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End-to-End Color Printer Calibration
by Total Least Squares Regression
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Abstract— Neugebauer modeling plays an important role in
obtaining end-to-end device characterization profiles for halftone
color printer calibration. This paper proposes total least square
(TLS) regression methods to estimate the parameters of various
Neugebauer models. Compared to the traditional least squares
(LS) based methods, the TLS approach is physically more appro-
priate for the printer modeling problem because it accounts for
errors in the measured reflectance of both the primaries and the
modeled samples. A TLS method based on print measurements
from single-colorant step-wedges is first developed. The method is
then extended to incorporate multicolorant print measurements
using an iterative algorithm. The LS and TLS techniques are
compared through tests performed on two color printers, one
employing conventional rotated halftone screens and the other us-
ing a dot-on-dot halftone screen configuration. Our experiments
indicate that the TLS methods yield a consistent and significant
improvement over the LS-based techniques for model parameter
estimation. The gains from the TLS method are particularly
significant when the number of patches for which measured data
is available is limited.

Index Terms— Color printer calibration, halftone color, least
squares, Neugebauer model, total least squares.

I. INTRODUCTION

RECENT years have seen a proliferation of color imaging
devices in home and office environments. Consequently,

color imaging is an active area of research and development
(see [1] for a recent survey). In order to obtain accurate
color, the different devices need to be calibrated. The native
color representations of common color imaging devices are
very different and highly device dependent. In order to utilize
color effectively in networked, open-systems environments,
it is necessary to calibrate these devices to device inde-
pendent (DVI) standards, such as the standards defined by
the International Commission on Illumination (CIE) [2] for
unambiguous measurement and communication of color. Thus,
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input devices, such as color scanners and cameras, must be
calibrated to obtain DVI color values from their measurements;
and output devices, such as monitor displays and printers, need
to be calibrated so that the digital control values required to
produce a given DVI color can be readily determined. For
the purposes of this paper, we will assume that the reader
is familiar with basic terms in color imaging systems. An
extensive overview of color science terms and concepts can
be found in [1] and [3]–[6].

In general, the calibration of a color output device is a
two-step process. In the first step, one determines a device
characterization function, which represents the output device
as an abstract mapping from a set of digital control val-
ues to colors specified in a DVI color space. This device
characterization function is then inverted, so that the digital
control values required to produce a given color (specified in
a DVI color space) may be computed. Details of the inversion
process can be found in [7] and [8]. This paper focuses on
a specific instance of the first step, i.e., the characterization
of halftone color printers (see [1] for a brief description of
different types of color printers). Typically, these printers
are binary devices that have the capability of putting one
or more of cyan (C), magenta (M), yellow (Y), and black
(K) colorants on each addressable pixel on paper. Due to
the spatial lowpass characteristics of the human eye, the
perceived color is a spatial average of the mosaic of colors
produced on the paper. The process of obtaining pixel bit-
maps for printing images is known as halftoning and is an
active area of independent research. The interested reader is
referred to [1] and [9]–[11] for comprehensive reviews of
halftoning algorithms. A halftone printer can be calibrated at
the pixel level [12]–[15] or from end to end with the halftoning
algorithm viewed as a black box (see Fig. 1). The latter
approach requires a separate calibration for each halftoning
scheme used. However, the first approach requires complete
control of the binary patterns being printed, which is often not
feasible. Therefore, the latter approach will be considered in
this paper.

Since the device characterization function for color halftone
printers is highly nonlinear, a large number of sample measure-
ments are required for a purely interpolation based empirical
representation of the characterization function. Consequently,
printer models based on the physics of the color printing
process therefore offer an attractive alternative for character-
ization, where the model parameters can often be determined
from a small number of measurements. A physical model for
the halftone printing process was first proposed by Neuge-

1057–7149/99$10.00  1999 IEEE



XIA et al.: COLOR PRINTER CALIBRATION 701

Fig. 1. End-to-end printer characterization where the halftoning process is treated as a black box.

bauer in 1937 [16]. Recently, significant improvements to
this model have been achieved by the introduction of the
Yule–Nielsen (YN) correction factor [17], [18] and the
spectral Neugebauer model [19], [20]. In [20], the model
parameters are estimated by a global search technique to mini-
mize a predefined model prediction error. Although the search
provides satisfactory results, it is computationally expensive.
An alternative approach is to perform the optimization by least
squares estimation [21], where the parameters are obtained
by solving a set of overdetermined linear equations. Implicit
within the least square method is the assumption that only the
measurements of the training sets are subject to error, while
the Neugebauer primaries are free of error. A more realistic
model of the physical process can be obtained by allowing
both the primaries and training sets to contain measurement
errors, which necessitates the total least squares estimation of
the model parameters.

This paper proposes total least squares (TLS) regression
methods to estimate the model parameters in the presence
of measurement errors in both the Neugebauer primaries
and the print samples constituting the training sets. The
technique is applied to random and the dot-on-dot mixing
models, where for each case the analysis is performed by
employing single, multicolorant, and gray type step-wedges
as well as a combination of all of the above with additional
multicolorant step-wedges. The results indicate that the TLS
based algorithms provide a more accurate parameter estimation
than the LS-based techniques. The remainder of this paper is
organized as follows. Neugebauer modeling for rotated and
dot-on-dot screens and the TLS technique are briefly reviewed
in Section II. The proposed algorithms for printer modeling
and parameter estimation are presented in Section III. Exper-
imental results are discussed in Section IV, and conclusions
are drawn in Section V.

