Turbo-Decoding of RNA Secondary Structure

Gaurav Sharma

Department of Electrical and Computer Engineering Department of Biostatistics and Computational Biology

June 18, 2013

► Turbo-decoding in Communications: A Quick Review

- ► Turbo-decoding in Communications: A Quick Review
- RNA Structure Analysis: Motivation and Background
 - ▶ RNA, noncoding RNA, RNA structure and its significance
 - RNA structure prediction
 - Single/Multiple sequence methods

- ► Turbo-decoding in Communications: A Quick Review
- ► RNA Structure Analysis: Motivation and Background
 - ▶ RNA, noncoding RNA, RNA structure and its significance
 - RNA structure prediction
 - Single/Multiple sequence methods
- ► Turbo-decoding RNA secondary structure
 - Iterative probabilistic decoding of structures of multiple homologs: TurboFold
- Turbo-decoding: RNA vs communications

- ► Turbo-decoding in Communications: A Quick Review
- RNA Structure Analysis: Motivation and Background
 - ▶ RNA, noncoding RNA, RNA structure and its significance
 - RNA structure prediction
 - Single/Multiple sequence methods
- ► Turbo-decoding RNA secondary structure
 - Iterative probabilistic decoding of structures of multiple homologs: TurboFold
- Turbo-decoding: RNA vs communications
- Conclusions

- ► Turbo-decoding in Communications: A Quick Review
- RNA Structure Analysis: Motivation and Background
 - ▶ RNA, noncoding RNA, RNA structure and its significance
 - RNA structure prediction
 - Single/Multiple sequence methods
- ► Turbo-decoding RNA secondary structure
 - Iterative probabilistic decoding of structures of multiple homologs: TurboFold
- Turbo-decoding: RNA vs communications
- Conclusions
- Ongoing related work

Convolutional Codes

Encoder

- Finite state machine
 - Output and next state are functions of current state and inputs

ML Decoding: Convolutional Code

Convolutional code structure constrains possibilities to a trellis

► ML Decoding: Most likely path through the trellis given the received information

Turbo Decoding in Communications

An encoder construction

Figure : Systematic convolutional encoder (recursive)

Figure: Two encoders.

Figure : Parallel concatentation.

Turbo Decoding in Communications

Figure: Encoder + channel

Figure: Iterative Decoder

Symbol-wise MAP Decoding: Convolutional Code

Convolutional code structure constrains possibilities to a trellis

- ► Most probable value of a bit for all possible paths through the trellis, given the received information
- Localized probabilistic information

Turbo Decoding in Communications: Observations

- Multiple encodings of same message information
- ▶ Joint (optimal) decoding desirable
 - ► Exact joint decoding ≈ exponential complexity
 - Computationally Efficient Decoding: Iterative approximation (belief propagation)
 - Localized MAP probabilitistic formulation
 - Decomposition into loosely coupled individual decodings + information exchange at each iteration
 - Linear complexity in length of data
 - Pseudo-prior interpretation

Turbo Decoding in Communications: Observations

- ▶ Multiple encodings of same message information
- Joint (optimal) decoding desirable
 - ► Exact joint decoding ≈ exponential complexity
 - Computationally Efficient Decoding: Iterative approximation (belief propagation)
 - Localized MAP probabilitistic formulation
 - Decomposition into loosely coupled individual decodings + information exchange at each iteration
 - Linear complexity in length of data
 - Pseudo-prior interpretation

RNA?

What does this have to do with RNA?

