framework to obtain feasible
spectra that agree with both the scanner model and the
model for the input medium, thereby yielding a spectral
scanner calibration.

The results of applying this method to the calibration of
a simulated scanner and to an actual scanner are described
in the next two sections. In both cases, the Kodak IT8
photographic target35 is used for testing the model-based
calibration scheme. The reflectance spectra for the 264
patches in the Kodak IT8 target were measured indepen-
dently using a spectrophotometer. The reflectance of the
white patch in the gray-wedge on the target is used as the
reflectance of the paper substraterp in computing paper-
relative spectral densities in (23). The first three principal
components of the 264 densities account for 97.2% of the
signal energy in density space, and are used as the (or-
thonormal) densitieso1, o2, o3 of three principal dyes con-
stituting the prints. These densities are shown in Fig. 5. The
constraint that spectra obey the media model is represented
by the setSs(ln(rp), O, 2`, `), whereO 5 [o1, o2, o3].

Simulation Results.A three-channel color scanner is
“synthesized” by defining sensitivities for its channels as the
combination of the Wratten39 WR-26 red, WR-49 green,
and WR-52 blue filters with a cool white fluorescent lamp
(the scanning illuminant). The resulting scanner sensitivities
for the three channels are shown in Fig. 6. To test the
model-based calibration scheme, scanner RGB valuests are
generated using the model of (3) and the measured reflec-
tance r for each patch on the Kodak IT8 target. For the
purpose of the simulations, the noise term was set to zero. A
spectral reflectance estimater̂ corresponding to the scanner
measurementts is then obtained by computing a feasible
spectrum lying in the constraint setsSs(ln(rp), O, 2`, `)
and Sl(Ms, ts, 0). For this purpose, the POCS algorithm
was applied in the generalized product space framework. An

FIG. 5. Densities for the three principal dyes.
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outline of the complete algorithm is given in Table I. Note
that in this algorithm the projection onto the diagonal sub-
space has been replaced by a simpler averaging step, the
motivation behind which is described in the appendix.

To estimate the accuracy of the model-based calibration
scheme, the computed spectrumr̂ is compared with the
actual spectrumr . Two metrics are used for this compari-
son: (1) the normalized mean squared spectral error
(NMSSE) defined (in dB) as

NMSSE5 10 log10SE$ir 2 r̂ i2%

E$ir i2% D , (24)

where E{z } denotes the average over the spectral ensemble
(in this case the Kodak IT8 target spectra), and (2) theDE*ab

color-difference22 under CIE D50 daylight illuminant,
which approximates the perceived magnitude of the color
difference and is frequently used in comparison of calibra-
tions. For the simulated model-based scanner calibration,
over the 264 patches in the Kodak IT8 target, the NMSSE
is 233.84 dB and theDE*ab error has an average value of
0.62 and a maximum value of 2.59.

The number of iterations required in the algorithm of
Table I depends on the chosen tolerance for the convergence
test in step 7. For the implementation of this section, an
average of 53 iterations per sample were required to achieve
convergence. Note, however, that the rate of convergence of
the algorithm is not a serious concern, because in a practical
application the algorithm would be utilized to build a
look-up table for the scanner calibration, which would then
be used to transform the data from the scanner. Details on
the use of the method in a practical application can be found
in Refs. 36 & 37.

Linear Media Model. The model-based calibration
scheme presented above utilizes a linear model for the
scanner and a nonlinear model for the spectra producible on
the media, which are combined in a POCS estimation
scheme using the generalized product space framework. A

simpler alternative is to utilize a linear model for the spectra
producible on the media. Since the scanner has three chan-
nels, if reflectance spectra producible on the media are
represented as linear combinations of three basis vectors
(whose scanner responses are linearly independent), the
scanner measurements can be used to estimate the linear
combination of the basis vectors that results in the given
scanner response.4 In this section, a scanner calibration
scheme based on this idea is described and compared with
the method of the last section. This scheme, based on purely
linear models, is of interest because a large body of research
has explored linear models for object reflectance spec-
tra.40–42

