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A number of different approaches have been developed to estimate and image the elastic properties
of tissue. The biomechanical properties of tissues are vitally linked to function and pathology, but
cannot be directly assessed by conventional ultrasound, MRI, CT, or nuclear imaging. Research
developments have introduced new approaches, using either MRI or ultrasound to image the tissue
response to some stimulus. A wide range of stimuli has been evaluated, including heat, water jets,
vibration shear waves, compression, and quasistatic compression, using single or multiple steps or
low-frequency~,10 Hz! cyclic excitation. These may seem to be greatly dissimilar, and appear to
produce distinctly different types of information and images. However, our purpose in this tutorial
is to review the major classes of excitation stimuli, and then to demonstrate that they produce
responses that fall within a common spectrum of elastic behavior. Within this spectrum, the major
classes of excitation include step compression, cyclic quasistatic compression, harmonic shear wave
excitation, and transient shear wave excitation. The information they reveal about the unknown
elastic distribution within an imaging region of interest are shown to be fundamentally related
because the tissue responses are governed by the same equation. Examples use simple geometry to
emphasize the common nature of the approaches. ©2005 Acoustical Society of America.
@DOI: 10.1121/1.1880772#
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I. INTRODUCTION

The biomechanical properties of tissues, particularly
stiffness or tactile hardness of tissues, are inextricably lin
to the function, the composition, and the relative state of
tissue with respect to inflammation or pathology.1 Thus, a
number of approaches have been proposed to develop
mates ofin vivo tissue elasticity. Significant among these
the late 1980s were Krouskopet al., using an M-mode Dop-
pler analysis of muscle tissue during externally appl
vibration,2 and Satoet al., using full B-scan imaging of
muscle during vibration to follow the propagating she
waves and thus make a regional estimate of Young’s mo
lus ~E!.3 The milestone of creating an actual image of a
gion of interest, demonstrating the detection of a region
high stiffness, surrounded by softer material, was reache
1988.4 This was extended to real-time imaging using sligh
modified color Doppler scanning to image a vibration fie
and finite element models were employed to demonstrate
sonoelastic void produced by a relatively hard abnormality
an otherwise soft background material that contains a pro
gating shear wave.5,6 These general results were later refin
and applied to a variety of anatomical and clinical tas7

along with expansions of the theoretical basis for vibrat
sonoelastography.8,9 Meanwhile, Levinson, who had collabo
rated with Krouskop and Sato on the key muscle elasti
experiments, applied a number of vibrational and quasist
techniques to create localized estimates of muscle elast
even during active contraction.10,11 Independently, Ophir and
colleagues developed an approach in which tissue was
J. Acoust. Soc. Am. 117 (5), May 2005 0001-4966/2005/117(5)/2
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aged before and after a step compression12,13 to determine
local estimates of strain. Strain imaging of tissue proved
be capable of displaying the relative responses of hard
soft regions at high resolution.14,15

Compression can be applied as a single step or a
series of steps.16 Additional techniques include single-ste
shear17 and cyclical, quasistatic harmonic excitation18 with
frequencies on the order of 5–10 Hz.19

Magnetic resonance imaging has also been combi
with shear wave excitation to perform magnetic resona
elastography~MRE!.20–23 Inverse solutions have been a
plied to the three-dimensional vector displacement fi
available in MRE experiments to solve for unknown loc
elastic parameters.

Another approach is to use a transient tone burst of sh
wave excitation, instead of steady-state excitation.24,25 The
excitation stimuli can also be provided directly by acous
radiation force~ARF! from the ultrasound itself,26,27 which
can be used to create transient28,29 or harmonic tissue
displacements.30,31 Together, these different approaches p
vide a diverse and creative set of stimuli that produce m
surable changes in tissue. We seek to understand any c
monality that may exist among the set of approaches.

In the next sections, we examine a simple homogene
isotropic linear viscoelastic material under excitation by
progressive set of displacements: compression, shear, q
static cyclic shear, and vibration. The material is conside
with and without a small inclusion that has a slightly e
evated Young’s modulus~E! with respect to the surroundin
2705705/8/$22.50 © 2005 Acoustical Society of America
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material. It is shown that the elastic response within the m
terial under the different stimuli all belong within a commo
spectrum of elastic behavior, and some information conce
ing the inclusion can be derived from each of the respon
to the stimuli.

