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ABSTRACT

The security implications of utilizing an on-chip voltage regulator
as a countermeasure against fault injection attacks are investigated
in this paper. The effect of the size of the capacitors and number of
phases of the voltage regulator on the resilience of a cryptographic
circuit against fault injection attacks are analyzed. The effectiveness
of the proposed method in counteracting voltage glitch attacks is
demonstrated with extensive simulations on the S-box of an ad-
vanced encryption standard (AES) cryptographic algorithm. Using
a single phase on-chip voltage regulator, the number of faults gen-
erated by a voltage glitch attack is reduced by 5.45% as compared to
unprotected S-box, and by 91.82% when number of phases increases
to 32.
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1 INTRODUCTION

Side-channel attacks are an important class of attacks aimed at
breaking the secrets of a cryptographic circuit (CC) and threatening
the security of cryptographic devices. In side-channel attacks, the
physical emanations leaked from an integrated circuit is used to
obtain the correct key that is stored within a CC [1-4]. For example,
the correct key of an AES cryptographic algorithm can be obtained
in a few minutes with a side-channel attack, however, using the
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supercomputers and the brute force search can take 149 trillion
years to get the correct key [5].

Active side-channel attacks are a class of side-channel attacks to
obtain the correct key by making transient (or permanent) changes
to the CC and analyzing the output of the CC under those changes.
In these attacks, which are known as fault injection attacks, the
attacker causes a fault in the CC in various ways and exploits the
fault analysis tools, such as differential fault analysis (DFA) [6], safe
error analysis (SEA) [7], and collision fault analysis (CFA) [8] to
obtain the key.

There are various methods for fault injection, such as injecting
faults by voltage glitch injection, voltage starving, overvoltaging,
injecting intentional temperature variations, white light, and laser
radiation to the CC [9, 10]. Different methods require a different
level of attacker skills and equipment [9, 10]. Voltage glitch at-
tack (VGA) is a fault injection method that the attacker creates a
fault in the CC through a sudden change, positive or negative, in
the supply voltage of a CC [9-13]. VGA is used in a fault injection
attack on the RSA device in the presence of countermeasures in [12].
VGA is exerted to inject the faults in unprotected RFID tags in [11].

Various techniques have been proposed to counteract fault in-
jection attacks. Information redundancy-based techniques such
as error correcting codes are a class of countermeasures against
fault injection attack by encoding information flowing through
the CC [14, 15]. Spatial redundancy-based countermeasures are a
class of countermeasures which use the duplication/multiplication
of the hardware of the CC to ensure the accuracy of the output
through majority voting, and temporal redundancy based coun-
termeasures verify the output through repetition of (part of) the
cryptographic algorithm in time. Even though these countermea-
sures are advantageous in countering fault injection attacks, spa-
tial, temporal, and information redundancies will lead to increased
power dissipation of CC, reduced throughput, and increased area of
the CC [9, 10, 12, 16]. Alternatively, analog countermeasures, such
as voltage, temperature, and frequency sensors, are used to detect
malicious fault injection activities and to protect a CC by ceasing
the operations if such an activity is detected [9, 12, 17]. Detection
of dynamic supply voltage variations has been used in [18]. Timing
detectors are used to detect the glitches in [17] as a digital solution
to counteract the VGA within a specific voltage and clock range. To
the best of the knowledge of the authors, the on-chip VR has never
been used as an inherent countermeasure against fault injection
attacks. This paper is the first work to utilize the existing resources
of an on-chip VR as a countermeasure against voltage glitch attacks
where the implications of on-chip VR and the number of phases
are investigated in counteracting voltage glitch attacks.
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Figure 1: A voltage glitch attack to the CC a) without on-chip
VR and b) with an on-chip VR.
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The rest of this paper is as follows. In Section 2, the advantage
of the on-chip VR on the resilience of CC against VGA is discussed
and the effect of the capacitor size is analyzed. In Section 3, the
effect of increasing the number of phases in the robustness of the
CC to the VGA is investigated. In Section 4, extensive practical
evaluations on the S-box of an AES with and without an on-chip
VR is presented, followed by discussions on the overhead of the
proposed countermeasure and conclusions.

2 ON-CHIP VR AGAINST VGA

An integrated circuit with an off-chip power supply is shown to
be susceptible to side-channel analysis for key extraction [19]. The
use of an on-chip voltage converter is shown to improve the se-
curity of CC against power and EM analysis attacks [20-24]. In-
tuitively, the on-chip VR is the first defense mechanism of a CC
against side-channel attacks. Various topologies of VR, such as
low-drop-out (LDO), buck, and switched capacitor (SC), have dif-
ferent responses against VGA based on the component selection
and fabrication technology. These differences affect how the volt-
age glitch reaches the CC. Each VR, inherently acts as a low-pass
filter that eliminates high-frequency inputs. A fault injection attack
through voltage glitch to the CC in the presence of an on-chip VR
and without on-chip VR is shown in Fig. 1. The f_ 3,5 frequency of
the VR and related frequency response depend significantly on the
design of the VR and the number of effective reactive elements (i.e.
inductors and capacitors). For example, a buck VR has two reactive
components and thus is at least a second-order low-pass filter, as
shown in Fig. 2a, while an LDO has only one reactive component
and is inherently a first-order low-pass filter, as shown in Fig. 2b.
Therefore, the expected amount of attenuation of high-frequency
inputs in the stop-band of the buck VR will be higher than LDO. A
switched-capacitor (SC) VR, has one or more number of effective
capacitors depending on the configuration, as shown in Fig. 2c. The
first-order low-pass filter is selected as the equivalent model of the
low-pass behavior of a VR, as shown in Fig. 3.