II. BACKGROUND

A. Neugebauer Models

In halftone printing using CMYK colorants, up to
different colored regions or primaries are produced on paper
through subtractive overlap of one, two, three, four, or no
colorants. Neugebauer was the first to suggest that halftone

reproduction may be viewed as an additive process involving
these primaries, which are now referred to as the Neugebauer
primaries. In his original model, tristimulus of a halftone print
was expressed as the weighted average of the tristimuli of the
individual primaries, with the weighting factor of each primary
given by its fractional area. Recently, considerable success
has been obtained by utilizing a spectral Neugebauer model
[19], [20]. The spectral model improvements are obtained
by expressing the macroreflectance (instead of tristimuli) of
a halftoned region as the weighted average of the microre-
flectance of the individual Neugebauer primaries:1

(1)

where denotes the wavelength of light, is the number of
Neugebauer primaries (for a typical CMYK printer, ),

is the predicted spectral reflectance corresponding
to a halftone print with fractional areas of the Neugebauer
primaries given by is the fractional
area of the th Neugebauer primary, and is the reflectance
of the th primary. It should be noted that since the areas of
the primaries are expressed as fractions of the total area over
which the average macroreflectance is computed, they satisfy
the constraint .

Due to the penetration and scattering of light in paper known
as the Yule–Nielsen effect [17], [18], the basic model (1) does
not perform well in practice. Fortunately, an added empirical
correction has yielded significant improvements [22].2 The
spectral Neugebauer model with the so-called YN correction is

(2)

where represents the YN correction factor. In theory,
varies between one and two, corresponding to the two extremes
of no scattering of light in paper and complete Lambertian
scattering. However, the introduction of a general value for

1 Note that the term macroreflectance has been used here to indicate
that this is an average reflectance over a region composed of different
microreflectances.

2 This modification was originally suggested for black and white halftone
printing by Yule and Nielsen [17], and later applied to tristimulus data. It was
extended to the case of the spectral model by Viggiano [19].
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is a purely empirical modification of the equations to better ap-
proximate the physical measurements. Like other researchers
[19], [23], we have discovered that values larger than two often
provide better agreement with the data. Therefore, is treated
as a free parameter and allowed to vary over a wider range of
values to obtain the best agreement with the measured color
data.

1) Random Mixing and Demichel Equations: The use of
the Neugebauer model requires establishing a relationship
between the digital C, M, Y, and K control values that
drive the printer and the fractional areas of the Neugebauer
primaries . This relationship depends on the nature
of the interactions between the colorants in the printer. If
the separations are printed independently and the overlap
between the separations is random (called random mixing),
the fractional areas corresponding to the primaries can
be determined by a probabilistic model first proposed by
Demichel [24] as

(3)

where , and represent the fractional areas covered by
the C, M, Y, and K colorants, respectively. The relationship
between the actual dot areas and the digital control
values C, M, Y, K is usually nonlinear, and is often referred
to as the dot growth function or dot area function.

It is common to independently halftone the C, M, Y, and
K separations using rotated screens to closely approximate
the random overlap assumed in the Demichel equations. The
main reason for the use of rotated screens is their relative
insensitivity to interseparation registration errors, which are
frequently encountered in color printing systems. The process
of characterization of the printer is then reduced to the problem
of relating the dot areas , and to the corresponding
digital values C, M, Y, and K. It should be noted that the
Demichel equations are inappropriate for certain types of
printing systems—such as inkjet printers which restrict the
amount of ink at each pixel location—and special halftoning
algorithms that work on all color separations together (vec-
tor error-diffusion); while the Neugebauer model remains a
physically valid model for several of these cases.

2) Dot-on-Dot Mixing: The Demichel equation (3) does
not accurately describe the characteristics of halftone printers
which employ a dot-on-dot (or line-on-line) screen. In a dot-
on-dot screen, the halftone dots of the different colorants are
aligned so as to maximize the overlap between the colorants.
For such a halftoning scheme, it can be seen that for a given
region of the device color space (specified by the CMYK
values), at most five of the 16 total primaries are active [23].
Fig. 2 shows an example of the arrangement of dots for a
dot-on-dot halftone printer with four colorants for a region of

Fig. 2. Example of dot-on-dot screen configuration.

color space, where the colorants in decreasing order of ink
coverages are C, M, Y, and K, respectively. It is obvious
that only five primaries C, CM, CMY, CMYK, and W (paper
white) are present in this example (note that the specification
of the primaries depends on the order of the C, M, Y, and
K ink coverage). If we let denote the printer
colorants in increasing dot area coverage, and
the corresponding dot areas, (2) can be rewritten as [23]

(4)

where
denote the five primaries, and

are the corresponding fractional areas. Note
that while only five primaries are used in the dot-on-dot model
in a given region of CMYK values, the specific primaries used
are different in different regions of the CMYK space, and all
16 primaries are still required to model the printer.

The dot-on-dot mixing model assumes an ideal dot pattern
with no noise and no misregistration effects. These assump-
tions are generally not valid in all practical cases. Therefore,
a combination of the dot-on-dot (4) and the random mixing
model (2) is introduced in [23] to improve the prediction accu-
racy. The combined model represents the predicted reflectance
as

(5)

where is the reflectance predicted by the dot-on-dot
model (4), is the reflectance predicted by the random
mixing model (2), and is a “noise factor” (within the range
of ) which determines the relative contributions of the
two models to the mixing process.

