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Convolutional Codes

» Encoder
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» Finite state machine
» Output and next state are functions of current state and inputs



ML Decoding: Convolutional Code

» Convolutional code structure constrains possibilities to a trellis

Rx Bits

CNSODOS

11 - : ° ° - ° Decoded
1 0 0 1 1 0 Message Bits

» ML Decoding: Most likely path through the trellis given the
received information



Turbo Decoding in Communications

» An encoder construction
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Turbo Decoding in Communications
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Symbol-wise MAP Decoding: Convolutional Code

» Convolutional code structure constrains possibilities to a trellis

Rx Bits
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» Most probable value of a bit for all possible paths through the
trellis, given the received information

» Localized probabilistic information



Turbo Decoding in Communications: Observations

» Multiple encodings of same message information
» Joint (optimal) decoding desirable

» Exact joint decoding =~ exponential complexity
» Computationally Efficient Decoding: lterative approximation
(belief propagation)
> Localized MAP probabilitistic formulation
» Decomposition into loosely coupled individual decodings +
information exchange at each iteration
> Linear complexity in length of data
» Pseudo-prior interpretation
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What does this have to do with RNA?



RNA: Ribonucleic Acid

» Nucleic Acid of long chain of

units named nucleotides:
Nitrogenous Base, Ribose
sugar, Phosphate

Adjacent nucleotides linked
together by strong (covalent)
phosphodiester bonds
between sugar and phosphate

Information encoded with 4
different types of nucleotides
differentiated by base
content: Adenine, Guanine,
Cytosine, Uracil

http://www.genome.gov
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The Central Dogma

> Genetic information flows unidirectionally:
» DNA — RNA — Protein
» RNA plays a passive role
» Transient copy created for protein synthesis

http://www.genome.gov



RNA an Active Player: ncRNAs

> ncRNAs: play direct functional roles
in cellular processes

DNA Template » w/o translation to protein =
+Transcription noncodlng
-~~~ Self-splicing X X
pre mRNA % Intron > Increasing numbers (being)
mRNA discovered
AvG UAA Codons > 1989 Nobel Prize in Chemistry:

UAG Anti-Codon Ri bozymes

micro RNA
ibosomal NA _
o @ " » Thomas Cech and Sidney
Altman
Protein
ncRNAs » 2006 Nobel Prize in

Physiology /Medicine: siRNA
» Andrew Fire and Craig Mello



Background

Noncoding RNAs (ncRNAs): Examples

» Commonly known ncRNAs
» Protein synthesis: tRNA, rRNA
» RNA modification: snoRNAs,
Up/Down regulation of gene expression
» Regulation of transcription
» siRNA/miRNA post transcription regulation silencing of genes
» piRNAs regulation of retroransposons

v

v

RNA Splicing (autocatalysis)
» Many more: ...

RNA Genomes (Many viruses including HIV and SIV)
ncRNAs and diseases

v

v

» Abnormal expression for ncRNAs observed in cancerous cells
» Prader-Willi Syndrome (over-eating and learning disabilities)
» Autism, Alzheimer's, ...



Background

Noncoding RNAs (ncRNAs)

» RNA molecules that directly play functional roles in cellular
processes

» Do not code for protein synthesis = "“noncoding”.
» Structure determines function in noncoding roles

» Determination of structure is of significant interest

» Further understanding of ncRNA function
» Enhances understanding of cellular processes and interactions
» Provides targets for drug design
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RNA Structure Hierarchy [Tinoco and Bustamante, 1999]

5
AAUUGCGGGAAAGGGGUCAA
CAGCCGUUCAGUACCAAGUC
UCAGGGGAAACUUUGAGAUG
GCCUUGCAAAGGGUAUGGUA
AUAAGCUGACGGACAUGGUC
CUAACCACGCAGCCAAGUCC
UAAGUCAACAGAUCUUCUGU
UGAUAUGGAUGCAGUUCA 7
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Figure : Hierarchy of RNA structure formation [Waring and Davies, 1984,
Doudna and Cech, 2002, Doudna and Cate, 1997]




RNA Secondary Structure

» Folding of RNA linear molecular chain onto itself with base
pairing rules
» Formation of hydrogen bonds between nucleotides
» Canonical base pairs

> A can pair with U
» G can pair with C and U
» G-U pair called non Watson-Crick pair