If the spectra on the scanned media are expressed as
linear combinations of three basis spectra, the set of pro-
ducible spectra can be expressed asSR(G), whereG is the
N 3 3 matrix with the basis spectra as its columns. The
optimal (in the mean-squared error sense) set of basis vec-
tors for representing a given ensemble of spectra can be
obtained through principal components analysis.43,42 A
spectral reflectance estimater̂ corresponding to the scanner
measurementts can then be obtained by computing a fea-
sible spectrum lying in the constraint setsSR(G) andSl(Ms,
ts, 0) representing, respectively, the spectra producible on
the media and the spectra capable of producing the given
scanner measurement. For this simple case, however, the
POCS method is not required, because the problem can be
solved analytically. The estimated spectrum corresponding
to a scanner measurementts is given by

r̂ 5 G~M s
TG!21t s. (25)FIG. 6. Sensitivities for the simulated scanner channels.

TABLE I. Algorithm for model-based scanner calibra-
tion.

1. Set Ms as the spectral sensitivity of the scanner, rp as the
white paper reflectance of the scanned medium, O as the
matrix of orthonormal principal dye densities for the scanned
medium, and ts as the set of scanner RGB values for which a
calibration is desired.

2. Initialize i 5 0; and spectral estimate ri 5 (Ms
T)†ts, where †

indicates the pseudo-inverse. Set components of ri that are
zero or negative to a small positive value and values above
unity to 1.

3. Determine projection onto the set of spectra that produce the
given scanner measurement in RN (see the appendix for details
on the projection):

x 5 PSl~M s,ts,0!~ri!.

4. Determine projection onto the set of spectra producible on the
given medium in J9 (see the appendix for details on the
projection):

y 5 PSs~ln~rp!,O,2`,`!~ri!.

5. Constrain to lie in the diagonal subspace W in RN 3 J9

ri11 5 ~x 1 y!/2.

Set components of ri 1 1 that are zero or negative to a small
positive value.

6. Update iteration count: i 5 i 1 1.
7. Check for convergence: If ri is not in Ss(ln(rp), O, 2 `, `) ù

Sl(Ms, ts, 0) return to 3; otherwise, proceed to 8.
8. Set r̂ 5 ri. This is the estimate of the reflectance on the given

medium corresponding to the scanner measurement ts.
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Note that (25) is derived on the premise that the matrix
Ms

TG is nonsingular, which is mathematically equivalent to
the requirement that the scanner responses corresponding to
the basis vectors are linearly independent. This corresponds
to the requirement for colorimetric independence for prima-
ries used in a color-matching experiment.7

The previous simulation was repeated using the scanner
calibration scheme based on the purely linear models. The
first three principal components for the Kodak IT8 target
spectra were determined and used as the basisG for the
spectra producible on the media. As previously scanner
RGB values corresponding to the reflectances of the Kodak
IT8 target were generated using the scanner sensitivities
shown in Fig. 6. From each scanner RGB tripletts, the input
spectral reflectance was estimated using (25). The accuracy
of the calibration was then computed using the metrics
introduced earlier. For the scanner calibration scheme based
on purely linear models, NMSSE is224.22 dB and the
DE*ab error has an average value of 3.60 and a maximum
value of 23.56 over the 264 patches in the Kodak IT8 target.
The errors are significantly larger than the corresponding
errors in the previous simulation and the accuracy of the
calibration is unacceptable for most applications. The cali-
bration error is largely attributable to the use of the three-
dimensional linear model for input reflectance spectra,
which does not provide sufficient accuracy. To obtain ac-
curacy comparable to the previous nonlinear model, i.e., an
averageDE*ab error under 0.62, for the reflectances in the
Kodak IT8 target, 6 or more principal components are
required. Note, however, that such a linear model cannot be
used in the model-based calibration for a scanner with only
three channels. The nonlinear model for the media used
previously provides a more accurate and parsimonious rep-
resentation for the spectra producible on the media, which is
more appropriate and provides much greater accuracy, al-
beit through the use of a more complicated algorithm for the
model-based calibration.