3) Parameter Estimation of Neugebauer Models: In or-
der to use the Neugebauer model to characterize a halftone
printer, it is necessary to estimate the model parameters,
i.e., the primary reflectance functions, the CMYK dot growth
functions, the YN correction factor, and (if applicable) the
noise factor. Since these parameters are not known a-priori
and their values differ significantly among various printers,
they are determined from measurements of print samples
produced by the device. Traditionally, the primary reflectance
functions are obtained from direct measurements, while the
other parameters are estimated using linear least-squares or
other optimization methods. These methods tend to ignore
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the noise in the measurements of the primaries themselves,
which could contribute to significant error in the model.
The main contribution of this paper is to propose new TLS
regression methods for estimating primary reflectance and dot
growth functions based on a more realistic physical model.
The YN correction parameter and the noise factor are
estimated by iterating through a set of candidate values within
empirically established boundaries. For these parameters, the
values leading to the smallest prediction error is selected as
the optimum.

B. Total Least Squares (TLS) Method

Given an overdetermined set of linear equations
in unknowns , the well-known LS method finds a solution

which

minimizes subject to (6)

while the TLS method seeks to find a solution which

minimizes subject to (7)

where ‘ ’ denotes the Frobenius norm [25]. Any satisfying
is called a TLS solution and

is the corresponding TLS correction. The TLS solution
is computed through singular value decomposition (SVD).
Details of this technique along with an extensive discussion
of TLS and its statistical properties can be found in [26].

If more than one right-hand side vector are observed and are
associated with the same parameter matrix , the TLS problem
becomes multidimensional. Specifically, we are given a set of
equations where is a observations matrix,

is a parameter matrix and has unknowns.
The multidimensional TLS problem seeks to

minimize subject to

(8)

is called a TLS solution denoted by and
is the corresponding TLS correction. Again,

the problem can be solved by employing SVD-based tech-
niques [26]. In fact, the one dimensional TLS problem in (7)
represents a special case of the multidimensional TLS problem
in (8). As will be apparent from the following sections, both
single and multidimensional problems are encountered in the
problem of printer characterization using Neugebauer models.

A geometric interpretation of LS and TLS provides useful
insight in understanding the difference between them. In
solving an overdetermined system, the initial set of equations

is inconsistent. Geometrically, this implies that
the -dimensional subspace of , generated by the
columns of , does not contain . The best “least-square”
approximation is then the orthogonal projection of onto
that subspace. In many applications, both and are subject
to errors. It is then inappropriate to “correct” only . Thus,
TLS seeks to “bend” both and the set of columns of
toward each other until the new set of equations is consistent.
Furthermore, all correction vectors and applied to
the columns of and are minimized according to (7).

Fig. 3. LS versus TLS. The dashed lines denote LS error and the solid lines
perpendicular to line b = xa denote TLS error.

Fig. 3 illustrates graphically the difference between the one
dimensional LS and TLS case. The LS method minimizes the
squared sum of the vertical distances; whereas the TLS method
minimizes the squared sum of the perpendicular distances.

III. TOTAL LEAST SQUARES

REGRESSION FOR PRINTER MODELING

A. Modeling Measurement Errors

The spectral Neugebauer model with YN correction (2)
ignores measurement errors in the reflectances of the primaries,

. A more accurate model that allows errors in all
measured quantities is

(9)

where denotes the measurement and model errors in the
YN-corrected spectral space, and is the error in the
YN-corrected measured reflectance of the th primary.

In order to apply the TLS method to the printer modeling
problem, the unity sum constraint on the fractional areas of the
primaries, e.g., , must be incorporated into (9).
To this effect, we assume without loss of generality that the
first Neugebauer primary, , corresponds to paper white
reflectance. Then, subtracting from both sides, (9) can
be rewritten as

(10)

and rearranged as

(11)
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yielding

(12)

where

Typically, the color spectra are sampled at discrete wave-
lengths, , so that (12) can be written in matrix-
vector notation as

(13)

where

The vector represents the YN-corrected and paper “nor-
malized” reflectance. We will adhere to this convention of
using primed vectors for YN-corrected and paper-normalized
reflectance throughout this paper. To avoid needless repetition
of the “YN-corrected and paper normalized” qualifier, we will
simply refer to these terms as “reflectance” hereafter.

The above equations follow the multidimensional TLS data
model in Section II-B. Therefore, the areas of the Neugebauer
primaries and the correction to the primary reflectance
can be simultaneously obtained by solving (13).3 However,
such a scheme has limited utility because the areas of the
Neugebauer primaries, , are usually interdependent variables
that are related to each other by means of the mixing equations
discussed in Section II-A1 and II-A2. The independent vari-
ables are actually the fractional areas of the single-colorants
in terms of which the primary areas are expressed. The
incorporation of the mixing equations into (13) makes these
equations nonlinear and intractable for the TLS method. An
interesting special case for which the equations remain linear
occurs when the prints have only one colorant.

