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Set Theoretic Signal Restoration
Using an Error in Variables Criterion

Gaurav Sharma and H. Joel Trussell

Abstract— In this correspondence, the restoration of a signal de-
graded by a stochastic impulse response is formulated as a problem
with uncertainties in both the measurements and the impulse response.
The method of total least squares, and variants thereof, are effective
techniques for solving this class of problems. However, unlike set theoretic
estimation schemes, these methods do not allow the incorporation of
other a priori information in the estimate. In this correspondence, two
new sets motivated by total least squares are introduced for set theoretic
estimation. The convexity of these sets is established and the projection
operators onto these sets are given. Through simulations, the advantages
of the new technique over conventional and older set theoretic schemes
for restoration are demonstrated.

I. INTRODUCTION

Most signal restoration schemes assume that the impulse response
of the degradation is known precisely. However, there are several
physical situations where only the statistics of the degrading impulse
response are available for use in restoration. In such cases, utilization
of these statistics offers significant gains over processing based on
averages alone.

For signals blurred by a linear system, the recorded data is given by

gN�1 = HN�NfN�1 + N�1 (1)

where the matrix H is the linear blur, f is the original signal to be
restored, is the measurement noise, and the subscripts indicate the
dimensions of the vectors and matrices. For the case of stochastic
blurs, H can be modeled as H = �H + �H, where �H and �H

represent the known and unknown parts of H, respectively.
The method of total least squares (TLS), or error in variables

regression, has been shown to be an effective technique for solving
the set of equations in (1), where both H and g are contaminated with
noise [1]–[3]. For shift-invariant blurs, the special structure of �H and
�H can be exploited in the constrained TLS (CTLS) technique [4]
to obtain better estimates. Recently, a regularized version of CTLS
was demonstrated in [5], which attempts to preserve smoothness
properties of the signal through the introduction of a regularization
operator. While these estimation schemes are statistically sound, they
do not permit use of other a priori knowledge of the signal in the
estimation procedure.

Set theoretic estimation [6] provides a flexible framework for
incorporation of a priori knowledge into estimates of the signal. If
available knowledge about the signal can be represented in terms of
sets fSigmi=1, in which the signal must lie, a point in the intersection
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of all these constraint sets, i.e., in

S0 =

m

i=1

Si

is used as an estimate for the signal. Obviously, set theoretic
estimation is useful only for problems for which there exists a
procedure for computing this estimate. If all the sets, fSigmi=1, are
closed and convex, the method of successive projections onto convex
sets (POCS) is guaranteed to converge to a point in S0 starting from
any arbitrary initial estimate [7], [8]. This result has been successfully
exploited for a number of signal restoration problems with a known
blur, and several convex sets have been defined based on prior
knowledge and noise statistics for that case [9], [10]. In [11], the
sets based on noise properties were modified to take into account the
case of a stochastic blur. The modifications in [11] were primarily
enlargements of the sets based on noise statistics, to incorporate the
additional uncertainties introduced by inaccurate knowledge of the
blur. While this simple approach is legitimate, it makes a rather
limited use of the blur statistics. In this correspondence, motivated by
the TLS approach, new sets describing the properties of the noise and
the blur perturbations are defined in spatial and frequency domains.
The convexity of the new sets is established by means of an elegant
alternate characterization of these sets, and the projection operators
onto these sets are developed based on the alternate characterization.
Finally, through one-dimensional (1-D) and two-dimensional (2-D)
simulations, the performance of restoration based on the modified
sets is compared with the stochastic minimum mean-squared error
(MMSE) filter and the approach in [11].

II. SETS BASED ON AN ERROR IN VARIABLES CRITERION

In this section, modifications of the noise variance and the power
spectral bounds sets are considered to account for the stochastic
variations in the blur. Throughout this discussion, f ;g; ;x; 2 RN

and will be assumed to be a zero mean white noise process with a
variance of �2� and a Gaussian probability density function.

A. Modified Residual Variance Set

A set based on variance of the residual was defined, for the known
blur case, in [10] as

Sv = fx j kg�Hxk2 � �vg (2)

where �v was set equal to N�2�. Since only �H is known for the
case under consideration, the above set needs to be modified. In
[11] the set was enlarged by considering the modified noise process
0
= g � �Hf = +�Hf . The resulting set for sample variance

of the residual was then obtained as

S
0

v = fx j kg� �Hxk2 � �
0

vg (3)

where �0v = �v +Ek�Hfk2 is the variance of 0, with E repre-
senting the expectation operator. For the purposes of restoration, the
worst case value of Ek�Hfk2 given by Ek�Hk2kfk2 was used.

