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Abstract

Neugebauer model is a powerful tool in obtaining
end-to-end device characterization profiles for halftone
color printer calibration. In this paper, we propose to-
tal least square (TLS) regression methods to estimate
the parameters of Neugebauer models. Compared to
the traditional leasi squares (LS) based methods, the
TLS approach is a physically more appropriate proce-
dure, because it accounts for errors in the measured
reflectance of both the selected primaries and the mod-
eled reflectance. The proposed TLS techniques are
tested on a Xerox color printer with rotated halftone
screen, and the results are compared with the LS based
algorithms. Our experiments indicate that the TLS
methods yield a significant improvement over the LS
based techniques for model parameter estimation.

1 Color printer calibration and the
Neugebauer model

In color printer calibration, a device characteriza-
tion function, which maps from device control values
to device independent (DVI) color space, is first de-
termined. This characterization function is then in-
verted, so that the digital control values required to
produce a given color (specified in a DVI color space)
may be computed. This paper focuses on the char-
acterization of halftone color printers, for which the
Neugebauer model and its variants [1, 2, 3] offer an
attractive characterization method. The model pa-
rameters can often be determined from a small num-
ber of measurements, as opposed to the large number
of measurements required in an empirical scheme.

According to the Neugebauer model, for halftone
color printers using Cyan (C), Magenta (M), Yellow
(Y) and Black (K) colorants, up to 2¢ = 16 different
colored regions or primaries are produced on paper
through subtractive overlap of none, one, two, three
or four colorants. The color tristimulus (see [4] for
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clear definitions) of a halftone print can be expressed
as the weighted average of the tristimuli of these 16
overlapping combinations, referred to as Neugebauer
primaries. Recently, considerable success has been ob-
tained with a spectral Neugebauer model [5, 3], where
the spectral micro-reflectance (instead of tristimuli) of
a halftoned region is expressed as the weighted average
of the micro-reflectance of the individual Neugebauer
primaries. Thus, it can be written as

P
rt/r (s w) =Y wirt/m(N), 1)
i=1

where P is the number of primaries defined in the
model (e.g. 16), A denotes the wavelength of light,
r(A) is the predicted spectral reflectance correspond-
ing to a halftone print, r;(A) is the reflectance of the
itk primary, n represents the empirically determined
Yule-Nielsen (YN) correction factor, which accounts
for the penetration and scattering of light in paper,
known as the Yule-Nielsen effect (6, 7], w; denotes the
fractional areas of the the it* Neugebauer primary.
Assuming that the distribution of the colorants on
paper is independent, w; are given by the following
Demichel equations [8]:

w; €
{1-01-m)(1-y)(1-k),
(1-0Q1-m)(1-y)k,

(1-0Q1-m)y(1-k),

(1= c)(1 —=m)yk, (1 - c)m(1 —y)(1 — k),

(1= ¢m(1 - y)k, (1 — )my(1 - k),

(1 = ¢)Jmyk, c(1 —m)(1 - y)(1 - k),

(1 =m)(1 —y)k,c(1 —m)y(1 - k),

(1 -m)yk,em(1 — y)(1 — k),

m(l — y)k,cmy(1 — k), emyk }



where ¢, m, y, and k represent the fractional areas
covered by the C, M, Y, and K colorants respectively
in their individual separations. The relationship be-
tween the actual dot areas ¢, m, y, k and the digital
control values C, M, Y, K is usually nonlinear, and is
often referred to as the dot area function.

2 Total least squares technique for es-
timating the Neugebauer model pa-
rameters

In order to utilize the Neugebauer model to pre-
dict the printer behavior, the model parameters (e.g.
dot area function, YN correction) need to be esti-
mated. The correctness of the Neugebauer model re-
lies heavily on the accuracy of the estimated param-
eters. The YN correction parameter n is estimated
by iterating through a set of candidate values within
physically meaningful boundaries. The values leading
to the smallest prediction error is selected as the op-
timum. Previously, the dot area function is estimated
by a global search technique to minimize a predefined
model prediction error [3]. Although the search pro-
vides satisfactory results, it is computationally expen-
sive. An alternative approach is to perform the op-
timization by least squares (LS) estimation. The LS
approach is based on the observation that the mea-
surement and the model prediction of the reflectance

r(A) is prone to error. Therefore, the representation

of the Neugebauer model would be

P
r/r (s w) =3 wiry (V) + (V)

i=1

@)

where e(\) represents the measurement and model
error (in the YN corrected spectral space). Least-
squares regression can then be used to determine the
areas of the primaries w; so as to minimize the mean
squared error. However, it should be noted that the
measurement of the primary reflectance r;(A) is also
subject to error. Hence, a more accurate model is
the one that allows errors in all measured quantities,
which is given by

(s w) +e()) =

> wir

=1

) +ei(N)] (4)

where e(\) denotes the measurement and model errors
in the YN-corrected spectral space, and e;(A) is the
error in the YN-corrected measured reflectance of the
h primary.
In order to apply the TLS method to the printer
modeling problem, the unity sum constralnt on the
fractional areas of the primaries, e.g., Z _wi =1,
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must be incorporated into (4). To this effect, we as-
sume without loss of generality that the first Neuge-
bauer primary corresponds to paper white with re-
flectance r1(A). Then, subtracting T1 "(A) from both
sides, Eq. (4) can be rewritten as

r'(sw') +e'(\) = XP: wi(r;(A) + e;(V)) (5)
where
w = [wz,wg,...wp]T,
rsw) = /s w) -,
n = M-,
e(A) = e(A) —wier(N).