The amount of energy transferred by the capacitor Ceq to the
output is equal to %Ceq(AVCeq)z, where AVc,, is the voltage dif-
ference on the Ceq. If Ceq increases, the amount of voltage glitch
energy transferred through the VR to the CC also increases. Alterna-
tively, with larger C.q, the cutoff frequency f_34p = (27Req(Ceq +
Cout))~! of VR is reduced. However, this is provided that the glitch
frequency is higher than the cutoff frequency of the VR. With
larger Cegq, the cutoff frequency f_s34p is reduced and the filtering
of the high frequency glitches is improved, while the amount of
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Figure 2: Schematic of a) a conventional Buck VR with two
reactive components, b) a conventional LDO VR with one
reactive component, and c) a conventional SC-VR with a ca-
pacitor network.
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Figure 3: A general, simplified first-order model for behavior
of a VR as a low-pass filter (LPF) for input signals. R4 and
Ceq are equivalent resistive and capacitive impedance of on-
chip VR.

glitch energy transferred by the VR also increases with respect to
LCeq(AVe, )?. The relationship between the capacitance of the VR
2 q eq

and the glitch energy transmitted to the CC is shown in Fig. 4.

3 MULTI-PHASE VR AGAINST VGA

In addition to the topology, component selection, and scaling, the
number of phases of a VR has a significant impact on the resilience
of a CC against a VGA. The amount of energy inserted into a CC
during a VGA can significantly change the success rate of attack[17].
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Figure 4: Relation of C.4 and voltage glitch transmitted to

the CC. By increasing C.q, the glitch transferred to the CC
increases unto the cut-off frequency of the VR, where the
increase of the C.q makes a negligible impact on the trans-
ferred glitch energy.
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Figure 5: Schematic of a) an MPVR with M phases, and b)
glitches of the VGA and clocks of the MPVR are depicted.
The glitch has trapezoid shape with rise time ¢, fall time 5
, and duration f4p,.

The amount of energy depends on the duration and amplitude of a
glitch[17]. For a switching circuit, the duration of a glitch attack
changes the effectiveness of an attack [25].

Multi-phase voltage regulator (MPVR) is a method in modern
integrated circuits to increase the performance of power genera-
tion, power delivery and management of electronic systems, such
as SoCs, and 3D integrated circuits. A block diagram of an MPVR
with M interleaved stages is shown in Fig. 5. An MPVR is a discrete
time sampling circuit due to the clocking that causes consecutive
connections and disconnections to and from the input of VR. As-
suming Vig as the voltage glitch when the stage i is connected to
the input of VR, the total glitch energy transmitted by the VR to
the CC EZ‘C at the end of period T is

M
g _ Ctor

g.\2
b=y 2 )
i=1

ey

where C;o; is total flying capacitance of an MPVR. The energy
of the normal voltage of MPVR is not expressed in (1) since the
effect of the normal output voltage is desirable for CC. If the glitch
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Figure 6: The power of a CC is provided by an on-chip VR.
Defeating the glitch is raised by increasing M from a) M = 1,
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The f_ 345 frequency of an MPVR will decrease by increasing
M][26]. As a result of the decrease in f_3,5 frequency of MPVR,
high frequency glitches at the input of MPVR will be reduced by in-
creasing M. This smoothing in the voltage on CC results in reducing
the effect of voltage glitch on CC, as shown in Fig.6.

lim Egc — 0.