Experimental Results.The model-based spectral scanner
calibration was also tested on an actual three-channel
UMAX color scanner with 10 bits per channel. Since the
scanner sensitivities for the red, green, and blue channels
were not directly available, these were first estimated by the
principal eigenvector technique* described in Ref. 27. The
estimated sensitivities are shown in Fig. 7. The model-based
calibration was performed for the Kodak IT8 in a manner
identical to that employed for the simulation and the same
metrics computed for evaluation of the calibration accuracy.
The NMSSE was231.03 dB, and the average and maxi-
mum DE*ab errors were 1.76 and 7.15, respectively. For
comparison, the scanner was also calibrated directly using a
neural-network based technique with the complete Kodak
IT8 target as the training set. The average and maximum
DE*ab errors (over the Kodak IT8 target) for the direct
calibration were 1.05 and 4.40, respectively.

One may note that the errors in the calibration of the
UMAX scanner are larger than those obtained in the simu-
lations. One probable cause of the larger errors is the
estimation error in the scanner sensitivity. An inspection of
the Fig. 7 shows that the estimated sensitivities for the
UMAX scanner have a number of negative and positive
lobes, which are highly improbable in the actual scanner.
Other potential causes include measurement noise and de-
viations from the scanner model of (3) due to fluorescence,
stray light, and other nonlinear effects.44 To verify that the
increased error is indeed due to these factors, the first
simulation was repeated using the estimated scanner sensi-
tivity of Fig. 7. For this simulation, the model-based scanner
calibration yielded a NMSSE of233.53 dB and average
and maximumDE*ab errors of 0.76 and 5.37, respectively.
These values are consistent with those obtained for the first
simulation.

One may also note that model-based spectral scanner
calibration for photographic media was used as an illustra-
tive example in this section and the same method can be
used in several other applications. In particular, the model-
based calibration framework can be used to obtain spectro-
photometric data from densitometers, colorimeters, and
color cameras, which can also be represented by the model
in (3). The algorithms can also be readily modified to
incorporate the use of more scanner channels and more than
three “principal dyes” for media that have more physical
dyes or do not obey the Bouguer–Beer law exactly. The set
of producible spectra could also be made more precise by
including bounds on the concentrations of the principal dyes
that are determined statistically.

Design of Color-Mixture-Curve Filters

As mentioned earlier, in designing filters for three-chan-
nel color recording devices such as colorimeters, cameras,
and scanners, it is useful to have transmittances that are
linear combinations of the CMFs, which are commonly
referred to as color mixture curves (CMCs). The set of

* Information on the internal scanner matrixing was not available and,
therefore, the POCS technique described in Ref. 27 could not be employed.

FIG. 7. Estimated sensitivities for the UMAX scanner.
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CMCs was represented by the setSR(A). CMCs can be
readily generated by taking arbitrary linear combinations of
the CMFs. However, these CMCs need to be realizable as
physical filters in order for them to be useful. The set of
realizable filters obtainable by using transparent absorbing
solutes in glass was represented by the setSf in (6). As
mentioned earlier, the setSf can also be represented in terms
of the generic setSs(d0, D, cmin, cmax) of (16) by setting
d0 5 ln(u0), di 5 ei, D 5 [d1, d2 . . . dK], ci

min 5 a i
min

tmin, andci
max 5 a i

max tmax. SinceSR(A) is a closed convex
set inRN andSs(d0, D, cmin, cmax) is a closed convex set in
J9, the product space framework can be used to determine
the transmittance (and also the dye concentrations) for a
color scanning filter, which is a color mixture curve.