II. OVERVIEW OF GOVERNING EQUATIONS

Following the methods of continuum mechanics, t
governing equations for a deformable medium can be
tained by applying, to any part of the medium, conservat
of linear momentum, given by

d

dt E E E
V

ru̇ dV5E E
S

T~n! dS1E E E
V

rb dV. ~1!

This equation states that the rate of change of lin
momentum is equal to the resultant applied surface and b
forces. In this equation,r is the density,u is the displacemen
vector~with the superposed dot indicating a time derivativ!,
b is the body force per unit mass vector, andT(n) is the
traction vector on the surfaceS ~with outward unit normaln!
of volumeV.

Writing the traction vector in terms of the stress tensos
as

T~n!5s"n, ~2!

we can use the divergence theorem to obtain the differen
form of conservation of linear momentum,

rü5“"s1rb. ~3!

In measurements of elastic properties, the body for
~such as gravity! are either negligible or their effects can b
subtracted from the measured response. Therefore, the
term will not be considered further in this discussion.

To complete the problem statement, the material beh
ior must be specified. If the deformation is small enough
can be expressed in terms of the infinitesimal strain tens

e i j 5
1

2 S ]ui

]xj
1

]uj

]xi
D . ~4!

Then, the constitutive relation relating stress and str
for a linear-elastic, isotropic medium can be written as

s i j 5~2me i j 1lekkd i j !5
E

~11n! S e i j 1
n

122n
ekkd i j D ,

~5!

wherel andm are called the Lame´ constants,m is also the
shear modulus,E is the elastic or Young’s modulus, andn is
Poisson’s ratio. In this equation, the summation conven
has been used andd i j is the Kronecker delta equal to 1 ifi
5 j and 0 otherwise.

In homogeneous regions, wherel and m are constant,
Eqs.~3!–~5! can be combined to obtain an equation in ter
of the displacement vector alone as

~l1m!
]2uj

]xj ]xi
1m

]2ui

]xj ]xj
5rüi ,

or
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~l1m!“~“"u!1m ¹2u5rü, ~6!

where the body forces, such as gravity, have been assu
negligible. This equation, with given boundary and initi
conditions, governs the general dynamic response of a
mogeneous, isotropic, linearly elastic material to a force
displacement excitation. If loads are applied slowly~quasis-
tatically! or if the displacement response to a constant loa
measured after all the motion has stopped, then the ri
hand side of this equation is negligible and set equal to z
Therefore, this equation governs the static, quasistatic,
dynamic ~transient, harmonic, and wave propagation! re-
sponses that can occur in response to applied loads.

The lossy nature of biological tissues is often mode
using a viscoelastic model. Such a model can be imp
mented in these equations for a time-harmonic excitation
assuming thatl andm are complex. In this case, the wave
vibration amplitude will decay with distance from the exc
tation point, and the loss will generally increase with incre
ing frequency. For a more in-depth presentation of the d
vation and solution of the elastic and viscoelastic equatio
see Kolsky32 and Achenbach.33

At times, it is convenient to represent the response
terms of waves propagating within the tissue. Two types
plane wave, shear waves and pressure waves, propaga
dependently in the bulk material, interacting only at boun
aries. The shear wave equation can easily be obtained f
Eq. ~6! by noting that there is no volume change as layers
material move in shear, transverse to the direction of pro
gation, so the dilatation“"u50. The shear wave equation
then

¹2u5
1

cs
2

ü, ~7!

where the shear wave speed is

cs5Am

r
. ~8!

This equation can either be solved in terms of stand
waves or propagating waves, depending on the partic
conditions.

Propagating plane pressure waves are irrotational,
is, “Ãu50 so u can be written in terms of a potential a
u5“c. Using the vector identity¹2u5““"u2“Ã“Ãu,
we can obtain the wave equation for“c as

¹2~“c!5
1

cp
2 ~“c

••
!, ~9!

and the pressure wave speed is

cp5Al12m

r
. ~10!