RNA: Ribonucleic Acid

- Nucleic Acid of long chain of units named nucleotides: Nitrogenous Base, Ribose sugar, Phosphate
- Adjacent nucleotides linked together by strong (covalent) phosphodiester bonds between sugar and phosphate
- ► Information encoded with 4 different types of nucleotides differentiated by base content: Adenine, Guanine, Cytosine, Uracil

http://www.genome.gov

The Central Dogma

- Genetic information flows unidirectionally:
 - ightharpoonup DNA ightharpoonup RNA ightharpoonup Protein
- RNA plays a passive role
 - ► Transient copy created for protein synthesis

RNA an Active Player: ncRNAs

- ncRNAs: play direct functional roles in cellular processes
 - ► w/o translation to protein ⇒ "noncoding"
- Increasing numbers (being) discovered
- ▶ 1989 Nobel Prize in Chemistry: Ribozymes
 - ► Thomas Cech and Sidney Altman
- 2006 Nobel Prize in Physiology/Medicine: siRNA
 - Andrew Fire and Craig Mello

Noncoding RNAs (ncRNAs): Examples

- Commonly known ncRNAs
 - Protein synthesis: tRNA, rRNA
 - RNA modification: snoRNAs,
- Up/Down regulation of gene expression
 - Regulation of transcription
 - siRNA/miRNA post transcription regulation silencing of genes
 - piRNAs regulation of retroransposons
- RNA Splicing (autocatalysis)
- Many more: ...
- RNA Genomes (Many viruses including HIV and SIV)
- ncRNAs and diseases
 - Abnormal expression for ncRNAs observed in cancerous cells
 - Prader-Willi Syndrome (over-eating and learning disabilities)
 - Autism, Alzheimer's, ...

Noncoding RNAs (ncRNAs)

- RNA molecules that directly play functional roles in cellular processes
 - ightharpoonup Do not code for protein synthesis \implies "noncoding".
- Structure determines function in noncoding roles
- Determination of structure is of significant interest
 - Further understanding of ncRNA function
 - Enhances understanding of cellular processes and interactions
 - Provides targets for drug design

Structure determines function in noncoding roles

- Structure determines function in noncoding roles
- Experimental determination of structure is challenging
 - X-ray Crystallography
 - Crystallization difficult and expensive

- Structure determines function in noncoding roles
- Experimental determination of structure is challenging
 - X-ray Crystallography
 - Crystallization difficult and expensive
- Computational estimation of structure is of significant interest
 - Understanding ncRNA function in cellular processes and interactions
 - Genome understanding: structure based ncRNA gene search
 - Therapeutics: targets for drug design

- Structure determines function in noncoding roles
- Experimental determination of structure is challenging
 - X-ray Crystallography
 - Crystallization difficult and expensive
- Computational estimation of structure is of significant interest
 - Understanding ncRNA function in cellular processes and interactions
 - Genome understanding: structure based ncRNA gene search
 - ► Therapeutics: targets for drug design

RNA Structure Hierarchy [Tinoco and Bustamante, 1999]

Figure: Hierarchy of RNA structure formation [Waring and Davies, 1984, Doudna and Cech, 2002, Doudna and Cate, 1997]

RNA Secondary Structure

- ► Folding of RNA linear molecular chain onto itself with base pairing rules
- ► Formation of hydrogen bonds between nucleotides
 - Canonical base pairs
 - ► A can pair with U
 - G can pair with C and U
 - G-U pair called non Watson-Crick pair
- Greater variety of structures than the DNA double helix

RNA Secondary Structure Elements

Figure : Structural Elements of LGW17 sequence from RNAse P Database [Brown, 1999]

RNA Structure: Thermodynamics

Equilibrium: Boltzmann Distribution of structures

- ▶ Lower $\Delta G^o(\mathbf{S}_k)$, higher the probability of \mathbf{S}_k
- lacktriangle Most likely structure ightarrow Minimization of free energy

Modeling RNA Thermodynamics: Nearest neighbor model

- Nearest neighbor model [Xia et al., 1998, Mathews et al., 1999]
 - Computational model for free energy change of RNA structure
 - Experimentally determined free energy terms for each nearest neighbor interaction in secondary structure
 - Loop decomposition

Figure: Total free energy change is summation of all nearest neighbor energies [Durbin et al., 1999]

RNA ML Decoding of Structure: Single Sequence

▶ Most likely or minimum free energy structure, given sequence

▶ Dynamic Programming MFold [Zuker, 1989] $O(N^3)$ complexity

RNA MAP Decoding of Structure

▶ Posterior probability of base pairing, given sequence

- ▶ Dynamic Programming [McCaskill, 1990], MFold, RNAfold $(O(N^3)$ in time, $O(N^2)$ in space)
- Localized probabilistic information