» Greater variety of structures than the DNA double helix



RNA Secondary Structure Elements
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Database [Brown, 1999]



RNA Structure: Thermodynamics

» Equilibrium: Boltzmann Distribution of structures

Unpaired '

5
State ]]IUO S, — exp(—~AG°(S)/RT)
3 /

3
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\\ % —» exp(—~AGO(S},)/RT)

> Lower AG°(Sg), higher the probability of Sy

» Most likely structure — Minimization of free energy



Modeling RNA Thermodynamics: Nearest neighbor model

» Nearest neighbor model [Xia et al., 1998, Mathews et al.,
1999]
» Computational model for free energy change of RNA structure
» Experimentally determined free energy terms for each nearest
neighbor interaction in secondary structure
> Loop decomposition

AN
A A 4 nucleotide hairpin loop: +5.9 kcal/mol

Terminal Mismatch (GC/AA): —1.1 kcal/mol ¢—— \G C/
G‘ é4> Stacked loop (GC/GC): —2.9 kcal/mol
7
1 Nucleotide Bulge Loop: +3.3 kcal/mol ¢—— A ‘H Stacking of base pairs (GC/GC): —2.9 kcal/mol
G-

l‘J _i" Stacked loop (UA/GC): —1.8 kcal/mol
A - L‘JH Stacked loop (AU/UA): —0.9 kcal/mol
C‘ —G‘H Stacked loop (CG/AU): —1.8 kcal/mol
A _UH Stacked loop (AU/CG): —2.1 kcal/mol

A
’
. \
5

Figure : Total free energy change is summation of all nearest neighbor
energies [Durbin et al., 1999]

5" dangling nucleotide: —0.3 kcal/mol



RNA ML Decoding of Structure: Single Sequence

» Most likely or minimum free energy structure, given sequence

% G

» Dynamic Programming MFold [Zuker, 1989] O(N?)
complexity



RNA MAP Decoding of Structure

» Posterior probability of base pairing, given sequence

» Dynamic Programming [McCaskill, 1990], MFold, RNAfold
(O(N3) in time, O(N?) in space)
» Localized probabilistic information



RNA Structure Prediction (Single Sequence)

RD0260 Sequence

GCGACCaGEEaUGECUY
Partition Function UAAUQ()UA( o Cﬁcw Free Energy

Computation G Minimization
GG U('AAAUCCCAUCG
GUCGCGCCA
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RD0260 nucleotide indices

RD0260 nudeonde lndlces

RD0260 nucleotide indices

. ¢ -28.6 kcals/mol
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RD0260 nucleotide indices

» Free energy minimization: “Hard” Prediction
» Single prediction structure
» Base pairing probabilities: “Soft” Prediction

» Thresholding may yield pseudo-knotted structures
» Maximum Expected Accuracy Structure Prediction, [Do et al.,
2006, Lu et al., 2009]



Structure Prediction for Multiple Sequences: Homologous

ncRNAs

» Homologous ncRNAs

» Share evolutionary ancestor
» Serve same function
» Structural similarity in terms of topology of structures

Bacteriophage T5 (Asp) Haloferax Volcanii (Asp) Synechocystis (Glu)

U,

RD0260 RE2140
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Structure Prediction for Multiple Sequences: Homologous

RD0260 RD0500 RE2140

5
RD0260 ——» GCGACCGGGGCUGGCUUGGUA-AUGGUACUCCCCUGUCACGGGAGAGARUGUGGGUUCAAAUCCCAUCGGUCGCGCCA
RD0500 —— GCCCGGGUGGUGUAGU-GGCCCAUCAUACGACCCUGUCACGGUCGUGA-CGCGGGUUCGAAUCCCGCCUCGGGCGCCA
RE2140 ——» GCCCCCAUCGUCUAGA-GGCCUAGGACACCUCCCUUUCACGGAGGCGA-CAGGGAUUCGAAUUCCCUUGGGGGUACCA

» “Common” structures and conforming sequence alignment

> Joint estimation can harness comparative structure and sequence
information across homologs



Multiple Sequence RNA Structure Prediction

Input Sequences
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Multiple Sequence RNA Structure Prediction

Input Sequences
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» Sankoff's dynamic programming algorithm [Sankoff, 1985]
» Simultaneous folding (pseudo-knot free) and alignment of K
sequences
» Time (Memory) complexity: O(N3K) (O(N2K))
» Computationally infeasible even for short sequences and K = 2
w/o cutting corners
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Turbo-Decoding RNA Secondary Structure

» Goal: Performance similar (“better”) than joint estimation,
complexity similar to single sequence computation.
» Probabilistic formulation of folding and alignment
» Base pairing probabilities, posterior alignment probabilities
> lteratively update each using information from other
» TurboFold [Harmanci et al., 2007, 2011].

