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Abstract

Parameter estimation is crucial to the accuracy of Neuge-

bauer model in characterizing digital halftone printers. In

this paper, a novel total least square (TLS) regression tech-

nique is proposed for the model parameter estimation prob-

lem for dot-on-dot screen printers. Compared to the tradi-

tional least square (LS) approach, the TLS method is phys-

ically more appropriate because it accounts for errors in

both the measured reflectance of the selected primaries and

the modeled reflectance. At the same time, TLS provides

increased mathematical flexibility in fitting the Neugebauer

model to the experiment data. Both the TLS and LS tech-

niques are tested on a Xerox color printer with a dot-on-dot

halftone screen. Compared to the LS based techniques, the

TLS methods yield a more accurate model for the printer.

1. Neugebauer model and its variation for
dot-on-dot halftone screens

The Neugebauer model and its variants [1, 2, 3] offer an

attractive characterization method for color printer calibra-

tion, where the model parameters can often be determined

from a small number of measurements. For halftone color

printers using Cyan (C), Magenta (M), Yellow (Y) and

Black (K) colorants, up to 24 = 16 different colored re-

gions or primaries are produced on paper through subtrac-

tive overlap of none, one, two, three or four colorants. As

a result, a halftone print can be expressed as the weighted

average of the tristimuli of these 16 overlapping combi-

nations, referred to as Neugebauer primaries. The well

known spectral Neugebauer model can be written as:r1=n(�;w) = PXi=1 wiri1=n(�); (1)

where P is the number of primaries defined in the model

(e.g. 16), � denotes the wavelength of light, r(�) is the

predicted spectral reflectance corresponding to a halftone

print, ri(�) is the reflectance of the ith primary, n repre-

sents the empirically determined Yule-Nielsen (YN) cor-

rection factor, which accounts for the penetration and scat-

tering of light in paper, known as the Yule-Nielsen effect [4,

5], wi denotes the fractional areas of the the ith Neuge-

bauer primary. The fractional areas wi, a function of the

dot areas of each individual colorant, where the functional

form is determined by the halftone geometry. However,

since the relationship between the actual dot areas c;m; y; k
and the digital control values C, M, Y, K is usually nonlin-

ear (which is often referred to as the dot area function),

sophisticated procedure needs to be performed to estimate

the function.

For dot-on-dot screens, because the dots of individual

colorant are on top of each other, at most 5 of the 16 pri-

maries are active [6]. Fig. 1 shows an example of the ar-

rangement of dots for a dot-on-dot screen. As a result,

if we let p1; p2; p3; p4 denote the printer colorants in

increasing dot area coverage, and a1; a2; a3; a4 the cor-

responding dot areas, Eq. (1) can be rewritten as [6]:r1=n(�) = 5Xi=1wiri1=n(�) (2)ri 2 frp1p2p3p4(�); rp2p3p4(�); rp3p4(�); rp4 (�); rw(�)g
denotes the 5 primaries, and wi 2 fa1; a2 � a1; a3 �a2; a4 � a3; 1� a4g are the fractional areas.

In practice, the printing process is subject to noise and

mis-registration effects. Therefore, a combination of the

dot-on-dot (2) and the general model (1) (where the frac-

tional areas wi are computed by Demichel Equations [7])

is introduced in [6] to improve the prediction accuracy.

The combined model represents the predicted reflectance



as: r(�) = (1� �)rd(�) + �rr(�); (3)

where rd(�) is the reflectance predicted by the dot-on-dot

model (2), rr(�) is the reflectance predicted by the general

model (1), and � is a “noise factor” (within the range of(0; 1)) which determines the relative contributions of the

two models to the mixing process.