RNA Structure Prediction (Single Sequence)

- ► Free energy minimization: "Hard" Prediction
 - Single prediction structure
- Base pairing probabilities: "Soft" Prediction
 - ► Thresholding may yield pseudo-knotted structures
 - ► Maximum Expected Accuracy Structure Prediction, [Do et al., 2006, Lu et al., 2009]

Structure Prediction for Multiple Sequences: Homologous ncRNAs

- ► Homologous ncRNAs
 - Share evolutionary ancestor
 - Serve same function
 - Structural similarity in terms of topology of structures

Structure Prediction for Multiple Sequences: Homologous ncRNAs

- ► Homologous ncRNAs
 - ► Share evolutionary ancestor
 - Serve same function
 - Structural similarity in terms of topology of structures

Structure Prediction for Multiple Sequences: Homologous ncRNAs

- "Common" structures and conforming sequence alignment
- ► Joint estimation can harness comparative structure and sequence information across homologs

Multiple Sequence RNA Structure Prediction

Input Sequences

Multiple Sequence RNA Structure Prediction

Input Sequences

- Sankoff's dynamic programming algorithm [Sankoff, 1985]
 - Simultaneous folding (pseudo-knot free) and alignment of K sequences
 - ▶ Time (Memory) complexity: $O(N^{3K})$ ($O(N^{2K})$)
 - ▶ Computationally infeasible even for short sequences and K=2 w/o cutting corners

Turbo-Decoding RNA Secondary Structure

- ► Goal: Performance similar ("better") than joint estimation, complexity similar to single sequence computation.
- Probabilistic formulation of folding and alignment
 - Base pairing probabilities, posterior alignment probabilities
- Iteratively update each using information from other
- ► TurboFold [Harmanci et al., 2007, 2011].

Structural Alignment: Joint Representation of Structures and Alignment

Two sequence case

Decoupled Probabilistic Representation for RD0260, RD0500 Structural Alignment

 Formulate in probabilistic framework and separate the folding/alignment representations

- Extrinsic information for a sequence
 - ► The information about folding of a sequence which is computed using base pairing probabilities of other sequences
 - ► Thermodynamic model + Alignment model

- Extrinsic information for a sequence
 - ► The information about folding of a sequence which is computed using base pairing probabilities of other sequences
 - ► Thermodynamic model + Alignment model
- Base pairing probabilities of a sequence (Intrinsic Information)
 - From sequence itself
 - ► Thermodynamic model

- Extrinsic information for a sequence
 - ► The information about folding of a sequence which is computed using base pairing probabilities of other sequences
 - ► Thermodynamic model + Alignment model
- Base pairing probabilities of a sequence (Intrinsic Information)
 - ► From sequence itself
 - Thermodynamic model
- Iterative updates:
 - ► Compute extrinsic information using base pairing probabilities and alignment co-incidence probabilities
 - Update base pairing probabilities using updated extrinsic information
 - Update extrinsic information using updated base pairing probabilities
 -

Extrinsic Information for Base Pairing for RD0260

3 Sequences

Base Pairing *Proclivity* Matrix for RD0260 Induced by RE2140

▶ Information in RE2140 about folding of RD0260

$${}_{n}^{t}\tilde{\mathbf{\Pi}}^{(s\to m)} = {}_{c}\mathbf{\Pi}^{(m,s)} {}_{n}^{t-1}\mathbf{\Pi}^{s} ({}_{c}\mathbf{\Pi}^{(m,s)})^{\mathrm{T}}$$

$$(1)$$

990

3 Sequences: Extrinsic information Computation

K Sequences: Extrinsic Information Computation for \mathbf{x}_m

Modified Boltzmann distribution of secondary structures:

$$P(\mathbf{S}) \propto \exp\left(-\frac{\Delta \tilde{G}(\mathbf{S})}{RT}\right)$$

Modified Boltzmann distribution of secondary structures:

$$P(\mathbf{S}) \propto \exp\left(-\frac{\Delta \tilde{G}(\mathbf{S})}{RT}\right)$$

where

$$\Delta \tilde{G}(\mathbf{S}) = \Delta G^{o}(\mathbf{S}) - \gamma \sum_{(i,j) \in \mathbf{S}} \log(\tilde{\pi}(i,j))$$

is the *modified* free energy change for structure S.