In practice, additional constraints may be necessary to
avoid undesirable “feasible solutions.” For instance, note
that a zero spectral transmittance is a CMC, because it can
be expressed as a linear combination of CMFs with zero
weighting for each of the CMFs. If the absorption bands of
the solutes cover the entire spectral region in consideration
and sufficiently high concentrations are allowed, a transmit-
tance close to zero can also be realized using the solutes.
Thus, the zero (or practically, a near zero) transmittance
represents an “solution” in the product space framework
mentioned above as it lies in the setsSR(A) andSs(d0, D,
cmin, cmax). Clearly this solution is undesirable because,
with a zero or near zero transmittance filter, the recorded
information is primarily noise. To avoid such a “solution,”
additional constraints need to be incorporated in the design
process. For instance, the total concentration of the solutes
may be limited (as is further illustrated in the example in the
next section) or additional constraint sets may be introduced
that require the transmittance to be above and below appro-
priately chosen thresholds in specified spectral regions.

Experimental Results.To investigate the feasibility of
synthesizing filter transmittances that are also CMCs, a set
of K 5 15 filters was chosen from Schott’s catalog of
Optical glass filters.45 These filters are designated by the
names BG18, BG38, BG39, VG4, GG10, GG420, GG435,
GG455, GG475, GG495, OG515, OG530, and OG550. The
transmittances {ui} i51

K , respectively, for these filters were
determined from tabulations in the catalog and these are
shown in Fig. 8. The corresponding densitiesdi 5 2ln(ui)
were calculated and the range of producible densities was
assumed to be the set {¥ i51

K cidi; 0 # ci # 1}. To keep the
transmittance from taking an extremely low value, an addi-
tional constraint that the sum of the “solute concentrations”
is bounded above bycsum5 2.0 was utilized. Thus, the set
of realizable filter transmittances (with reasonably high
transmittance) was defined as

Sa 5 HuUu 5 exp~2 O
i51

K

cid i!; 0 # ci # 1; O
i51

K

ci # csumJ .

(26)

It can be readily verified thatSa is a closed convex set in the
Hilbert spaceJ9. Now, if Sa has an element that is a color

mixture curve, it can be determined by using the POCS
algorithm in the generalized product space framework to
obtain a transmittance inSa ù SR(A). As previously men-
tioned, if the problem is infeasible, this algorithm still
provides a useful result, because it converges to the trans-
mittance that minimizes the sum of its squared distances
from the setsSa and SR(A) (in J9 and RN, respectively).
This transmittance may then be projected onto the setSa to
obtain a reasonable approximation to the filter inSa that is
closest toSR(A). For the specific case of the Schott filters
used here, an exact color-matching curve could not be found
in Sa. However, the transmittance obtained on convergence
was extremely close to both the setsSa and SR(A) and,
therefore, a filter transmittance that is close to being a CMC
could be determined. The resulting filter transmittance from
the procedure outlined above is shown in Fig. 9. The values
of the “solute concentrations” {ci} i51

K in (26) corresponding
to this filter were 1.0000, 0.0173, 0.5135, 0, 0, 0, 0.2441,
0.0156, 0.0661, 0.0732, 0.0432, and 0.0270.

To evaluate the degree to which this transmittance is
close to a CMC, the Neugebauer quality-factor was used.46

The Neugebauer quality-factor is given by

q~u! 5
iPAui2

iui2 ,

wherePA is the orthogonal projector onto the column space
of A (the HVSS). The Neugebauer quality factor is bounded
between 0 and 1 and can be interpreted as the filter trans-
mittance energy that lies in the HVSS (which is the same as
SR(A)). Thus, a CMC has a Neugebauer quality factor of 1.
For the designed filter, the Neugebauer quality factor had a
value of 0.99922, which indicates that it is extremely close
to being a CMC.