For typical biomaterials, the pressure wave speed is
ders of magnitude faster than the shear wave speed. Co
tent with this statement, biological tissues are nearly inco
pressible with 0.49,n,0.5. In the limit, asn approaches 0.5
the shear modulusm5E/2(11n)→E/3. Therefore, for a
nearly incompressible material, a measurement of the s
Parker et al.: Imaging elastic properties of tissue
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wave speedcs'AE/3r can be used to obtain informatio
about the stiffness of the material. Therefore, in elas
graphic imaging experiments, the focus of attention is ty
cally on the shear wave properties and not on pressure w
properties, which have already been investigated extensi
in ultrasonic tissue characterization studies.

Equation~6! can also be a starting point for the consi
eration of step-compression elastography experiments.
static displacement or very low-frequency cyclic motion, t
inertial terms are negligibly small. And for nearly incom
pressible biomaterials, the divergence~or dilatation! “"u is
nearly zero, so Eq.~6! reduces to Laplace’s equation,

¹2u50. ~11!

Solutions to Laplace’s equation depend on and re
their extrema on the boundary values ofu. For simple geom-
etry, as will be shown in the next section, the solution
ux(x) is linear with x, a fact that is assumed to be true
most step-compression elastographic imaging experimen

III. PROPOSED TECHNIQUES FOR ESTIMATING
ELASTIC PROPERTIES OF TISSUES

A. Step-compression imaging

For convenience we consider a two-dimensional cas
a linear viscoelastic, homogeneous, isotropic material w
tissue mimicking properties:E0 in the kPa range,r ~density!
near 1.0 g/cm3, andn ~Poisson’s ratio! in the range 0.49,n
,0.5, that is, nearly incompressible. This block of tissu
mimicking material is of a rectangular cross section and
rigidly constrained along one face and further constrained
a parallel plate used for compression or other enforced
placements. We further assume that the tissue mimicking
terial is allowed to slip freely along the two constrainin
plates so that the displacement and stress fields will be in
pendent of position in they direction. Body forces due to
gravity are assumed to be negligible. The example is sho
in Fig. 1.

We assume that compression is applied at timet0 , and
that images are obtained using some ideal imaging sys
before and after the compression step. In the case of
coelastic or poroelastic materials, the state of the mate
response and its image will be time dependent until suffic
relaxation has occurred. Assuming that a dense field of
placements can be estimated from the two images, in
homogeneous case, Eq.~11! predicts that the displacemen
ux(x) will be linear with x, as shown in Fig. 1~b! ~solid
lines!. In the case where a small inhomogeneous region
E8.E0 ~assumed here to be of relatively small contr
E8/E0,2), is present, a plot of displacement taken on a l
bisecting the inhomogeneity will produce a local deviati
from the linear slope. The exact details depend on the pre
geometry and the stress concentration effect,34 but the gen-
eral trend is shown in Fig. 1~b! ~dotted lines!.

Although the presence of the inhomogeneity can be
tected from inspection of the displacement estimates~assum-
ing reasonable elastic contrast and very high imaging sig
to noise!, it is convenient to display a strain image,exx

5dux /dx, as this produces a more intuitive result. Homog
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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neous regions undergo constant strain in this example,
hard inclusions result in locally reduced strain, except
stress concentration effects that are localized near the bo
aries. This is demonstrated graphically in Fig. 1~c!. The
terms elastography and elastographic imaging generally r
to strain images produced in this way. As long as the ove
stress produced by the compression is approximately c
stant over the imaging region, the strain image values w
correlate with local relative values ofE.

B. Shear step imaging

As an alternative to a single compression step, one
apply a single shear step, obtaining images before and a
the deformation with some suitable imaging system. The d
placement information is similar to that gained by compr
sion, as shown in Fig. 2. Barbone and colleagues h
shown17 that the shear experiment creates a result tha