- $\tilde{\pi}(i,j)$: Extrinsic information for pairing of nucleotides at indices i and j
- $ightharpoonup \gamma$: Weight of extrinsic information on modified free energy relative to $\Delta G^o(\mathbf{S})$

Extrinsic information introduced via a pseudo free energy for each base pair

Modified Boltzmann distribution of secondary structures:

$$P(\mathbf{S}) \propto \exp\left(-\frac{\Delta \tilde{G}(\mathbf{S})}{RT}\right)$$
 (2)

where

$$\Delta \tilde{G}(\mathbf{S}) = \Delta G^{o}(\mathbf{S}) - \gamma \sum_{(i,j) \in \mathbf{S}} \log(\tilde{\pi}(i,j))$$
 (3)

Modified Boltzmann distribution of secondary structures:

$$P(\mathbf{S}) \propto \exp\left(-\frac{\Delta \tilde{G}(\mathbf{S})}{RT}\right)$$
 (2)

where

$$\Delta \tilde{G}(\mathbf{S}) = \Delta G^{o}(\mathbf{S}) - \gamma \sum_{(i,j) \in \mathbf{S}} \log(\tilde{\pi}(i,j))$$
 (3)

Replace (3) in (2):

$$P(\mathbf{S}) \propto \underbrace{\exp(-\frac{\Delta G^o(\mathbf{S})}{RT})}_{\text{Boltzmann distribution proportionality term}} \underbrace{\left(\prod_{(i,j)\in\mathbf{S}} (\tilde{\pi}(i,j))^{\gamma/RT}\right)}_{\text{Extrinsic information}}$$

▶ Modified Boltzmann distribution of secondary structures:

$$P(\mathbf{S}) \propto \exp\left(-\frac{\Delta \tilde{G}(\mathbf{S})}{RT}\right)$$
 (2)

where

$$\Delta \tilde{G}(\mathbf{S}) = \Delta G^{o}(\mathbf{S}) - \gamma \sum_{(i,j) \in \mathbf{S}} \log(\tilde{\pi}(i,j))$$
 (3)

Replace (3) in (2):

$$P(\mathbf{S}) \propto \underbrace{\exp(-\frac{\Delta G^o(\mathbf{S})}{RT})}_{\text{Boltzmann distribution proportionality term}} \underbrace{\left(\prod_{(i,j)\in\mathbf{S}} (\tilde{\pi}(i,j))^{\gamma/RT}\right)}_{\text{Extrinsic information}}$$

▶ Base pair (i,j) has a pseudo prior probability of $(\tilde{\pi}(i,j))^{\gamma/RT}$ due to extrinsic information.

TurboFold: Iterative Updates

- ► For low *K*, per iteration complexity is comparable to single sequence structure prediction
- ▶ Benefits from comparative analysis

TurboFold Structure Prediction Overview

- lacktriangle Obtain base pairing probabilities after η iterations, then predict structures
 - Significant base pairs
 - Maximum expected accuracy (MEA) structures

Structure Prediction

Structure for \mathbf{x}_m composed of base pairs with probabilities greater than P_{thresh} :

$$\mathbf{S}_{m}^{*} = \{(i,j) \ni {}_{p}^{\eta} \pi^{m}(i,j) > P_{\text{thresh}}\}$$
 (4)

TurboFold: Computation Complexity

- Initialization
 - Computation of co-incidence matrices: $O(K^2N^2)$
 - lacktriangle Computation of sequence similarities: $O(K^2N^2)$
- Iterations
 - Extrinsic information computation: $O(\eta K^2 d^2 N^2)$
 - ▶ Base pairing probability computation: $O(\eta KUN^3)$
- Structure prediction
 - ▶ Thresholding: $O(KN^2)$
 - ▶ MEA prediction: $O(KN^3)$