Note that, in a practical application, one would require
three CMC filters with linearly independent filter transmit-
tances. The “solutes” for the filters shown in Fig. 8 were,
however, suitable only for the creation of a single CMC.
Therefore, results for the design of only one CMC have

FIG. 8. Schott filters used in design of a CMC filter.
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been presented here. Conceptually, the design of additional
filters could be performed in a manner identical to the one
design presented here, provided that the available “solutes”
for creating the filters offered enough control for the design
of three CMC filters. The requirement for linearly indepen-
dent filter transmittances can be met by either incorporating
additional constraints in the design process or through a
choice of the filter solutes. For example, one might attempt
to design red, green, and blue CMC filters by constraining
transmittance in these spectral regions to be above a thresh-
old and in other spectral regions to be below another thresh-
old, or by choosing solutes that allow only red, green, or
blue filters to be realized for the three designs.

Colorant Formulation

The POCS method using the generalized product space
framework can also be applied to solve colorant formulation
problems for transparent colorants following the model of
(5). A specific example is considered here for illustrating
this application. Figure 10 shows the density for white paper
and cyan, magenta, and yellow colorants (at maximum
concentrations) as determined from measurements from the
Kodak IT8 target.35 Consider the problem of finding the
colorant concentrations for the colorants to match a 50%
spectrally flat reflectance under CIE D50 daylight illumina-
tion. Using the described notation, the set of spectra that
match a 50% spectrally flat reflectance is given by

Sl~LA , ATLr 0, 0! 5 $f uATLf 5 ATLr 0%,

whereL is the diagonal matrix with the CIE D50 daylight
spectrum as its diagonal,r0 denotes the spectrally flat 50%
reflectance, andA is the matrix of CIEXYZcolor-matching
functions as defined earlier.

The set of spectra that can be produced with the cyan,
magenta, and yellow colorants from the Kodak IT8 target
can also be written in terms of the generic sets previously
defined asSs(d0, D, 0, 1), whered0 is the density of white

paper for the Kodak IT8 target andD is the matrix whose 3
columns are the densities of cyan, magenta, and yellow at
their maximum concentrations.

SinceSl(LA , ATr0, 0) is a convex closed set inRN and
Ss(d0, D, 0, 1) is a convex closed set inJ9, the method of
POCS can be used in the generalized product space frame-
work to obtain a feasible spectrum that matches the 50%
spectrally flat reflectance under CIE D50 daylight illumina-
tion and is producible using the specified colorants. Figure
11 shows the results obtained, where the 50% spectrally flat
reflectance is shown along with its metamer (under D50)
produced with the Kodak IT8 colorants of Fig. 10. The
normalized concentrations corresponding to the cyan, ma-
genta, and yellow colorants for obtaining this spectral re-
flectance were 0.0854, 0.0737, and 0.0500, respectively.

While the example presented here was a hypothetical one,
the method could be applied to several practical problems.
One potential application is in the color calibration of con-
tone printing systems (e.g., dye-sublimation/pictography)
whose colorant interactions closely follow the subtractive
model of (16). The above method would allow a complete
color characterization of the system based on a simple
per-colorant calibration.

CONCLUSIONS

This article discusses the application of set theoretic esti-
mation schemes to problems in color science and imaging,
with particular emphasis on subtractive color systems. Typ-
ical constraints arising in subtractive color systems are
nonconvex in the space of spectral reflectance/transmit-
tance, and, therefore, these constraints cannot be directly
incorporated into robust set-theoretic schemes. The article
describes how appropriate definition of a Hilbert space
structure on the space of color spectra makes several con-
straints in subtractive-color convex. This enables the use of
a POCS algorithm in a generalized product space for solv-

FIG. 9. CMC approximation designed using the Schott
filters.

FIG. 10. Spectral densities for paper, cyan, magenta, and
yellow from the Kodak IT8 target.
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ing problems involving these constraints in conjunction
with other constraints that naturally lead to convex sets in
the space of reflectance/transmittance spectra.