B. TLS for Single-Colorant Step-Wedges

The TLS method can be used to obtain the dot growth
function from single-colorant prints. Usually, these prints are
in a sequence with the (fractional) colorant coverage on the
paper increasing monotonically from zero to one. The prints
are generated by stepping through the digital values used
for driving the printer, typically from zero to 255, and are

3 If the measurement noise term affecting the primaries (the matrix E) is
ignored, then simple least squares regression can be employed to estimate the
dot growth function [21].

therefore referred to as step-wedges. Since there is only one
colorant in this case, a simplified Neugebauer model with only
two primaries (one colorant and paper white) is applicable.
Thus, for a -step cyan wedge, with digital values

, (13) reduces to

(14)

where denotes the dot area corresponding to the digital
step value denotes the cyan primary reflectance,
denotes the reflectance of the th step, , and denotes
the measurement error in and , respectively. The
equations in (14) may be combined as

(15)

where , and
.

Observing that the above equations represent a multidi-
mensional TLS problem, we can “solve” them following the
approach in Section II-B, to obtain simultaneously the dot
areas of cyan and the correction to the cyan primary
reflectance. Note that one could potentially solve (14) as a one-
dimensional (1-D) TLS problem. Since all the “observation
data” are associated with one primary reflectance , a
better solution can be obtained by combining the data of all
steps for cyan.

The multidimensional TLS regression procedure described
above determines corrections for the cyan primary reflectance
and a correspondence between the digital values and the
fractional area coverage . For intermediate digital values,
the conversion from digital values to fractional colorant area
coverage may be obtained by interpolation. The same approach
can be applied to magenta, yellow, and black step-wedges to
obtain the corresponding dot growth functions. The random,
dot-on-dot, or combined mixing equations may then be used
to obtain the fractional areas of the Neugebauer primaries for
prints having more than one colorant, which in turn can be
used to predict the reflectance from the model in (2). The
complete printer model based on this approach is shown in
Fig. 4. Note that this approach assumes that different colorants
are independent in that the fractional area coverage of a
colorant depends only on the digital value of that colorant
and is independent of the digital values of the other colorants.
This assumption is reasonable in a vast majority of color
halftone printers that print the C, M, Y, and K separations
independently, but is not valid for printers in which the printing
of separations is interdependent.

One limitation of the printer characterization scheme de-
scribed above is that the model parameters are determined only
based on single-colorant prints even though the model is used
for both single and multicolorant prints. More robust estimates
could potentially be obtained by using multicolorant prints in
the estimation process. As mentioned earlier, if the complete
problem is considered in the most general case, the model is
nonlinear in the model parameters, and the optimal parameters
cannot be readily estimated. However, if initial estimates of
the model parameters are available, some multicolorant prints
can be used to refine these estimates. Several such schemes are
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Fig. 4. Diagram of overall printer model.

considered for the random mixing model and the dot-on-dot
mixing model in the following sections.

C. TLS for the Random Mixing Model
with Selected Primary Updates

Here, we restrict ourselves to printers for which the random
mixing model is applicable and consider the use of multi-
colorant prints to refine the dot growth functions estimated
from the single-colorant step-wedges and update selected
primary reflectances. Two kinds of multicolorant prints will
be considered for the refinement procedure: 1) multicolorant
step-wedges, which contain sweeps of one colorant (in digital
value) with the other colorants held constant; and 2) gray step-
wedge, which has no K colorant and equal digital values for
the C, M, and Y colorants.

1) Refinement Using Multicolorant Step-Wedges: The dot
growth functions estimated from single-colorant step-wedges
can be iteratively refined, one colorant at a time, by using
multicolorant step-wedges in which the dot areas of other
colorants are known and assumed fixed. In order to illustrate
the procedure, consider the process of refining the dot areas
for the cyan colorant using a multicolorant cyan step-wedge.
Suppose the cyan digital values for this multicolorant step-
wedge are and the digital
values (and therefore fractional areas) of other colorants are
constant. The Neugebauer equations (2) can be used to model
the reflectance of the multicolorant step-wedge prints, where
fractional areas are given by Demichel equations (3). In the
resulting equations, on the right hand side of (13), we can
group together the terms with the factor (these correspond
to primaries that include the cyan colorant) and other terms
with the factor (these correspond to primaries that do
not include the cyan colorant), to get

(16)

where denotes the fractional area of the cyan colorant
corresponding to the digital value is the reflectance
of the multicolorant step-wedge print with cyan digital value

; the sets and represent a partition of the primary

indices , such that the elements of correspond
to the primaries having the cyan colorant as a constituent and
elements of correspond to the primaries that do not have
the cyan colorant as a constituent; and

where is the fractional area of the th primary for the th
step print (as in (13)). Using (3), we can see that the factors

,
where , and are the (fixed) dot areas for the magenta,
yellow, and black colorants for the whole multicolorant cyan
step-wedge. Note that the factors and are constant over
the entire step wedge and can be precomputed from the ,
and values, which are known from the single-colorant step-
wedge estimation. These equations can be further rewritten
as

(17)

where

(18)

and are the corresponding combined errors. The
equations in (17) may be combined as

(19)

where , and . If
we further constrain the digital control values of cyan in the
multicolorant step-wedge of cyan sweeps to be consistent with
those in single-colorant cyan step-wedge, and combine single
step-wedges (15) and multicolorant step-wedges (19), we get

(20)

where the terms are the same as defined in (15) and (19).
The dot growth function for the cyan colorant can now
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Fig. 5. Dot growth function estimation for random mixing model—TLS solution by employing single-colorant, gray, and multicolorant step-wedges.

be obtained by “solving” the above system of equations as
a multidimensional TLS problem. Note that this procedure
requires the knowledge of the dot growth functions of the
other colorants and can therefore be used only as a refining
step. The TLS solution also provides “corrections” and

for the left hand side in (20). is not useful because it
corresponds to the compound term, but can be used to get
the “updated” cyan primary .