Compare to Sankoff's algorithm: $O(N^3(U^2d)^K)$

Evaluating Accuracy of Estimates

Sensitivity: Ratio of number of correctly predicted base pairs to the total number of base pairs in the known structure

$$\frac{ \ \ \, \text{True Positive}}{ \ \, \text{True Positive} + False} \, \textbf{Negative}$$

- Recall
- Positive Predictive Value(PPV): Ratio of number of correctly predicted base pairs to the total number of base pairs in the predicted structure

$$\frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}$$

Precision

Parameter Selection: Number of iterations, η

Sensitivity vs. PPV over 5S rRNA dataset with changing η

• $\eta = 3$ is used in TurboFold

Parameter Selection: Weight of Extrinsic Information, γ

Sensitivity vs. PPV over 5S rRNA dataset with changing γ/RT

• $\gamma = 0.3RT$ is used in TurboFold

Benchmarking Experiments: Datasets

- ▶ Randomly choose 200 RNase P, 400 5S rRNA, 400 SRP, and 400 tRNA sequences and divide into K combinations
 - ▶ Choose and divide for K = 2, ..., 10
- Yields 36 datasets

The datasets have significant diversity:

- ▶ RNase Ps: 336 nucleotides, 50% average pairwise identity
- ▶ tmRNA: 366 nucleotides, 45% average pairwise identity
- ▶ telomerase RNA: 445 nucleotides, 54% average pairwise identity
- ▶ SRPs: 187 nucleotides, 42% average pairwise identity
- ▶ tRNAs: 77 nucleotides, 47% average pairwise identity
- ▶ 5S rRNAs: 119 nucleotides, 63% average pairwise identity

Benchmarking Experiments: Datasets

- ▶ Randomly choose 200 RNase P, 400 5S rRNA, 400 SRP, and 400 tRNA sequences and divide into K combinations
 - ▶ Choose and divide for K = 2, ..., 10
- Yields 36 datasets

The datasets have significant diversity:

- ► RNase Ps: 336 nucleotides, 50% average pairwise identity
- ▶ tmRNA: 366 nucleotides, 45% average pairwise identity
- ► telomerase RNA: 445 nucleotides, 54% average pairwise identity
- ► SRPs: 187 nucleotides, 42% average pairwise identity
- ▶ tRNAs: 77 nucleotides, 47% average pairwise identity
- ▶ 5S rRNAs: 119 nucleotides, 63% average pairwise identity

Benchmarking Experiments

- TurboFold is benchmarked against methods that estimate base pairing probabilities:
 - ► LocARNA [Will et al., 2007]
 - ► RNAalifold [Bernhart et al., 2008]
 - ► Single sequence partition function [Mathews, 2004]
- ▶ The set of base pairs with estimated probabilities higher than P_{thresh} are scored
- ▶ Plotted sensitivity versus PPV while varying $P_{\rm thresh}$ between 0 and 1 with step size of 0.04

Benchmarking Experiments

Sensitivity vs PPV ROC curves for TurboFold vs three alternative methods

Run Time Requirements

▶ Run time requirements over 50 RNase P sequence datasets

	Runtime (seconds) for		
	K = 3	K = 5	K = 10
TurboFold	136.75	277.9	517.0
LocARNA	746.44	2815.9	11395.8
RNAalifold	0.2	0.3	0.6

Table: Time requirements (in seconds) for the methods.

▶ TurboFold scales slower with increase in *K*

Conclusions

- ► TurboFold: A multiple sequence structure prediction method
 - ► Lowers Complexity with iterative combination of intrinsic and extrinsic information for folding
 - Intrinsic information: From sequence via thermodynamic folding model (nearest neighbor model)
 - Extrinsic information: From other sequences
- ► TurboFold accuracy: close to or higher than the simultaneous folding and alignment methods
- ▶ Details: BMC Bioinformatics article Harmanci et al. [2011].
- Connections to coding theory in digital communications