The usefulness of the new methods is demonstrated by
applying them to three problems of interest to the color
science and imaging community. First, it is shown that the
methods can be applied for spectral calibration of color
scanners using a model-based approach. The results indicate
that accurate spectral data can be obtained from scans of
photographic media, provided that the scanner spectral sen-
sitivities are known. In the second application, the same
methods are used to successfully design color filter trans-
mittances that are “almost” color mixture curves for use in
colorimeters, scanners, or cameras. The third application
demonstrates the use of the new methods to determine
colorant concentrations required to metamerically match a
given spectrum.

APPENDIX: PROJECTIONS ONTO THE
CONSTRAINT SETS

The projection of an arbitrary pointz in a Hilbert spaceJ
onto a convex closed setS is defined as

PS~z! 5 arg min
y[S

iy 2 zi, (27)

wherei z i is the norm in the Hilbert spaceJ. The convexity
and closedness of the setS ensure that the projection is
well-defined and unique.47 From the definition and the prop-
erties of the norm, it is clear that ifz [ S thenPS(z) 5 z.
For the generic sets defined previously, projections for a
vector outside the constraint set are summarized below. In
order to facilitate reading, the definitions of the sets have
also been repeated in this appendix.

1. Projection onto Sl(B, y, n):
Sl~B, y, n!5$x[RNu iBTx2yi#n%, (28)

whereB is anN 3 M matrix, y is some vector inRM, i z i
denotes the Euclidean vector norm, andn $ 0 is some
nonnegative real constant.

For z ¸ Sl(B, y, n) the projection ontoSl(B, y, n) is
calculated most readily using the singular value decompo-
sition (SVD)48 of B. Let the SVD ofB be given by

BN3M 5 UN3NLN3MVM3M
t (29)

LN3M 5 F SP3P 0P3~M2P!

0~N2P!3P 0~N2P!3~M2P!
G (30)

SP3P 5 diag~s1, s2, . . . sP! (31)

s1 $ s2 $ . . . $ sP . 0, (32)

whereP (# min(M, N)) is the rank ofB, { si} i51
P are the

nonzero singular values ofB (in decreasing order), andU 5
[u1, u2 . . . uN] and V 5 [v1, v2, . . . vM] are orthogonal
matrices whose columns are the left and right singular
vectors ofB, respectively. In terms of the SVD, the projec-
tion can be written as

PSl~B,y,n!~z! 5 z 1 O
i51

P
ts i

~1 1 ts i
2!

~v i
te0!u i, (33)

wheree0 5 t 2 Bz, and the Kuhn–Tucker parameter28 t is
the positive root of

O
i51

P ~v i
Te0!

2

~1 1 ts i
2!2 1 O

i5P11

M

~v i
Te0!

2 2 n2 5 0. (34)

Note that ifn2 is smaller than the second summation term in
(34), the setSl(B, y, n) is empty and the projection is not
defined. IfB has full column rank, i.e.,P 5 M, the second
summation in (34) is absent (i.e., zero) and asn 3 0, the
Kuhn–Tucker parametert 3 `. Therefore, ifB has full
column rank,

PSl~B,y,0!~z! 5 z 1 O
i51

P 1

s i
~v i

te0!u i. (35)

This case is mentioned separately, because the setSl(A, t, 0)
of spectra that produce the tristimulus valuet corresponds to
this case.