The above description focuses on the dot growth function
estimation for the cyan colorant. The same approach can
be applied to the other colorants, wherein the dot growth
function for each colorant is estimated using TLS similar to
(20), by keeping the dot areas of the other colorants fixed.
This procedure can then be iteratively repeated for the four
colorants until the error becomes sufficiently small.

2) Refinement Using Gray Step-Wedge: Although the gray
step-wedge is a special case of multicolorant step-wedges, it
is worthwhile to discuss it and incorporate it into the training
samples, because the accurate rendering of gray tones is very
important for a color printer [4]. Consider a -step gray wedge
with CMY digital values . We assume
that initial estimates of the dot growth functions have been
obtained from single-colorant step-wedges. The reflectance for
the th step of the gray wedge can be utilized to refine the cyan
dot area estimate . By following the same grouping process
used in (16), we get

(21)

where denotes the reflectance for th step of the gray
wedge; are as defined earlier, and

where is the fractional area of the th primary for the
th step print. Using the Demichel equation (3), we can see

that the factors

, where
, and are the dot areas for the magenta, yellow, and

black colorants on the th step print of the gray wedge. Since,
in this case, the factors and are not constant over the
entire gray wedge, we can no longer combine the estimation
of the cyan dot growth function into a single multidimensional
TLS problem as was done in (20) for the multicolorant step-
wedges. Nevertheless, we can refine the dot areas of the four
colorants on each step individually. Combining the above
equation with the corresponding single cyan step-wedge on
step (with equal digital value , therefore equal colorant
dot area ) in (14), we get

(22)

where
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Fig. 6. Dot growth function estimation for random mixing model—TLS iteration on gray step-wedge.

and are the corresponding combined errors. This
equation may now be solved as a 1-D TLS problem to obtain
the dot area . The same procedure is repeated at each step,
to refine the complete dot growth functions for cyan, and
subsequently for the other colorants. Again, is not useful
because it corresponds to the compound error, but can be
used to get the “updated” cyan primary .

3) Combination of All Step-Wedges: In practice, we can
combine all the above techniques together (see Fig. 5 for a
flowchart of the complete algorithm). First, the initial dot

growth functions are estimated from the single-colorant step-
wedges by solving a multidimensional TLS problem (15).
Then the gray wedge is employed to refine the dot areas
estimation of all four colorants, one step at a time, by solving
the 1-D TLS problem (22). At each iteration, we change the
dot area of the colorant which causes the largest mean square
error (MSE) improvement and iterate among the four colorants
(a flowchart of the process is shown in Fig. 6). Finally, if
additional multicolorant step-wedges are provided, they are
utilized to further refine the estimation of the dot growth
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Fig. 7. Dot growth function estimation for random mixing model—TLS iteration on multicolorant step-wedges.

functions, by solving the multidimensional TLS problem (20).
We iteratively refine the dot growth function of the colorant
that causes the largest MSE improvement at each step as
shown in Fig. 7. It should be noted that the primaries C, M,
Y, and K will be “updated” after each estimation step.

D. TLS for the Dot-on-Dot Model with
Selected Primary Updates

For the dot-on-dot model, multicolorant step-wedges can be
used to refine the dot growth functions in a manner similar

to the case of the random mixing model. However, since the
number of effective primaries reduces to five (instead of 16)
in a given region for a dot-on-dot screen printer, the details
of the equations are different. Following the same notations
in Section II-A2, we will let denote the printer
colorants in increasing dot area order, and are the
corresponding dot areas. Suppose we select one multicolorant
step-wedge where only the digital value of colorant varies
between zero and 255, while the digital values (and therefore
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fractional areas) of the other three colorants remain constant,
and let denotes the dot area of colorant on step

denote the dot areas of the other three colorants
which are kept constant throughout this step-wedge (note that

, and have already been estimated from the single-
colorant step-wedges), then from (4) and (13), we get

(23)

After incorporating the error terms, we can rewrite the equation
as

(24)

where
and represent the

corresponding combined errors.
Obviously, the above equations can be solved by using

the method of TLS. Indeed, we can combine the multicol-
orant step-wedge equation (24) and single-colorant step-wedge
equation (14) to form a single TLS problem. Thus, by solving
the equation (suppose is cyan and therefore )

(25)

we can simultaneously refine the dot area of cyan on step ,
and “update” the cyan primary (note that is not useful
since it corresponds to the compound term ). For the
gray step-wedge, a similar iteration can be carried out among
the four colorants (see Section III-C2). However, if additional
multicolorant step-wedges are provided, the dot areas on all
steps for one colorant cannot be perturbed jointly by solving
a multidimensional TLS problem as in (20). This is because
the term will generally differ among the multicolorant
step-wedge corresponding to one colorant sweeps, making it
impossible to form one “parameter” matrix for TLS. There-
fore, there would be no significant mathematical advantages in
utilizing multicolorant step-wedges besides gray step-wedge,
which is utilized in our experiment.