An alternate approach can be used to account for the unknown
component of H. First, note that the set Sv can be rewritten as
Sv = fx j 9 3 Hx = g + ; k k2 � �vg. Since least-squares
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restoration solves the optimization

min
x

k k2 subject to Hx = g + (4)

the method of least squares can be considered as the motivation for the
definition of Sv . For a stochastic blur, the TLS method is statistically
more appropriate than least squares [3]. The (weighted) TLS solution
solves the optimization

min
x

�kEk2F + k k2 subject to ( �H+E)x = g + (5)

where k�kF denotes the Frobenius norm [12] and � is a positive
weight determined by the statistics of �H and . Drawing on the
analogy between least squares and Sv , a set can be defined based on
TLS (or error in variables regression) as

STLS = x j 9 fE; g 3 ( �H+E)x

= g + ; �kEk2F + k k2 � � (6)

where � and � are positive parameters determined by the statistics of
�H and (as will be described in Section IV).

In order to use the set STLS in POCS-based signal restoration, it is
necessary to establish its convexity and to determine the projection
onto it. The implicit definition in (6) involving E; makes both
these tasks rather difficult. The following theorem (the proof of which
appears in the Appendix) provides us an alternate characterization of
STLS simplifying both tasks.

Theorem 1 [13]: Let � = fx 2 RN j k �Hx�gk2� �

�
kxk2�� �

0g, then STLS = �.
Corollary 1: STLS is closed and convex if �

�
is less than or

equal to the smallest singular value of H.
Proof: Note that

f(x) � k �Hx� gk2 �
�

�
kxk2 � �

= x
T �H

T �H�
�

�
I x� 2g

T �Hx+ kgk2 � � (7)

is a convex function of x if �

�
is less than or equal to the smallest

singular value of H. Convexity of STLS follows immediately from
the observation that STLS = fx j f(x) � 0g. Closure follows from
the continuity of f(x). It is worth noting that the converse of the
above corollary also holds provided kgk2 > �.

B. Modified Power Spectral Bounds (PSB) Set

If the blur is assumed to be shift invariant, the operators �H

and �H are Toeplitz matrices determined by the known part, h,
and the unknown part, �h, of the stochastic impulse response,
respectively. Under this assumption, (1) can be replaced by the
following equivalent set of equations in the frequency domain:

G(k) = ( �H(k) + �H(k))F (k) + �(k)

= H(k)F(k) + �(k) k = 0; 1; � � � ; (N � 1) (8)

where upper case letters represent the discrete Fourier transform
(DFT) of their lower case counterparts. Several sets analogous to
the space domain sets can then be defined in the frequency-domain
for use in set-theoretic restoration.

For the known blur case, convex sets were defined in [10] by
placing appropriate confidence limits on EfjG(k)�H(k)F(k)j2g;
0 � k � (N � 1) (the periodogram of the residual). In [11], the
sets were modified to account for stochastic impulse responses by
expanding the bounds and making them frequency dependent, to get
the sets

S
(k)
p = fx j jG(k)� �H(k)X(k)j2 � �

0
p(k)g; 0 < k <

N

2
(9)

where

�
0
p(k) =

�N

2
�
2
� +

�N

2
Pf(k)Ej�H(k)j2: (10)

Pf (k) is the periodogram of f , and � is a confidence factor de-
termined for a given confidence level for a normalized chi-squared
random variable with two degrees of freedom.

The sets in (9) are frequency-domain equivalents of S0
v . Similar

equivalents of STLS that are based on TLS can be defined as

S
(k)
t = fx j 9�; E 2 C 3 [ �H(k) + �]X(k)

= G(k) +E; �kj�j
2
+ jEj2 � �kg; 0 < k <

N

2
: (11)

From arguments identical to those used in the proof of Theorem 1,
it can be shown that

S
(k)
t

= x j j �H(k)X(k)�G(k)j2 �
�k

�k
jX(k)j2 � �

2
k � 0 :

(12)

From the above characterization, it follows that S(k)
t

is a closed
convex set if j �H(k)j2 � �

�
.

III. PROJECTIONS ONTO THE MODIFIED SETS

Using the alternate characterizations developed above for the
modified sets, projections can be readily determined using standard
nonlinear programming techniques [14]. The projection of y 62 STLS
onto STLS is given by

x0 = I+ � �H
T �H�

�

�
I

�1

(y + � �H
T
g) (13)

where the Kuhn–Tucker parameter � � 0 is determined so as to
satisfy the constraint f(x0) = 0, where f(�) is as defined in (7). For
shift-invariant blurs, the computation can be carried out efficiently by
using the DFT to diagonalize �H [10].