4 PRACTICAL EVALUATIONS

Since the countermeasure is proposed against a VGA, the evalua-
tion of the countermeasure requires the faults injected by voltage
glitches. SCVR is a preferred choice over inductive counterparts due
to the stability, area, and CMOS integrability considerations [27].
Moreover, an SC-MPVR with a high number of phases can be im-
plemented by slicing larger capacitors and switches into smaller
portions of capacitors and switches, and using a ring oscillator to
generate interleaving clock phases [21, 27]. A 2:1 SC-MPVR is de-
signed and simulated in Virtuoso Cadence at 60MHz (Ts = 16.7 nS),
Vin =2V, Vour = 1V, and M = {1,...,32}. The schematic of the
individual stages of VR, overall MPVR, and non-overlapping clocks
are shown in Fig. 7. Switches Sy, S3 are on for half of the period and
switches Sy, S4 are on for the rest of the period T. Furthermore, an
S-box of AES [22] is implemented in 90 nm predictive technology
model of [28] using the Virtuoso Cadence. Average power dissipa-
tion of the S-box is 256 yW, where the minimum and maximum
load power is between 156.3 and 387.22 uW. In Section 2, the effect
of increasing the size of the capacitor in a VR on the transition of
glitches to the CC is theoretically discussed. As shown in Fig. 8, by
increasing the size of the flying capacitor from 500 fF to 3 nF, the
transferred energy of glitch into the CC is increased, however, this
increase becomes marginal due to the filtering behavior of the VR.
The effect of increasing the switching frequency f; of the on-
chip VR on the voltage glitch on the CC is shown in Fig. 9. The
resilience of the CC against VGA increases by increasing the switch-
ing frequency of the VR, and for all fs frequencies, the resilience of
the VR to VGA improves with increasing the number of phases.
When utilizing an on-chip VR, the security of the CC against
VGA can be further enhanced by increasing the number of inter-
leaved stages, as shown in Fig. 10. For a glitch with 10 ns duration
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Figure 7: A 2:1 SC-VR with M stages is shown. Non-
overlapping clocks A and B and switches < S1,S3 > are con-
nected for Ts/2 — €, and switches < S»,S4 > are conducting
for T /2 — € remaining, where € is the time assigned to en-
sure non overlapping clocks.
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Figure 8: Implication of the capacitive impedance of the on-
chip VR on the glitch transferred to the CC. By increasing
the size of fly capacitor, the voltage glitch transmitted to the
CC is increased before up to f_ 3,5 frequency of the voltage
regulator.

on an S-box operating at 100 MHz, the attenuation in the glitch
amplitude is doubled with 32 interleaved phases, while the practical
span of a voltage glitch on a CC is half the cycle of the operating
frequency [25]. Except for the voltage-starving attacks, the pro-
posed countermeasure increases the resistance of the CC to a wide
range of glitch durations.

As shown in Fig. 11, by increasing the number of phases of an
on-chip VR, the resilience of CC against fault injection attack is
improved, as theoretically discussed in Section. 3. By describing
the faulty output as any result at the output of CC other than the
expected one, the success of the VGA on the CC is defined as [29]

. # Faults
%Glitch attack success = ——————— X 100. 3)
# All tests

Using (3) and repeatedly simulating the VGA on the S-box of an AES
and counting the number of the faulty outputs using a comparator
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squares) against VGA is higher than that of for a CC with
on-chip VR (M = 1).
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Figure 10: Relation of glitch duration and maximum effect
of VGA on CC with glitch duration {1ns,3ns,...,31ns}, for
CC with various MPVRs M = {1, 16, 32} (depicted by triangles
and squares), and for CC without on-chip VR (depicted by
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and a counter [30], the success rate of fault occurrence in the pres-
ence of an MPVR is obtained, as shown in Fig. 12. The success of
the VGA is reduced by increasing the number of phases. While the
fault coverage for the unprotected S-box is 0%, the fault coverage
is 5.45% with an on-chip VR, and the fault coverage reaches 91.82%
with an increase in the number of phases to 32.

5 DISCUSSION

Assuming that the CC already has an on-chip VR, the throughput
overhead on the CC is zero. Even though the increase in the num-
ber of phases of the VR is advantageous for the security purposes,
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Figure 12: Fault occurrence versus number of phases for an
MPVR for various number of phases. Glitch input is applied
to an S-box with MPVR and an S-box without MPVR, while
the result is compared and number of faults is counted using
a counter.

with the increase in the number of phases the conduction losses in
switches, buffers, and drivers will be increased [31]. Moreover, the
design of clock generators with higher resolution is an overhead in
the design of MPVR with higher M. Efficiency and area overheads
of the on-chip VR with a various number of stages are listed in
Table 1. The ripple at the output V;j, is a function of output cur-
rent, switching frequency of VR, the equivalent series resistance of
capacitors of VR, and M, and decreases by increasing the number of
phases [31]. Efficiency and area overheads of the on-chip VR with
a various number of stages and ring-oscillator are listed in Table 1.

6 CONCLUSION

In this paper, the application of an on-chip VR as a countermeasure
against fault injection attack is proposed as a solution to enhance
the resilience of the CC against a VGA. The effect of the number of
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Table 1: Efficiency and area overhead of MPVR.

M 1 2 4 8 16 24 32
Ar% | 0 262 | 393 | 458 | 49 5.02 | 5.07
Eff.% | 84.4 | 84.54 | 84.68 | 84.9 | 85.56 | 86.0 | 85.41

phases in the MPVR on the robustness of the circuit against VGA is
analyzed. The effectiveness of the proposed countermeasure on an
S-box of an AES is evaluated. The faults generated by the VGA on
CC are reduced by 5.45% with a single phase on-chip VR, and by
91.82% with an MPVR with 32 phases, as compared to unprotected
S-box of an AES device. The throughput, power, and area overhead
of the proposed technique are negligible due to the utilization of the
existing VR as a power supply, while the area and power overhead
of the MPVR are increased, respectively, by 5.1% and 1% when the
number of interleaved phases is 32.
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