E. TLS for the Combined Model

As mentioned in Section II-A2, a combined model incorpo-
rating both dot-on-dot and random mixing usually improves
the accuracy of the Neugebauer model for a printer with dot-
on-dot configuration. However, as introduced in (5), the noise
factor , makes the equations nonlinear in the dot areas of
the primaries and therefore cannot be solved readily. Thus,
we suggest a slight modification of the combined Neugebauer
model (5), where the combination is done in the YN-corrected
reflectance space as

(26)

where all the symbols have the same meaning as in (5).
Through this modification, the combined model becomes linear
in the dot areas and the mixing factor and can therefore be
solved by TLS regression.

F. TLS for Further Primary Estimation

Ideally, both the dot area estimates and the correction to the
primary reflectances should be obtained simultaneously using
TLS. However, the primary reflectance corrections can only be
achieved for four single colorant primaries: C, M, Y, and K. In
utilizing multicolorant step-wedges, the compound error terms
[see (20) and (22)] cannot be utilized to correct the individual
primaries. Nevertheless, the TLS-based technique is expected
to produce better estimates for the dot growth functions than
its LS counterpart due to its accountability of errors in the
primaries. On the other hand, further primary correction can be
achieved based on the dot growth functions already estimated.
Consider M multicolorant patches printed on paper, whose
spectral reflectance can be estimated by weighted combination
of the 16 Neugebauer primaries (for a four colorant digital
halftone printer) by

(27)

where is the fractional area of the th color patch
corresponding to the th primary, is the YN corrected
reflectance of the th primary at wavelength , and is
the YN corrected reflectance of the th color patch at . Alter-
natively, if the M multicolorant patches are measured directly,
they can be viewed as M observations of linear combinations
of the Neugebauer primaries. In fact, by solving (27) for ,
assuming and are known, we can directly estimate the
primaries. can be computed based on the already estimated
dot growth functions, and can be measured directly. It can
be easily seen that the measurement of is subject to error.
So can be predicted by solving an LS problem [21]:

(28)

This approach, however, fails to account for errors in
arising due to estimation errors in the previous determined dot
growth functions (from which is computed). Therefore, it
is more appropriate to estimate by solving (27) in a TLS
sense. Indeed, suppose is the error contained in and

is the error contained in , the TLS problem is

(29)

Note that the multicolorant patches constituting in the
above approach can be arbitrary, unlike the multicolorant step-
wedges employed in Section III-C1, which need to be sweeps
of one colorant at a time while the other three colorants
are held constant. In order to estimate accurately,
should adequately represent the color spectra reproducible
on the given device. This idea of further primary estimation
can be applied to both the rotated screen printer (by random
mixing model) and the dot-on-dot screen printer (by dot-on-
dot model). If the combined model is used, the noise factor
can be included in .

G. The Application of TLS Methods to
Other Neugebauer Models

The TLS methods proposed in this paper can be extended to
other Neugebauer models. For instance, consider the cellular
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Neugebauer model where the printer’s CMYK color space is
divided into several “cells” and “partial dot area” primaries are
introduced to enhance the modeling accuracy (see [27] for a
detail description of the cellular Neugebauer model). The TLS
methods can be applied to each cell to simultaneously estimate
the dot growth functions and the correction to the partial dot
area primaries. The same single-colorant and gray step-wedges
can be utilized in the training chart as before. However, due to
the same reason stated in Section III-C and Section III-F, only
the primaries along the four single colorant C, M, Y, and K
axes can be updated by TLS correction. If estimation of more
primaries is desired, the technique mentioned in Section III-F
can be employed, and more multicolorant patches should be
printed in the training chart to ensure enough sampling of the
color space.

IV. RESULTS

In order to test the efficiency and accuracy of the TLS tech-
niques, several experiments were carried out on two halftone
printers: A and B. Both printers use four colorants (C, M, Y, K)
with independent halftone screens. Printer A uses a rotated line
screen that approximates the random mixing assumption and
printer B employs a dot-on-dot screen which is representative
of the dot-on-dot model. In each case, the TLS based algorithm
is compared with its LS counterpart.

A training chart with four sets of single- and multicolorant
step-wedges, and a gray step-wedge is used to compute the
model parameters. Each single-colorant step-wedge has 17
steps evenly distributed between zero and 255 (zero and 255
included). The gray step-wedge also has 17 steps along the

line. The multicolorant step-wedges have one
colorant varying from zero to 255 at digital values identical to
the single-colorant step-wedges, while the other three colorants
are kept fixed at a constant level.

An independent test chart with 125 samples was utilized to
test the various proposed algorithms. The chart was generated
by sampling the device CMY space on a uniform 5 5

5 grid. A default undercolor removal [4] algorithm was
employed to convert from CMY to CMYK. The spectral
reflectances of the step-wedges in the training and test chart
were measured over a 400 to 700 nm range with a 10
nm sampling interval using a Gretag spectrophotometer. The
measurements from the training chart were used to estimate
the dot growth functions for the C, M, Y, K colorants,
the YN parameter , and the noise factor . These model
parameters were then used to obtain reflectance predictions for
the CMYK digital values corresponding to the patches on the
test chart. Both the measured and the predicted reflectances
were converted to CIELAB color values [2] under the CIE
viewing Illuminant D50. Color differences between the mea-
surements and the predictions were then computed using three
common color difference metrics: [2], [28],
and [29].