Base pairing
probabilities

N
>
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Structural Alignment: Joint Representation of Structures

and Alignment

» Two sequence case
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RDO0500 Structural Alignment

Decoupled Probabilistic Representation for RD0260,

» Formulate in probabilistic framework and separate the
folding/alignment representations
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TurboFold

Given K homologous RNA sequences, each sequence contains
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TurboFold

Given K homologous RNA sequences, each sequence contains
some information about folding of every other sequence.

» Extrinsic information for a sequence

» The information about folding of a sequence which is
computed using base pairing probabilities of other sequences
» Thermodynamic model 4+ Alignment model

» Base pairing probabilities of a sequence (Intrinsic Information)

» From sequence itself
» Thermodynamic model

> lterative updates:

» Compute extrinsic information using base pairing probabilities
and alignment co-incidence probabilities

» Update base pairing probabilities using updated extrinsic
information

» Update extrinsic information using updated base pairing
probabilities



Extrinsic Information for Base Pairing for RD0260
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3 Sequences
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Base Pairing Proclivity Matrix for RD0260 Induced by RE2140

RE2140

5 8 3 =

RE2140 indices
s s s
RD0260 indices

RD0260 indices

RE2140 indices

RE2140 indices

Base pairing proclivity matrix
for RD0260 induced by RE2140

RD0260 indices

RD0260 indices

» Information in RE2140 about folding of RD0260
1 _ 8) t—1 ST
pH(s—>m) _ CI—I(m s) b I8 (CH(m s)) (1)



3 Sequences: Extrinsic information Computation

Proclivity Matrices for RD0260
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K Sequences: Extrinsic Information Computation for x,,
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Base Pairing Probability Computation Using Extrinsic

Information

» Modified Boltzmann distribution of secondary structures:

P(S) x exp <— Ag;S))




Base Pairing Probability Computation Using Extrinsic

Information

» Modified Boltzmann distribution of secondary structures:

P(S) x exp <— AG(S))

RT

where .
AG(S) = AG°(S) —v > log(#(i,))
(4,5)€S
is the modified free energy change for structure S.

» 7(i,7): Extrinsic information for pairing of nucleotides at
indices ¢ and j

> ~: Weight of extrinsic information on modified free energy
relative to AG°(S)

Extrinsic information introduced via a pseudo free energy for each
base pair



Base Pairing Probability Computation Using Extrinsic

Information

» Modified Boltzmann distribution of secondary structures:

P(S) x exp <—Ag§?)> (2)
where
AG(S) = AG°(S)—v > log(w (3)

(4,7)€S



Base Pairing Probability Computation Using Extrinsic

Information

» Modified Boltzmann distribution of secondary structures:

P(S) x exp <— Ag;S)) (2)
where
AG(S) = AG°(S) —v > log(® (3)
(i,4)€S

Replace (3) in (2):

RT

Boltzmann distribution -
proportionality term Extrinsic

information

P(s) x exp(- 2SS (T <fr<z’,j>>”f/RT)
—_— S




Base Pairing Probability Computation Using Extrinsic

Information

» Modified Boltzmann distribution of secondary structures:

P(S) x exp <— Ag;S)) (2)
where
AG(S) = AG°(S) —v > log(® (3)
(i,4)€S

Replace (3) in (2):

P(s) x exp(- 2SS (T <fr<z’,j>>”f/RT)
—_— ; S

RT A
IS
Boltzmann distribution -
proportionality term Extrinsic
information

» Base pair (i, ;) has a pseudo prior probability of (7(i, j))/ 5T
due to extrinsic information.