The projection of y 62 S
(k)
t

onto S
(k)
t

can be expressed in terms
of the DFT as

X0(l) =

1

1+� j �H(k)j �
(Y (k) + � �H�

(k)G(k)); l = k

Y (l); l 6= k

(14)

where �H�
(k) denotes the complex conjugate of �H(k) and the

Kuhn–Tucker parameter

� =
1

j �H(k)j2 � �

�

� 1 + 1 +
j �H(k)X(k)�G(k)j2 � �

�
jX(k)j2 � �2

k

�k 1 +
jG(k)j

j �H(k)j �

:

IV. BOUNDS FOR THE SETS

The statistics of the noise and the perturbations �H can be used
to determine the values of the parameters �; �; f�k; �kg

N=2

k=1. For the
modified noise variance set, the value of � can be chosen as

� = �Ek�Hk2 +Ek k2

where � is chosen large enough to ensure that the resulting set is
convex (see Corollary 1), i.e.,

� �
Ek k2

�2
N
( �H)�Ek�Hk2

where �2N(
�H) denotes the smallest singular value of �H. Note that

the above condition for convexity of STLS is rather restrictive. In
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Fig. 1. Original and degraded signals.

particular, the above requirements implicitly assume that k�Hk2 �
�

�
� �

2
N ( �H) holds for our physical model. For shift-invariant blurs,

this translates to max j�H(k)j2 � min j �H(k)j2. The set STLS
is therefore useful only if the average blur �H is reasonably well
conditioned in relation to its perturbations.

For the modified PSB set, the value of �k can be determined as

�k = ��kEj�H(k)j2 + �Ej�(k)j2

= ��kEj�H(k)j2 + �N

2
�
2
�

where � is a confidence factor for the required confidence level and
�k is chosen large enough to ensure the convexity of S(k)

t
, i.e.,

�k � �N�
2
�

2(j �H(k)j2 � �Ej�H(k)j2) : (15)

Once again, in deriving the above inequality, it is implicitly assumed
that j �H(k)j2 � �Ej�H(k)j2. Due to the lowpass nature of most
blurs this requirement will be rarely met for the higher frequencies.
Therefore, out of the sets fS(k)

t
gN=2
k=1 only those may be retained for

which j �H(k)j2 � �Ej�H(k)j2. This is similar to [10] where the
sets such that j �H(k)j � 0 were dropped.

V. EXPERIMENTAL RESULTS

In order to test the effectiveness of the modified sets in restoration
problems, 1-D and 2-D1 simulations were performed using the
stochastic blurs from [11]. In both cases, the stochastic blur was
assumed to be composed of a known mean, �h(n), and a random
variation, �h(n), with known power spectrum Efj�H(k)j2g.

Restorations were performed using three different methods: the
MMSE filter, the dynamic POCS (DPOCS) technique from [11],
and POCS using the modified sets motivated by total least squares,
referred to as the error in variables POCS (EVPOCS) method2.

The stochastic MMSE filter (1-D version) is given by

Q(k) =
Pf (k) �H

�(k)

Pf (k)(j �H(k)j2 + Ej�H(k)j2) + �2�

: (16)

1 For brevity, the mathematical expressions for the 1-D case only are used
throughout this paper. The generalizations to 2-D signals are trivial.

2 Since there is no minimization involved, the EVPOCS nomenclature is
preferable to TLSPOCS even though the motivation for the new sets came
from TLS.

Fig. 2. Stochastic MMSE restoration.

For both the POCS schemes, the degraded signal was used as the
initial estimate for starting the iterations. For the dynamic POCS tech-
nique of [11], the estimate was obtained by projecting sequentially
onto the sets S0

v ; fS(k)p gN=2
k=1, and Sn, the set of nonnegative vectors.

The projections onto S0

v and fS(k)p g are trivial modifications of those
derived in [10] and will not be reproduced here. For the EVPOCS
scheme, the set STLS was not used in the 1-D and 2-D simulations
because in either case, the average impulse response is highly ill-
conditioned, having actual zeros and near zero values in its DFT
(see Section IV). The estimate for EVPOCS method was therefore
found by projecting sequentially onto the sets S0

v; fS(k)t
gk2
, and

Sn, where the index set 
 was composed of all 1 � k � N=2 for
which the inequality j �H(k)j2 � �Ej�H(k)j2 was true, where the
confidence factor � was found by using a 99% confidence level for
a chi-squared random variable with two degrees of freedom [11].
The values of f�kgk2
 were set as ten times their minimum values
prescribed by (15). The restoration was not unduly sensitive to the
values of �k provided a large enough value was chosen to ensure
reasonable curvature for the quadratic inequality describing S

(k)
t

.