Typically the color spectra are sampled at discrete
wavelengths, [A1, A2, ... An], so that (5) can be written
in matrix-vector notation as

Y+ e -sz ri+e) =R, +Ew (6)
where

= [ w),. (A w)]T,

v, o= [, W7,
R; = [r,r5...1p],

¢ = [¢M),...¢ ()T,

e = [ei(A),...es(AW)]T,

E = [eg, €3... p}.

The vector 1’ represents the YN-corrected and pa-
per “normalized” reflectance. With the measurement
of multiple color patches, the above problem can be
reduced to solving a set of linear equations AX = b
(one-dimensional case) or AX = B (multi-dimensional
case), depending on the type of color patches printed
and measured. Considering the error associated with
all the measurement terms, the solution can be ob-
tained through a one-dimensional total least square
(TLS) method, which seeks to

minimize ||[4; b] — [A; b]|| , subject to Az = b, (7)
or a multi-dimensional TLS method, which

[AB]||
[A; B]E?Rmx("*_d),

minimize ||[4;B] —

subject to AX = B; (8)

where ‘F’ denotes the Frobenius norm [9].
The TLS solution is computed through singular
value decomposition (SVD). Compared with its LS



counterpart, TLS method is physically more appro-
priate because it accounts for errors in the measured
reflectance of both the selected primaries and the mod-
eled reflectance. The estimation of {w;} and the pri-
mary measurement error correction can be obtained
at the same time. The correction to the primaries can
then be utilized to update the primaries. A compari-
son of LS and TLS in the one-dimensional line-fitting
problem is illustrated in Fig. 1. Both LS and TLS mea-
sures of goodness-of-fit are depicted. The LS method
minimizes the squared sum of the vertical distances,
whereas the TLS method minimizes the squared sum
of the perpendicular distances.
2.1 TLS for single-colorant step-wedges
The TLS method can be utilized to obtain the dot
area function from single-colorant prints. Usually,
these prints are in a sequence with the (fractional)
colorant coverage on the paper increasing monotoni-
cally from zero to one. The prints are generated by
stepping through the digital values used for driving
the printer, typically from 0 to 255, and are therefore
referred to as step-wedges. Since there is only one col-
orant in this case, a simplified Neugebauer model with
only 2 primaries (one colorant and paper white) is ap-
plicable. Thus, for a K-step cyan wedge, with digital
values 0 < C; < (5 < ... < Cg < 255, the model
of (6) reduces to

i=1,2,...K (9

where ¢; denotes the dot area corresponding to the
digital step value C;, r]. denotes the cyan primary
reflectance, r!, denotes the reflectance of the jt* step,
e, and e}, denotec the measurement error in r;, and
T, respectlvely The K equations in (9) may be com-
bmed as

' ’ o '
(rpe +€pc)c; = r, +e.,

(rh. + ey )e’ =R, +E. (10)
where ¢ = [e,¢2,...ck]T, RL=[rl,,xl,,...10.],
! !
and E,=[e] ,el,,...e, ]

Observmg that the above equations represent a
multi-dimensional TLS problem, we can “solve” them
to obtain simultaneously the dot areas of cyan ¢ and
the correction epC to the cyan primary reflectance.
2.2 TLS for multi-colorant step-wedges

The dot area functions estimated from single-
colorant step-wedges can be iteratively refined, one
colorant at a time, by using multi-colorant step-
wedges in which the dot areas of other colorants are
known and assumed fixed. Consider the process of
refining the dot areas for the cyan colorant using a
multi-colorant cyan step-wedge. Suppose the cyan
digital values for this multi-colorant step-wedge are
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0<Cy £0y... £ Ck <255 and the digital values
(and therefore fractional areas) of other colorants are
constant. In the resulting equations, on the right hand
side of (6), we can group together the terms with the
factor ¢ (these correspond to primaries that include
the cyan colorant) and other terms with the factor
(1 — ¢) (these correspond to primaries that do not in-
clude the cyan colorant), to get

e ten'=c¢ Y wilr, +ep)+
k€Sc
(1=¢j) D wilr, +ep,), j=12..