FIG. 1. Schematic of static compresson experiment on a rectangular b
of viscoelastic material constrained at position d, containg a small bloc
material. The larger block has Young’s modulusE0, density,r, and Pois-
son’s ratio,n, while the smaller block has an elevated Young’s modu
E8,2E0. ~a! Block before~solid lines! and after~dotted lines! compression
in the positivex direction by a rigid plate.~b! General trend of the resulting
displacement field (ux; vertical axis! along a line parallel to thex-axis
through the small rectangular inclusion.~c! Strain field~2ex; vertical axis!
along this same line. The dotted lines indicate the perturbation caused b
presence of the inhomogeneity.
2707Parker et al.: Imaging elastic properties of tissue
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complementary to the compression result when one con
ers the uniqueness of inverse solutions from these exp
ments. However, the details of that subject are beyond
scope of this discussion. As in the compression step res
Eq. ~11! predicts that for a homogeneous medium displa
ment,uy(x) will be linear withx, which can be perturbed b
an inclusion. As before, the exact details of the shear in
vicinity of the inclusion require treatment of the exact geo
etry and elastic contrast of the inclusion. However, str
concentration effects are highly localized in the surround
medium. As demonstrated in Fig. 2, a spatial derivat
can be employed to produce a more intuitive disp
where homogeneous regions exhibit constant shear st
exy5(1/2)@]uy /]x1]ux /]y#. However, it must be under
stood that constant strain image values correlate with c
stantE only under certain idealized, low-contrast condition

FIG. 2. Static shear experiment on a same block shown in Fig. 1:~a! Block
before~solid lines! and after~dotted lines! shear by a rigid plate.~b! Shear
displacement field~uy; vertical axis! along a line parallel to the x-axis
through the small rectangular inclusion.~c! Shear strain field along this
same line. The dotted lines indicate the perturbation caused by the pre
of the inhomogeneity.
2708 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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C. Cyclic, quasistatic imaging

If a shear step is repeated sinusoidally at a relativ
slow rate~e.g., at less than five cycles per second!, then for
most practical cases of tissues and organs, the inertial te
of the governing equations can still be neglected. The beh
ior can be described in the same functional form as the st
case, but modified by the addition of a sinusoidal tim
varying term. Thus, if the shear plate of Fig. 2 is moved
uy(x50)5U0 cosvLt, where vL is low frequency, then
uy(x)5U0(12x/d)cosvLt for 0,x,d, and the resulting
strain is similarly time varying. This is shown schematica
in Fig. 3. The practical advantages of cyclic quasistatic me
ods over single-step methods are primarily due to the ab
to average and automate, thereby reducing noise
artifacts.16,35

FIG. 3. Cyclical quasi-static shear experiment on the block shown of Fig
~a! Block before~solid lines! and at peak~dotted lines! shear. The applied
shear is sinusoidal at low frequency.~b! Peak shear displacements~solid
line!, along a parallel to the x-axis through the small rectangular inclus
are linear but slowly time-varying.~c! Peak shear strain along this line i
also slowly time-varying. The dotted lines indicate the perturbation cau
by the presence of inhomogeneity.

nce
Parker et al.: Imaging elastic properties of tissue



FIG. 4. Displacement fields at the block surface~see Fig. 1! during application of a sinusoidal shear with frequencies above the quasi-static range.~a! First
mode.~b! Second mode.~c! Third Mode.~d! Result of many modal frequencies applied simultaneously as ‘‘chords.’’
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D. Shear wave vibration

As the left vertical plate of Fig. 3 is displaced at high
frequencies, the time-varying inertial terms of the govern
equation cannot be ignored and the behavior of the med
obeys the classic wave equation.

For a plane wave propagating in thex direction with
particle motion in they direction @uy5uy(x,t) and ux5uz

50], the shear wave equation@Eq. ~7!#, reduces to a one
dimensional equation of the form

]2uy

]x2
5

1

cs
2

]2uy

]t2
. ~12!

For regular geometries and simple conditions, with lo
loss or attenuation, the response of the medium will pea
specific eigenfrequencies, with standing wave or eigenmo
patterns produced within the interior. Specifically, these
cur when the frequency is such that odd multiples of quar
wavelengths in thex direction are created. These frequenc
are given by

f 5
2n21

4 S cs

d D , where
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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3r
, the shear wave speed.

In this case, we are explicitly treating the resonance a
one-dimensional problem for simplicity. For example, th
would be equivalent to having the medium extend for a gr
length in they axis compared to the dimensiond.