A. 1-D Simulations

For generating a realization of the 1-D stochastic impulse response,
M points were generated between �128 and 127, with the location of
each point being a zero-mean Gaussian-distributed random variable
(r.v.) with a standard deviation of eight. The stochastic impulse
response was then computed as

h(n) =
number of points in [n � 0:5; n+ 0:5)

M
: (17)

The mean of the stochastic impulse response

�h(n) � 1

8
p
2�

exp � n
2

128
(18)

was assumed to be the known part of the impulse response.
Efj�H(k)j2g was also assumed to be known and computed by
averaging over 1000 realizations of the stochastic impulse response.
The noise was generated using a Gaussian random number generator,
and the variance �

2
� was computed from the signal-to-noise ratio

(SNR), defined as 10 log10(kfk2=�2�). The SNR was set at 30 dB
for the simulations. The parameter M which governs the uncertainty
of the impulse response was set equal to 100 as in [11].

The original signal and the degraded signal are shown in Fig. 1.
The three estimates are shown in Figs. 2, 3, and 4 for the stochastic
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Fig. 3. Dynamic POCS restoration.

MMSE, DPOCS, and EVPOCS schemes, respectively. All plots
include the actual signal for comparison. The DPOCS and EVPOCS
restoration methods converged in five and eight iterations, respec-
tively. From the figures, it can be seen that the stochastic MMSE
filter yields a smooth restored signal that does not fully capture the
levels in the original signal and has negative lobes. For the DPOCS
technique, the sets are rather conservative and hence the estimate
is not significantly different from the degraded signal used as the
initial estimate. The EVPOCS approach using the sets S(k)

t performs
significantly better giving good resolution of the two signal peaks
around n = 200 and also some discrimination between the multiple
signal levels in the central region.

To obtain mean-squared estimation error (MSEE) statistics for the
different restorations, 1000 Monte Carlo simulations were performed
with independent realizations of the stochastic blur and the noise. The
simulation results were used to estimate the MSEE (in dB), defined
as 10 log10(Efkf � f̂k2g=kfk2), where f and f̂ are the the original
and the restored signal, respectively. The DPOCS scheme failed to
converge in 50 POCS iterations for 44 of the Monte Carlo runs,
which were excluded from the corresponding MSEE computation.
The MSEE for the stochastic MMSE, EVPOCS, and DPOCS (over
converged iterations) restorations was estimated to be �6.34, �5.98,
and �5.32 dB, respectively. Though the EVPOCS estimate has a
slightly larger MSEE than the stochastic MMSE filter, which is
expected, in almost every case the quantization steps were readily
apparent and the double peaks on the right were better defined
for EVPOCS. Note also that the stochastic MMSE filter requires
knowledge of the signal periodogram, fPf(k)gN�1k=0 , which is not
used in the POCS schemes. For the simulation example presented
here, the known signal periodogram was utilized. In practice, the
periodogram would have to be estimated, which would have a
significant impact on the accuracy [15]. Since the degrading impulse
response is stochastic in nature, the difficulty of the problem and
the results of all schemes vary in accordance with the deviation of
the stochastic blur realization from the mean. However, for typical
realizations of the impulse response, the nature of the results is very
similar to the example presented. Also, tests performed by using
estimates of the noise variance that deviated from the true value
by 10% indicate that all three restoration schemes are not overly
sensitive to such errors.

Several additional points are worth noting with regard to this
restoration problem. Note that the restoration of Fig. 4 has an apparent

Fig. 4. Error in variables POCS estimate.

phase shift with respect to the original signal. This is to be expected,
since the the known component of the blur is zero phase while the
actual blur is not. For both the POCS restoration schemes, there is
considerable latitude available in the estimate. For example, in either
case, the stochastic MMSE estimate can be used as the initial estimate
to get a much smoother restoration. Note also that the new sets can be
readily incorporated in a POCS scheme that uses additional convex
sets based on a priori and/or statistical information. Examples of
such sets include, “smoothness” sets that define bounds on derivative
norms [16]–[18] and noise outlier sets [10]. In particular, [17]
demonstrates how smoothness may be enforced using POCS, while
leaving edges intact.