TurboFold: Iterative Updates

X v Vv
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» For low K, per iteration complexity is comparable to single

n Iterations

sequence structure prediction

> Benefits from comparative analysis




TurboFold Structure Prediction Overview

» Obtain base pairing probabilities after 7 iterations, then
predict structures

» Significant base pairs
» Maximum expected accuracy (MEA) structures

Input Sequences
{Xm}me./\/

N
X /\/ TurboFold
1 Y

i
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1 .
- /\/ n Iterations Accuracy Prediction
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Thresholding
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Structure Prediction

» Structure for x,,, composed of base pairs with probabilities
greater than Pipresh:

Sy, = {(i,4) 2 17™(4,5) > Pihwesh (4)



TurboFold: Computation Complexity

» Initialization

» Computation of co-incidence matrices: O(K2N?)
» Computation of sequence similarities: O(K2N?)

> lterations
» Extrinsic information computation: O(nK2d>N?)
» Base pairing probability computation: O(nKUN?)
» Structure prediction
» Thresholding: O(KN?)
» MEA prediction: O(KN?)

Compare to Sankoff's algorithm: O(N3(U%d)X)



Evaluating Accuracy of Estimates

» Sensitivity: Ratio of number of correctly predicted base pairs
to the total number of base pairs in the known structure

True Positive

True Positive 4 False Negative

» Recall

» Positive Predictive Value(PPV): Ratio of number of correctly
predicted base pairs to the total number of base pairs in the
predicted structure

True Positive

True Positive + False Positive

» Precision



Parameter Selection: Number of iterations, 7

Sensitivity vs. PPV over 5S rRNA dataset
with changing 7
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» 7 =3 is used in TurboFold



Parameter Selection: Weight of Extrinsic Information, ~

Sensitivity vs. PPV over 5S rRNA dataset
with changing ~v/RT
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PPV
o
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6 i i i i i
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Sensitivity

» v =0.3RT is used in TurboFold



Benchmarking Experiments: Datasets

» Randomly choose 200 RNase P, 400 5S rRNA, 400 SRP, and
400 tRNA sequences and divide into K combinations

» Choose and divide for K =2,...,10
» Yields 36 datasets

The datasets have significant diversity:

» RNase Ps: 336 nucleotides, 50% average pairwise identity

v

tmRNA: 366 nucleotides, 45% average pairwise identity

» telomerase RNA: 445 nucleotides, 54% average pairwise
identity

v

SRPs: 187 nucleotides, 42% average pairwise identity

v

tRNAs: 77 nucleotides, 47% average pairwise identity

v

5S rRNAs: 119 nucleotides, 63% average pairwise identity
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Benchmarking Experiments

» TurboFold is benchmarked against methods that estimate
base pairing probabilities:
» LocARNA [Will et al., 2007]
» RNAalifold [Bernhart et al., 2008]
» Single sequence partition function [Mathews, 2004]

» The set of base pairs with estimated probabilities higher than
Piyresn are scored

> Plotted sensitivity versus PPV while varying P;p esn between 0
and 1 with step size of 0.04



Benchmarking Experiments

Sensitivity vs PPV ROC curves for TurboFold vs three alternative
methods

PPV
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Run Time Requirements

» Run time requirements over 50 RNase P sequence datasets

Runtime (seconds) for
K=3|K=5|K=10
TurboFold || 136.75 | 277.9 517.0
LocARNA || 746.44 | 2815.9 | 11395.8
RNAalifold 0.2 0.3 0.6

Table : Time requirements (in seconds) for the methods.

» TurboFold scales slower with increase in K



Conclusions

v

TurboFold: A multiple sequence structure prediction method
» Lowers Complexity with iterative combination of intrinsic and
extrinsic information for folding
> Intrinsic information: From sequence via thermodynamic
folding model (nearest neighbor model)
» Extrinsic information: From other sequences

v

TurboFold accuracy: close to or higher than the simultaneous
folding and alignment methods

v

Details: BMC Bioinformatics article Harmanci et al. [2011].

v

Connections to coding theory in digital communications



Turbo Decoding: RNA vs Communications

» Multiple encodings of same information
» Nature/Man
» Joint (optimal) decoding desirable

» Exact joint decoding ~ exponential complexity
» lterative approximation (belief propagation)
> Localized MAP probabilitistic formulation (base
pairing/symbol probs.)
» Decomposition into loosely coupled individual decodings +
information exchange at each iteration
» Linear complexity in length of data
» Pseudo-prior interpretation



Ongoing Related Work

» Moving beyond TurboFold
» Alignment probability updates based on structures
» Better handling of dependencies
» Domain insertions/deletions
» Connecting with experiments
» Incorporating experimental information (e.g. SHAPE) in
structural alignments
» Postulating mechanisms and experimental validation (HIV)
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