Turbo Decoding: RNA vs Communications

- Multiple encodings of same information
 - Nature/Man
- Joint (optimal) decoding desirable
 - ► Exact joint decoding ≈ exponential complexity
 - Iterative approximation (belief propagation)
 - Localized MAP probabilitistic formulation (base pairing/symbol probs.)
 - Decomposition into loosely coupled individual decodings + information exchange at each iteration
 - Linear complexity in length of data
 - Pseudo-prior interpretation

Ongoing Related Work

- Moving beyond TurboFold
 - Alignment probability updates based on structures
 - Better handling of dependencies
 - Domain insertions/deletions
- Connecting with experiments
 - Incorporating experimental information (e.g. SHAPE) in structural alignments
 - Postulating mechanisms and experimental validation (HIV)

Acknowledgments

- Collaborators at UR:
 - ► Arif O. Harmanci, UR ECE, currently PostDoc at Yale
 - David H. Mathews, Department of Biochemistry and Biophysics
- Research support:
 - ▶ National Institutes of Health (NIH) (Award # GM097334-01)
 - Center for Research Computing, University of Rochester

Thank you

Questions?

- S. H. Bernhart, I. L. Hofacker, S. Will, A. R. Gruber, and P. F. Stadler. RNAalifold: improved consensus structure prediction for RNA alignments. *BMC Bioinformatics*, 9:474, 2008.
- J. W. Brown. The Ribonuclease P database. *Nucleic Acids Res.*, 27(1):314, Jan. 1999.
- Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. CONTRAfold: RNA secondary structure prediction without physics-based models. *Bioinformatics*, 22(14):90–98, 2006.
- J. A. Doudna and T. R. Cech. The chemical repertoire of natural ribozymes. *Nature*, 418(6894):222–228, 2002.
- J.A. Doudna and J.H. Cate. RNA structure: crystal clear? *Current Opinions in Structural Biology*, 7:310–316, 1997.
- R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids*. Cambridge University Press, Cambridge, UK, 1999. ISBN 0521629713.

- A. Ozgun Harmanci, Gaurav Sharma, and David H. Mathews. Toward turbo decoding of RNA secondary structure. In *Proc. IEEE Intl. Conf. Acoustics Speech and Sig. Proc.*, volume I, pages 365–368, Apr. 2007.
- A. Ozgun Harmanci, Gaurav Sharma, and David H. Mathews. TurboFold: Iterative Probabilistic Estimation of Secondary Structures for Multiple RNA Sequences. *BMC Bioinformatics*, 12:108, 2011. early access available online, April 20, 2011.
- Zhi John Lu, Jason W. Gloor, and David H. Mathews. Improved RNA secondary structure prediction by maximizing expected pair accuracy. *RNA*, 15(10):1805–1813, 2009.
- D. H. Mathews. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. *RNA*, 10(8):1178–1190, 2004.
- D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence dependence of thermodynamic parameters provides

- improved prediction of RNA secondary structure. *J. Mol. Biol.*, 288(5):911–940, 1999.
- J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. *Biopolymers*, 29(6-7):1105–1119, Nov. 1990.
- D. Sankoff. Simultaneous solution of RNA folding, alignment and protosequence problems. SIAM J. App. Math., 45(5):810–825, Oct. 1985.
- Tinoco, Jr. and C. Bustamante. How RNA folds. J Mol Biol, 293(2):271–281, 1999.
- Richard B. Waring and R. Wayne Davies. Assessment of a model for intron rna secondary structure relevant to RNA self-splicing a review. *Gene*, 28(3):277–291, 1984.
- Sebastian Will, Kristin Reiche, Ivo L. Hofacker, Peter F. Stadler, and Rolf Backofen. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. *PLoS Comput. Biol.*, 3(4):680–691, Apr. 2007.

- T. Xia, J. SantaLucia, Jr., R Kierzek, S. J. Schroeder, X Jiao, C Cox, and Douglas Henry Turner. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick pairs. *Biochemistry*, 37(42): 14719–14735, 1998.
- M. Zuker. Computer prediction of RNA structure. *Methods Enzymol.*, 180:262–288, 1989.