2. Neugebauer model parameters estimation
by total least square regression

In the Neugebauer model, dot area function and YN cor-

rection factor n need to be estimated, so is the noise factor� in the combined model( 3). The YN correction param-

eter n and the noise factor � can be estimated by iterat-

ing through a set of candidate values within empirically

established boundaries. The dot area function can be es-

timated by either least square (LS) or total least square

(TLS) approach. The LS approach is based on the obser-

vation that the measurement and the model prediction of

the reflectance r(�) is prone to error. Therefore, the repre-

sentation of the Neugebauer model would ber1=n(�;w) = PXi=1 wir1=ni (�) + e(�) (4)

where e(�) represents the measurement and model error

(in the YN corrected spectral space). However, it should

be noted that the measurement of the primary reflectanceri(�) is also subject to error. Therefore, a more accurate

model is the one that allows errors in all measured quanti-

ties, which is given byr1=n(�;w) + e(�) = PXi=1 wi[r1=ni (�) + ei(�)] (5)

where e(�) denotes the measurement and model errors in

the YN-corrected spectral space, and ei(�) is the error in

the YN-corrected measured reflectance of the ith primary.

The solution to the above equation must incorporate

the unity sum constraint on the fractional areas of the pri-

maries, e.g.,
PPi=1 wi = 1. If we assume that the first

Neugebauer primary corresponds to paper white with re-

flectance r1(�), then, subtracting r1=n1 (�) from both sides,

Eq. (5) can be rewritten asr0(�;w0) + e0(�) = PXi=2 wi(r0i(�) + ei(�)) (6)

where w0 = [w2; w3; : : : wp]T ;r0(�;w0) = r1=n(�;w)� r1=n1 (�);r0i(�) = r1=ni (�)� r1=n1 (�);e0(�) = e(�)� w1e1(�):

The above equation at all wavelengths [�1; : : : �N ] can be

combined asr0(w0) + e0 = PXi=2 wi(r0i + ei) = (R0p +E)w0 (7)

where each vector represents the corresponding term in

Eq. 6 at all sampling wavelengths.

The above problem is equivalent to “solving” a set of

linear equations AX � B. Considering the error associ-

ated with all the measurement terms, it can be solved as a

TLS problem, which seeks to

minimize k[A;B]� [ÂB̂]kF
subject to ÂX = B̂; [Â; B̂]2<m�(n+d); (8)

where ‘F’ denotes the Frobenius norm [8]. The TLS so-

lution is computed through singular value decomposition

(SVD). Compared with its LS counterpart, TLS method is

physically more appropriate because it accounts for errors

in the measured reflectance of both the selected primaries

and the modeled reflectance. At the same time, it provides

more flexibility in fitting the model to the experiment data.fwig and the primary measurement error correction can

be estimated at the same time. The correction to the pri-

maries can then be utilized to update the primaries. Fig. 2

illustrates graphically the difference between the one di-

mensional LS and TLS case. The LS method minimizes

the squared sum of the vertical distances; whereas the TLS

method minimizes the squared sum of the perpendicular

distances.

2.1. TLS applied to single-colorant step-wedges

We first give an example of applying TLS to single-colorant

prints. These prints are generated by stepping through the

digital values used for driving the printer, typically from 0
to 255, and are therefore referred to as step-wedges. Since

there is only one colorant in this case, a simplified Neuge-

bauer model with only 2 primaries (one colorant and paper

white) is applicable. Therefore, for a K-step cyan wedge,

with digital values 0 � C1 � C2 � : : : � CK � 255, the

model of (7) reduces to(r0pc + e0pc)cj = r0cj + e0cj ; j = 1; 2; : : :K (9)

where cj denotes the dot area for the digital step value Cj ,r0pc denotes the cyan primary reflectance, r0cj denotes the

reflectance of the jth step, e0cj and e0pc denote the measure-

ment error in r0cj and r0pc respectively. The K equations

in (9) may be combined as(r0pc + e0pc)cT = R0c +E0c (10)

where c = [c1; c2; : : : cK ]T , R0c = [r0c1 ; r0c2 ; : : : r0cK ];
and E0c = [e0c1 ; e0c2 ; : : : e0cK ]. By solving these equations



through the TLS approach discussed in the previous sec-

tion, the dot areas of cyan c and the correction e0pc to the

cyan primary reflectance can be simultaneously obtained.

