Mathematical Discontinuities in CIEDE2000 Color Difference Computations

Gaurav Sharma<sup>\*</sup>, Wencheng Wu<sup>+</sup>, Edul N. Dalal<sup>+</sup>, Mehmet U. Celik<sup>\*</sup> <sup>\*</sup>University of Rochester <sup>+</sup>Xerox Corporation

# Outline

- Color Difference Equations
- CIEDE2000 Computation
- Sources of Discontinuity
- Discontinuity Visualization
- Discontinuity Magnitude Characterization
  - Maximum (reasonable) magnitude
- Conclusions + workarounds

# **Color Difference Equations**

- Quantitative evaluation of color differences
- Main uses:
  - Quantitative color error evaluation
  - Algorithm/parameter optimization

Color Difference Equations: Desirable Attributes

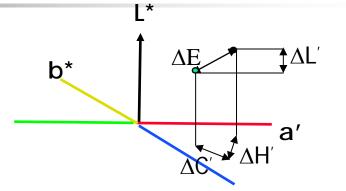
- Perceptual uniformity
  - Equal numerical differences correspond to equal perceived differences
- Mathematical properties:
  - Continuity and differentiability
    - Taylor series/small-error approximation
    - Gradient based optimization
  - Symmetry
    - reference/sample distinction un-necessary
  - Correspondence to a distance metric
    - Underlying "uniform" color space

### CIE 1976 CIELAB Color Space

- "Uniform" color space
  - Based on ANLAB, in turn on Munsell
- Transformation of 1931 CIEXYZ tristimulus coordinates
- Nonlinearity: Cube-root with linear end segment

$$f(x) = \begin{cases} x^{\frac{1}{3}} & x > .008856\\ 7.787x + \frac{16}{116} & x \le .008856 \end{cases}$$

- Transformation carefully designed
  - Continuous first derivatives [Pauli1976]


# CIELAB Based Color Difference Fomulae

- 1976:  $\Delta E_{ab}^*$  Color difference
  - Euclidean distance betw. points in CIELAB space

- CMC and CIE '94 color difference Eqns.
  - Chroma/Hue dependent weights for  $\Delta L^*$ ,  $\Delta C^*$ ,  $\Delta H^*$
  - Greater uniformity w.r.t. experimental data
  - Retain continuity of first derivatives

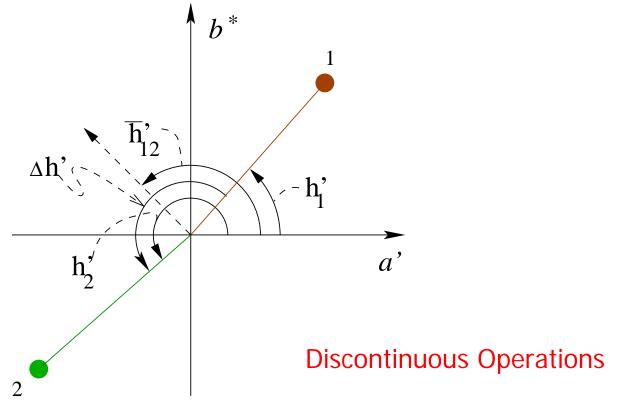
### **CIEDE2000**

- a\* Axis Scaling
  a\* -> a'
- Decomposition



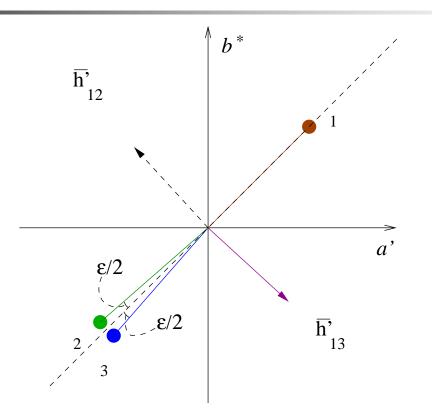
- Hue, Chroma Dependent Weighting
- Cross Term (blue hue nonlinearity)

$$\Delta E_{00}^{12} = \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H'}{k_H S_H}\right)^2 + R_T \left(\frac{\Delta C'}{k_C S_C}\right) \left(\frac{\Delta H'}{k_H S_H}\right)}$$