B. 2-D Simulations

A 2-D stochastic point spread function (psf) h(m;n) was obtained
as the extension of the 1-D blur in (17). M points were generated
in R � R such that the two coordinates of each generated point are
independent identically distributed r.v.’s with standard deviation of
four pixels. The stochastic impulse response was then computed as

h(m;n)

=
number of points in [m� 0:5;m+ 0:5)� [n � 0:5; n+ 0:5)

M
:

(19)

The average psf is therefore the zero-mean circularly symmetric 2-
D Gaussian distribution with a variance of 16. As mentioned in
[11] (where an image of the stochastic blur also appears), this blur
resembles examples of short-exposure atmospheric psf and the psf
resulting from photon scattering in X-ray imaging. As in the 1-D
case, the known blur statistics are the average psf and Efj�H(k)j2g,
the latter being computed by averaging over 1000 realizations of
the stochastic impulse response. The parameter M that governs the
uncertainty of the impulse response was set equal to 1000 as in [11].

For the simulations, the original 128 � 128 binary image of
Fig. 5(a) was degraded by blurring it with a realization of the
stochastic psf and adding stationary, zero-mean, Gaussian white
noise, with variance corresponding to an SNR of 30 dB. The
resulting degraded image is shown in Fig. 5(b). Restorations of
the degraded image performed with the stochastic MMSE filter,
DPOCS, and EVPOCS methods are shown in Fig. 5(c), (d) and (e),
respectively. The presentation of results differs from the 1-D case in
that (significantly large) negative lobes have been removed from the
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(a) (b)

(c) (d)

(e)

Fig. 5. Stochastic blur restoration example, M = 100. (a) Original image. (b) Degraded image. (c) Stochastic MMSE restoration. (d) DPOCS restoration.
(e) EVPOCS restoration.
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stochastic MMSE filter estimates for the purpose of image display.
Apart from this, the characteristics of the restorations are similar
to the 1-D case. The DPOCS and EVPOCS schemes yield sharper
images and fewer reconstruction artifacts (in the image background)
in comparison with the stochastic MMSE filter. In addition, both these
schemes also give improved sharpness as compared to the stochastic
MMSE filter. From the restorations, either of the POCS schemes
cannot be seen to be uniformly better than the other. The letters
in the EVPOCS restoration are better defined and it also has fewer
artifacts in comparison with the DPOCS restoration but the spacing
between the individual letters is clearer in the DPOCS restoration.
However, as in the 1-D case, the EVPOCS scheme was seen to be
more consistent with the data, i.e., for a given confidence level the
EVPOCS method failed to converge less frequently than the DPOCS
scheme.

VI. CONCLUSION

In this correspondence, new sets motivated by an error in variables
criterion were proposed for use in set theoretic restoration of a signal
blurred by a stochastic impulse response. An alternate characteri-
zation was developed for these sets, which helped establish their
convexity and determine projections onto them for use in POCS based
restoration. The superiority of the new technique over stochastic
MMSE restoration and the dynamic POCS technique of [11], was
demonstrated by means of simulations. The new approach is valuable
for restoration of blurs that can be represented by stochastic models
from which the required statistics can be determined. Examples of
such blurs include those in x-ray imaging (due to the quantum nature
of radiation) and in ground based astronomy (due to atmospheric
perturbations) [19].

APPENDIX

PROOF OF THEOREM 1

Suppose x 2 STLS. Then there exists an E such that, �kEk2F +

k �Hx � g + Exk
2
� � � 0. Let

� =

kExk
kxk x 6= 0

0 x = 0
: (20)

Then with a little arithmetic it can be seen that the above inequality
involving E implies

(� + kxk
2
)�

2
� 2k �Hx� gkkxk� + k �Hx� gk

2
� � � 0: (21)

Thus, if x 2 STLS, the quadratic inequality (21) in � has a
(nonnegative) real solution. This is equivalent to the discriminant
being nonnegative, which simplifies to the condition k �Hx � gk

2
�

�

�
kxk

2
� � � 0. Hence, x 2 �.

Conversely, suppose x 2 �. Then from the discriminant rule used
above it can be seen that there exists � � 0 satisfying inequality (21).
Let �0 be the minimum nonnegative solution of inequality (21). Let

E =

��
k �Hx�gkkxk

( �Hx� g)x
T �0 6= 0

0 �0 = 0
: (22)

Then it can be readily seen that

0 � ��
2

0 + k
�Hx� gk

2
+ �

2

0kxk
2
� 2�0kxkk �Hx� gk � �

= �kEk
2

F + k �Hx� g +Exk
2
� �: (23)

Hence, x 2 STLS and the theorem stands proved. Note that
the theorem and the proof hold even if the Frobenius norm in the
definition of STLS is replaced by the spectral norm.
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