2.2. TLS applied to multi-colorant step-wedges

Multi-colorant prints can be further employed to enhance

the accuracy of the estimation. If we follow the same no-

tation for the dot-on-dot mixing model in Section 2, then

from (2) and (7), we get:(r0p1p2p3p4 � r0p2p3p4)aj1 = r0 � a2r0p2p3p4 �(a3 � a2)r0p3p4 � (a4 � a3)r0p4 (11)

After incorporating the error terms, we can rewrite the equa-

tion as (r?pa1 + e?pa1)aj1 = r? + e? (12)

where r?pa1 = r0p1p2p3p4 � r0p2p3p4 ; r? = r0 � a2r0p2p3p4 �(a3 � a2)r0p3p4 � (a4 � a3)r0p4 ; and e?pa1 , e? represent

the corresponding combined errors. This equation set can

again be solved by TLS approach.

In our experiment, the combined model (3) is utilized

to account for the noise in printing process. In order to

estimate the parameters by a linear approach, the combined

model is modified tor1=n(�) = (1� �)r1=nd (�) + �r1=nr (�) (13)

where the combination is done in the YN-corrected re-

flectance space. Details of TLS solution to this combined

model can be readily developed using [8].

3. Results

We tested the LS and TLS techniques on a Xerox color

printer with dot-on-dot halftone screen. A training chart

was first printed and measured with a Gretag spectropho-

tometer. The chart has four single-colorant and one gray

step-wedges 1, each with 17 steps evenly distributed be-

tween 0 and 255 (0 and 255 included). After the model

parameters were estimated from the measurement, a test

chart was generated and measured to test the various algo-

rithms. The test chart contains 5 � 5 � 5 = 125 samples

evenly distributed throughout the color space. CIELAB

values [9] were computed (under the CIE viewing Illu-

minant D50) from the spectral measurement of the test

chart and �E differences between the measured L?a?b?
values and the Neugebauer model predictions were calcu-

lated. Color differences between the measurements and the

predictions were computed using three common color dif-

ference metrics: �E?ab [9], �E?CMC [10], and �E?94 [11].

1The gray step-wedge which has no black colorant and equal digital
values for the cyan, magenta and yellow colorants, and is therefore a
special case of multi-colorant prints.

Three techniques were tested: 1) LS estimation, employ-

ing single-colorant step-wedges; 2) TLS estimation, em-

ploying single-colorant step-wedges; 3) TLS estimation,

employing single-colorant and gray step-wedges. Correc-

tion of the primary reflectance was performed in Tech-

niques 2) and 3). Fig. 3 shows the average �E errors of

the three color difference metrics. It can be observed that

the TLS based technique produces smaller �E errors in

all three cases than the LS based technique with single-

colorant step-wedges. By employing gray step-wedges,

the TLS estimation accuracy were further improved.

4. Conclusions

In this paper, a total least square regression technique was

proposed to estimate the parameters of the Neugebauer

model for halftone printers with dot-on-dot screen. The

TLS approach is better than LS due to its physical appro-

priateness and greater mathematical flexibility. The test re-

sults on a Xerox printer have shown that the TLS method

yield a more accurate model than its LS counterpart if

single-colorant step-wedges were employed. The incor-

poration of gray step-wedges into TLS estimation further

improved the results.
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Figure 1: Example of dot-on-dot screen configuration.
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Figure 2: LS versus TLS. The dashed lines denote LS error and
the solid lines perpendicular to line b=xa denote TLS error.
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Figure 3: Average �E errors for the test chart - (1) LS and TLS
estimation, employing single-colorant step-wedges; (2) LS and
TLS estimation, utilizing combined model (� = 0:5), employing
single-colorant and gray step-wedges.