A. Random Mixing Model

For printer A, which employs rotated screens, the random
mixing Neugebauer model is used. Six techniques for esti-

Fig. 8. Primary cyan reflectance curve correction in TLS estimation (em-
ploying single-colorant step-wedges; YN correction factor n = 2:0).

mating the dot area functions and the YN correction factor
were tested as follows:

1) LS estimation, employing single-colorant step-wedges;
2) TLS estimation, employing single-colorant step-wedges;
3) LS estimation, employing single-colorant and gray step-

wedges;
4) TLS estimation, employing single-colorant and gray

step-wedges;
5) LS estimation, employing single-colorant, gray and mul-

ticolorant step-wedges;
6) TLS estimation, employing single-colorant, gray and

multicolorant step-wedges.

Correction of the primary reflectance curves for the single
colorant primaries is performed in Tech-
niques 2, 4, and 6. An example of the cyan primary
correction is shown in Fig. 8. Since the motivation for the
TLS technique was to account for measurement errors in
the primary reflectances, it is useful to compare the primary
correction to estimates in measurement error for the Gretag
spectrophotometer. These measurement errors were estimated
by utilizing a color chart specifically designed for that purpose.
The color chart encompasses: 1) Fifty patches for each colorant
(C, M, Y, K) where each patch contains 50% (i.e., a digital
value of 128) of the colorant, and 2) Fifty intermediate
gray patches with digital values of .
The chart was printed ten times on Printer A. The spectral
reflectance for all color patches were then measured using the
spectrophotometer. From these measurements, the mean, the
standard deviation, and the maximum deviation from the mean
for the cyan, magenta, yellow, black, and gray were computed.
The overall standard deviation and maximum measurement
error were also estimated by averaging among the individual
ones. The results are shown in Fig. 9. The difference between
the measured and the TLS corrected cyan primary in Fig. 8
is also shown in Fig. 9. Note that the difference at some
points exceeds the maximum measurement error and the “ ”
threshold (where is the overall standard deviation). This
difference can probably be attributed to the intrinsic “model
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Fig. 9. Difference between cyan primary measurement and the TLS correction in Fig. 8 (�—the overall standard deviation of measurement error; max
error—the overall maximum measurement error).

TABLE I
AVERAGE, MAXIMUM, AND STANDARD DEVIATION OF �E ERRORS IN PREDICTING THE TEST CHART (WITH YN CORRECTION FACTOR n

AND � OPTIMIZED). (1) LS (LS_G) AND TLS (TLS_G) REGRESSION FOR THE PRINTER WITH ROTATED SCREEN (RANDOM MIXING MODEL

APPLIED), EMPLOYING SINGLE-COLORANT AND GRAY STEP-WEDGES; (2) LS (LS_GM) AND TLS (TLS_GM) FOR THE ROTATED SCREEN

PRINTER, EMPLOYING SINGLE-COLORANT, GRAY AND MULTICOLORANT STEP-WEDGES; (3) LS (LS_GD) AND TLS (TLS_GD) FOR

THE DOT-ON-DOT SCREEN PRINTER (COMBINED MODEL APPLIED), EMPLOYING SINGLE-COLORANT AND GRAY STEP-WEDGES

error” in the Neugebauer model, which is an approximation of
the complicated physical printing process.

Fig. 10 shows the average , and
errors between the measured values for the single-
colorant step-wedges (found within the training chart) and
their corresponding model predictions obtained by utilizing
the LS and TLS based techniques respectively. It can be seen
that the TLS based technique produces smaller errors in
all three cases than its LS counterpart. In addition, Fig. 12
shows the average , and errors between
the measured values of the test chart and their corre-
sponding model predictions obtained by utilizing Techniques
1–6. Similarly, the predictions obtained by the TLS based
techniques are more accurate than their LS counterparts. Note
that the gray and multicolorant step-wedges add significant
improvements, regardless of the technique employed (LS or
TLS), since the dot area functions generally vary with the
overlap of multiple colorant dots. Therefore, the utilization of
the gray and multicolorant step-wedges compensates for this
effect.

Table I shows the smallest errors (average, maxi-
mum and standard deviation for the test chart) achieved by
Techniques 3, 4, 5, and 6, with YN correction factor
optimized in each case. Again, the TLS techniques consistently
outperformed their LS counterparts. Though the improvement
of TLS over LS decreases as more step-wedges were em-
ployed, the TLS method is consistently better than LS and
the improvement in maximum errors is still significant.
Also note that when only a limited number of print samples
are available due to limitations of measurement time, the
TLS method offers significant improvement over the LS
method.

B. Dot-on-Dot Model

For printer B, which employs a dot-on-dot screen, the dot-
on-dot and the combined models of Section III-E are used. The
following four techniques for estimating the dot area functions,
and the YN correction factor were tested:

1) LS estimation, employing single-colorant step-wedges
(pure dot-on-dot model);
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Fig. 10. LS and TLS average �E errors for the single-colorant training set
patches using Printer A (random mixing model applied).

2) TLS estimation, employing single-colorant step-wedges
(pure dot-on-dot model);

3) LS estimation, employing single-colorant and gray step-
wedges (combined model);

4) TLS estimation, employing single-colorant and gray
step-wedges (combined model).

Techniques 1 and 2 use the pure dot-on-dot model (3) since the
dot-on-dot and random mixing models are identical over single

Fig. 11. LS and TLS average �E errors for the single-colorant training set
patches using Printer B (dot-on-dot model applied).

colorant patches; and the noise factor cannot be estimated
unless multicolorant patches are used in the estimation. Since
the printing process is subject to misregistration errors, the
pure dot-on-dot model that assumes no noise and perfect
registration is not appropriate. This was apparent in our
experiments, where the inclusion of gray step-wedges provided
little improvement for the pure dot-on-dot Neugebauer model.
The results for this case are therefore not included here.
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Fig. 12. Average �E errors for the test chart for Printer A (random
mixing model applied). (1) LS and TLS estimation, employing single-colorant
step-wedges; (2) LS and TLS estimation, employing single-colorant and gray
step-wedges; (3) LS and TLS estimation, employing single-colorant, gray and
multicolorant step-wedges.