leSne

K (11)

where ¢; denotes the fractional area of the cyan col-
orant corresponding to the digital value Cj; r* ' is the
reflectance of the multi-colorant step-wedge prlnt with
cyan digital value Cj; the sets S¢ and Sy represent
a partition of the primary indices {2,3,...15}, such
that the elements of S¢ correspond to the primaries
having the cyan colorant as a constituent and elements
of Sy correspond to the primaries that do not have
the cyan colorant as a constituent; and

w?
x & ke€Sc
wk = lij
i k€ Snc

where wi is the fractional area of the k** primary for

the j** step print (asin (6)). Using the Demichel equa-
tion (2), we can see that the factors wf,w} € {(1 —
m)(1-y)(1-k), (1-m)(1-y)k, (1-m)y(1-k), (1~
m)yk, m(1—y)(1—k), m(1 —y)k, my(1 - k), myk},
where m, y, and k are the (fixed) dot areas for the
magenta, yellow, and black colorants for the whole
multi-colorant cyan step-wedge. These equations can
be further rewritten as

(r;c + e;c)cj = r:wj + e:wy, j=12...K(12)

* — x !
where 17, = . Zlechwl witpe =
* _are the

*
2 kese WiTp, — ZIESNC wTy,, and e}, g,
corresponding combined errors. The K equations

in (12) may be combined as
(!‘;C + e;c)cT = R:w + E:w

Sk

(13)
where R}, = |[r}, ...r5,,), and E% =
[eFy, ch] If we constrain the digital control val-
ues of cyan in the multi-colorant step-wedge of cyan
sweeps to be consistent with those in single-colorant
cyan step-wedge, and combine single step-wedges (10)
and multi-colorant step-wedges (13), we get

r_| R; ] [ E;
et = N
] ) |: EC’UJ

pc

r,c e’
(L el er=lal e Joo



where the terms are the same as defined in (10)
and (13). The dot area function for the cyan colorant
can now be obtained by “solving” the above system of
equations as a multi-dimensional TLS problem. The
same approach can be applied to the other colorants.
Since the utilization of gray step-wedge is a special
case of multi-colorant step-wedges, the equations fol-
low a similar approach.

3 Results

Both the LS and TLS algorithms discussed above
were tested on a Xerox color printer with rotated
screen. A training chart with four sets of single-
colorant step-wedges, a gray step-wedge, and multi-
colorant step-wedges was printed.  Each single-
colorant step-wedge has 17 steps evenly distributed
between 0 and 255 (0 and 255 included). The gray
step-wedge (C=M=Y) also had 17 steps between 0
and 255. The multi-colorant step-wedges had one col-
orant varying from 0 to 255 at digital values identical
to the single-colorant step-wedges, while the other 3
colorants are kept fixed at a constant level. Another
test chart with 5 x 5 x 5 = 125 samples was gener-
ated separately to test the various algorithms. Both
the training and the test chart were measured using
a Gretag spectrophotometer. The measurements from
the training chart were then used to estimate the dot
area functions for the C, M, Y, K colorants and the YN
parameter n. CIELAB values [4] were computed from
the spectral measurement of the test chart and AFE dif-
ferences between the measured L*a*b* values and the
Neugebauer model predictions were obtained. CIE Il-
luminant D50 was used to calculate the L*a*b* values.
Furthermore, AE% ;- and AEJ, [10] were computed
due to their added consistency over AE}, with hu-
man visual sensitivity. Four techniques were tested: 1)
LS estimation, employing single-colorant step-wedges;
2) TLS estimation, employing single-colorant step-
wedges; 3) TLS estimation, employing single-colorant
and gray step-wedges; 4) TLS estimation, employing
single-colorant, gray and multi-colorant step-wedges.
Correction of the primary reflectance curves (only for
Rc, Ry, Ry, Ri) was performed in Techniques 2,
3, and 4. An example of cyan primary (R.) cor-
rection is given in Fig. 2. Fig. 3 shows the average
AEY,, AEE 0, and AE, errors between the L*a*b*
measurements of the test chart and the correspond-
ing model predictions computed by utilizing the LS
and TLS techniques respectively. It can be clearly
seen that the TLS based technique produces smaller
AF errors in all three cases than the LS based tech-
nique with single-colorant step-wedges. By utilizing
gray and multi-colorant step-wedges, the parameter
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estimation accuracy were further improved.

4 Conclusions

Parameter estimation accuracy for the Neugebauer
model directly affects the model performance in color
printer calibration. In this paper, one-dimensional or
multi-dimensional total least squares techniques were
applied to the parameter estimation problem, depend-
ing on the selection of color patches. The proposed
TLS techniques were shown to produce better results
than the single-colorant based LS technique on a Xe-
rox color printer with rotated screen. Finally, by uti-
lizing gray and multi-colorant patches, the estimation
accuracy was further improved.
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Figure 1: LS versus TLS. The dashed lines denote LS
error and the solid lines perpendicular to line b=xa

denote TLS error.
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Figure 2: Primary cvan reflectance curve correction
in TLS estimation (employing single-colorant step-

wedges)
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Figure 3: Average AFE errors of the test chart for the
random mixing model - (1) LS estimation, employ-
ing single-colorant step-wedges (LS); (2) TLS estima-
tion, employing single-colorant step-wedges (TLS); (3)
TLS estimation, employing single-colorant and gray
step-wedges (TLS_G); (4) TLS estimation, employing
single-colorant, gray and multi-colorant step-wedges
(TLS.GM)