2. Projection onto Sn(b, y): Note that
Sn~b, y!5$x[RNubTx#y%, (36)

whereb is an arbitraryN 3 1 vector andy is a real number.
For anyN 3 1 vectorb, the projection ofz ¸ Sn(b, y)

onto Sn(b, y) is given by

PSn~b,y! 5 z 1
y 2 bTz

ibi2 b. (37)

3. Projection onto SR(B):

SR~B!5$y[RMuy5Bx, x[RN%, (38)

FIG. 11. Example for colorant formulation problem: A 50%
spectrally flat reflectance and its metamer under D50 illumi-
nation produced using the Kodak IT8 colorants.
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whereB is anM 3 N matrix andy andx are vectors inRM

andRN, respectively.
The projection ontoSR(B) can be readily computed by

using an orthonormal basis set for the column space ofB. In
particular, for the SVD ofB defined in (29)–(32), the left
singular vectors {ui} i51

P provide one such orthonormal ba-
sis set. Using these, the projection ontoSR(B) is given by

PSR~B!~z! 5 ÛÛTz 5 O
i51

P

~u i
Tz!u i, (39)

whereÛ 5 [u1, u2 . . . uP] is the submatrix of the matrixU
in (29)–(32) containing the firstP left singular vectors ofB.

4. Projections for Ss(d0, D, cmin, cmax): Recall the defini-
tion,
Ss~d0, D, cmin, cmax!5$x[R1

N ux5exp~2~d01Dc!!,

ci
min#ci#ci

max%, (40)

whereR1 is the set of positive real numbers,d0 [ RN, D
is anN 3 M matrix, andcmin, cmax, c [ RM.

In the Hilbert spaceJ9, the projection ontoSs(d0, D, 2`,
`) is computed readily from an orthonormal basis set
{ oi} i51

M for the column space ofD,

PSs~d0,D,2`,`!~z! 5 expS2Sd0 1 O
i51

M

a ioiDD , (41)

whereai 5 2oi
T(ln(z) 1 d0). For a density matrixO 5

[o1, o2, . . . oM] with orthonormal columns,

PSs~d0,O,cmin,cmax!~z! 5 expS2Sd0 1 O
i51

M

a ioiDD , (42)

wherea i 5 min(ci
max, max(2oi

T(ln(z) 1 d0), ci
min)). Note

that these projections correspond to the operation of trans-
forming the spectral to the density domain, projecting with
respect to the Euclidean norm in density space and trans-
forming back to the spectral domain.

5. Projections forW: W is the diagonal subspace inJ, the
product Hilbert space of (12),

W5H ~a, a, . . . , a![JUa[ù
i51

m

J iJ .

In the product Hilbert SpaceJ, the projection of a vectorz
onto the diagonal subspaceW is given by

Pw~z! 5 arg min
y[W

iy 2 zi

5 ~a*, a*, . . . a* !, (43)

where

a* 5 arg min
a[ùi51

m Ji

O
i51

m

ia 2 zii2. (44)

Note that if Hilbert spaces {Ji} i51
m are all identicallyRN

with the usual inner-product and Euclidean norm, the above
expression reduces to

a* 5
1

m O
i51

m

zi, (45)

i.e., the average of the components ofz.
For the applications discussed in this paper,W is the

diagonal subspace of the product spaceJ 5 RN 3 J9.
Thus,z [ J can be written asz 5 (x, y), wherex [ RN and
y [ R1

N are themselvesN-tuples of real numbers. The
expression for the projection ontoW is, therefore, as given
in (43) above, with

a* 5 arg min
a[R1

N

~ia 2 xi2 1 iln~a! 2 ln~y!i2

5 arg min
a[R1

N

O
i51

N

@~ai 2 xi!
2 1 ~ln~ai! 2 ln~ yi!!

2#. (46)

From the above equation, it is clear that the problem de-
composes intoN simple one-dimensional minimizations,
one for each indexi above:

a*i 5 arg min
a[R1

@~a 2 xi!
2 1 ~ln~a! 2 ln~ yi!!

2#. (47)

By differentiating the right-hand side above with respect to
a and setting the result to zero, one can see that the mini-
mizer above is a root of

a2 2 axi 1 ln~a! 2 ln~ yi! 5 0. (48)

It is worth noting that in most cases (45) provides a good
approximation to the projection in (46), and may be used
instead of the exact projection or as a starting point for the
minimization in (47).
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