The combined Neugebauer model (26) was hence used for
Techniques 3 and 4, which utilize gray step-wedges in addition
to the single-colorant prints.

Fig. 11 shows the average , and
errors between the measured values for the single-
colorant step-wedges (found within the training chart) and
their corresponding model predictions obtained by utilizing
the LS and TLS based techniques respectively. In addition,

Fig. 13. Average�E errors for the test chart for Printer B (dot-on-dot model
applied). (1) LS and TLS estimation, employing single-colorant step-wedges;
(2) LS and TLS estimation, utilizing combined model (� = 0:5), employing
single-colorant and gray step-wedges.

Fig. 13 shows the same color difference metrics for the test
chart patches using Techniques 1–4. Table I shows the smallest

errors (average, maximum and standard deviation for the
test chart) achieved by Techniques 3 and 4 with YN correction
factor and the noise factor optimized in each case. Similar
to the random mixing model, the predictions obtained by
the TLS-based techniques are more accurate than their LS
counterparts. Note that the gray step-wedge and the combined
Neugebauer model add significant improvements, as can be
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Fig. 14. Average �E errors for the test chart for Printer A (random mixing
model applied) after further primary correction (using multicolorant samples
6 � 6 � 6—LS and TLS regression, employing single-colorant step-wedges
for the dot growth function estimation.

seen from Fig. 13, regardless of the technique employed (LS
or TLS).

C. Further Primary Estimation

After estimating the dot growth functions, further primary
estimation was performed by printing and measuring addi-

Fig. 15. Average �E errors for the test chart for Printer B (dot-on-dot
mixing model applied) after further primary correction (using multicolorant
samples 6 � 6 � 6—LS and TLS regression, employing single-colorant
step-wedges for the dot growth function estimation.

tional multicolorant patches. Indeed, 6 6 6 patches
were sampled uniformly in CMY color space, and undercolor
removal/gray component replacement [4] was performed after-
wards to convert from CMY to CMYK values. The same 125
test patches as in Sections IV-A and IV-B were printed and
measured to test the performance of the different algorithms.
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TABLE II
AVERAGE, MAXIMUM, AND STANDARDDEVIATION OF �E ERRORS IN PREDICTING THE TEST CHART (WITH n AND � OPTIMIZED) AFTER DOT GROWTH FUNCTION

ESTIMATION AND FURTHER PRIMARY CORRECTION (WITH MULTICOLORANT SAMPLES 6 � 6 � 6). (1) LS (LS_G_FC) AND TLS (TLS_G_FC)
REGRESSION FOR THE ROTATED SCREEN PRINTER, EMPLOYING SINGLE-COLORANT AND GRAY STEP-WEDGES FOR THE DOT GROWTH FUNCTION

ESTIMATION; (2) LS (LS_GM_FC) AND TLS (TLS_GM_FC) FOR THE ROTATED SCREEN PRINTER, EMPLOYING SINGLE-COLORANT, GRAY AND

MULTICOLORANT STEP-WEDGES FOR THE DOT GROWTH FUNCTION ESTIMATION; (3) LS (LS_GD_FC) AND TLS (TLS_GD_FC) FOR THE

DOT-ON-DOT SCREEN PRINTER, EMPLOYING SINGLE-COLORANT AND GRAY STEP-WEDGES FOR THE DOT GROWTH FUNCTION ESTIMATION

Both the LS and TLS based primary estimation were tested
on printer A and B. Again, , and
errors between the measurement and the model prediction
were calculated. These are shown in Figs. 14 and 15. Note
that the dot area function estimations were performed by
employing only single-colorant step-wedges for both the LS
and TLS based techniques. The TLS technique results in
a better prediction than its LS counterpart, since it allows
for errors in both the reflectance measurements and the
fractional area matrix .

It is also possible to perform further primary estimation after
employing single-colorant, gray and/or multicolorant step-
wedges to estimate the dot area functions. These results are
shown in Table II with the optimum YN correction factor
and the noise factor (for the combined dot-on-dot model).
Again, the TLS-based results produce smaller errors than
their LS counterparts. Comparing Table II with Table I, where
TLS primary correction was performed on only four primaries,
it is clear that further primary correction improves the accuracy
of the Neugebauer model predictions.

V. CONCLUSION

This paper addresses the use of spectral Neugebauer models
to characterize color halftone printers. The model parameters
are determined from a few selective prints by utilizing total
least square (TLS) based algorithms. The TLS algorithms
are proposed due to their ability to provide a more suitable
physical model than the least squares (LS) based techniques.
These algorithms are applied on two common classes of
color printers: 1) those utilizing conventional rotated screens
for the color separations, and 2) those employing dot-on-
dot halftone configurations. To this effect, they are tested
on two representative printers and compared to their LS
counterparts using several perceptually relevant color dif-
ference metrics. The results indicate that the TLS based
approaches provide consistent and noticeable improvements
over the LS based ones in printer characterization accu-
racy.
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