CIEDE2000 Color Difference is discontinuous

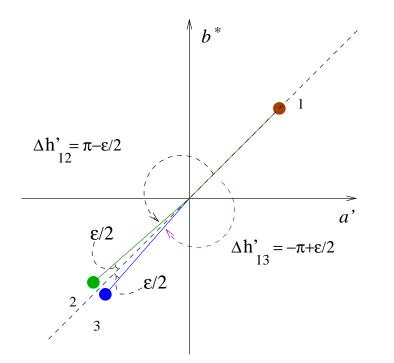
CIEDE2000 Hue & Hue Weighting Functions

$$\begin{array}{lll} \Delta H' &=& 2\sqrt{C_1'C_2'}\sin\left(\frac{\Delta h'}{2}\right) \\ T &=& 1-0.17\cos(\bar{h'}-30^\circ)+0.24\cos(2\bar{h'})+\\ && 0.32\cos(3\bar{h'}+6^\circ)-0.20\cos(4\bar{h'}-63^\circ) \\ S_H &=& 1+0.015\bar{C'}T \\ C_1',C_2' & \text{sample chroma values} \\ \Delta h' & \text{hue angle difference} \\ \bar{h'} & \text{mean hue angle} \\ \bar{C'} & \text{mean chroma value (arithmetic)} \end{array}$$


# Mean Hue/Hue Difference Computation

- Mean: Bi-sector of smaller angle betw h<sub>1</sub>, h<sub>2</sub>
- Difference: Smaller angle + direction gives sign




9

#### Mean Hue Discontinuity



• 180° discontinuity in mean hue

#### **Hue-difference Discontinuity**

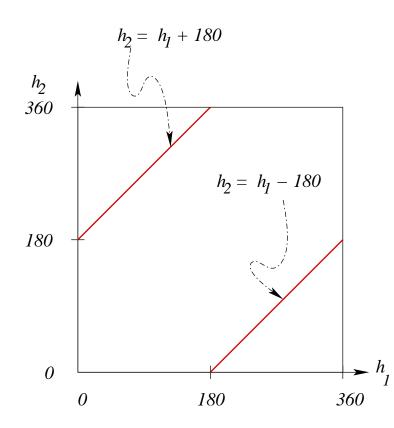


• 180° (Sign) discontinuity in hue difference

## **Discontinuity Characterization**

- Where does it occur ?
- How big is it (magnitude) ?

## **Discontinuity Locations**


- 6-D Space of input values  $\Delta E_{00}(L_1^*, a_1^*, b_1^*; L_2^*, a_2^*, b_2^*)$
- Discontinuity for points 180° apart in hue

$$a_1b_2 = -a_2b_1$$

• 5-D manifold in 6-D space

#### **Discontinuity Locations**

• Discontinuity loci in  $h_1, h_2$  plane





## **Discontinuity Magnitude**

• Main contribution mean hue discontin. in

$$\left(\frac{\Delta H'}{k_H S_H}\right)^2$$

- Minor contribution from hue diff. discontin.
  - Sign change of  $\Delta H'$
  - Contributes through rotation term

Discontinuity Magnitude Bounds

- CIEDE2000 intended for small color differences
- Colors under 5  $\Delta E_{ab}^*$  units apart
  - Discontinuity magnitude under 0.2374
    - Non-negligible, not too large
  - Occurs for 143° hue sample
- Increasing distance: sharp rise

 $a^*$ 

 $b^*$ 

143<sup>°</sup>

 $R_2 = 2.5$ 

 $R_1 = 2.5$ 

#### Conclusions

- CIEDE2000 color difference is a discontinuous function
- Discontinuity for colors 180° apart in hue
- Discontinuity magnitude small in small error practical applications
  - Under 0.238 for color under 5  $\Delta E_{ab}^*$  units apart
- Serious limitation for
  - Taylor series/small error approximations
  - Gradient based optimization

## Potential workarounds/fixes

- Use formula asymetrically
  - Major discontinuity due to mean hue eliminated
- Symmetrize if nesc by averaging color differences
- Discontin in Rotation term remains
  - Harder to fix
    - Probably requires different functional format and re-optimization of parameters

## **Additional Information**

- Upcoming paper in Color Research and Application (Feb 2005)
  - includes detailed algorithmic statement of CIEDE2000 computation
  - Additional test data
    - Several available implementations
      - + Agreement over CIE draft test data, disagreement over other data!!

### Acknowledgements

- Thanks for suggestions/comments to:
  - Mike Brill
  - Anonymous reviewers

# Questions