The first few eigenmodes are sketched in Figs. 4~a!,
4~b!, and 4~c!. Note the presence of nodes and antinod
within the eigenmode patterns at higher eigenfrequenc
These modal patterns are observed in regularly shaped p
toms and even in organs such as the liver at low frequen
~lowest eigenmode!.36 These eigenmode patterns can make
more difficult to visually identify regions of different elastic
ity.

However, the eigenmode patterns are unlikely at hig
eigenfrequencies, where the irregular shape of organs, im
fect boundary conditions, and loss all conspire against mo
pattern. In any event, the orthogonal nature of the succes
eigenmodes makes it possible and beneficial to combine
ferent frequencies into a multiharmonic excitation, whi
tends to produce a uniform vibration field, free of nul
These multifrequency excitations are represented in F
4~d!, and have been referred to as ‘‘chords.’’37 Regions of
inhomogeneity would then cause variations in the vibrat
2709Parker et al.: Imaging elastic properties of tissue
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patterns that can be more easily identified when using m
tifrequency excitations.

These vibration patterns can be imaged in real time
ing modified color Doppler techniques and are generally
ferred to as vibration sonoelastography, or simply, sonoe
tography. Specifically, the Doppler spectral variance
been shown to be proportional to the vibration displacem
amplitude in a sinusoidal steady state.38 This can be dis-
played as a color scale overlay on the B-scan image. It
been shown by theory, by finite element modeling, and
experiments that hard inclusions present as a void or lo
reduction in the vibration pattern.9 These are illustrated in
Fig. 5. In this example of sonoelastography, it is not nec
sary to take a spatial derivative, particularly in the ca
where more uniform vibration patterns have been formed
the background. However, in the case where lower frequ
cies are employed, a derivative operation can be usefu
enhance the detectability of lesions.8

E. Transient elastography

Transient elastography utilizes a short tone burst of
bration. This can be related to sinusoidal steady-state ex
tion by the use of Fourier transform relations. However,
transient experiments the forward propagating wave can
resolved and analyzed separately from the reflected wa
and this can be advantageous in some situations. In e
case, the effect of an inhomogeneity is governed by
elastic-Born approximation9 for those cases where the inh
mogeneity has limited elastic contrast with respect to
surrounding background medium.

F. Detectability and resolution of issues

Of great concern in the lesion detection problem is
practical limit on the detectability of a low elastic contra
small lesion in tissue, and the resolvability of multiple d
crete small lesions. We assume in this discussion a h
signal-to-noise ratio within the displacement field estima
such that derivative operations are practical and we fur
assume that background uniformity is nearly ideal.

For strain imaging, the general concept has already b
introduced: after a derivative operation on the displacem
estimations, hard inclusions will be displayed as a local
gion of lower strain, surrounded by localized stress conc
tration effects in many cases. However, it is clear from
sequence of operations that a hard inclusion must be la
than the resolution scale of the imaging system. Otherw
it is not possible to estimate displacements, and t
spatial derivatives of displacements, that fall exclusiv
within the inclusion. If this is satisfied, and ignorin
any stress concentration effects, the strain cont
exx(lesion)/exx(background) is directly proportional t
E0(background)/E8(lesion), the inherent elastic contras
The resolvability of multiple inclusions as discrete small
sions is similarly tied to the imaging system resolution p
any localized effects of stress concentration. In practice,
ditional practical considerations of noise, decorrelation, a
displacement estimates, all complicate the issue of contra39
2710 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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For shear wave excitation in sonoelastography a
MRE, the detectability and resolution issues are recas
wave phenomena. The incident shear wave must satisfy
shear wave equation@Eq. ~7!#. In the elastic-Born
approximation9 a small elastic inhomogeneity at positionx8
acts as a source of a scattered shear wave, and the stren
this source is proportional to the elastic contrast, (E8
2E0)/E8, times the wave number squared, times t
strength of the incident shear waveA:

¹2u1k2u5Ak2S E82E0

E8 D d~xW2x8!. ~13!

Within the elastic-Born approximation, the resulting s

FIG. 5. Detectability and point spread function for a subresolvable ela
inhomogeneity.~top! Incident peak vibration amplitude field in a 2D regio
containing a small inhomogeneity with Young’s modulusE8.E0. ~middle!
The vibration field resulting from scattering by the inhomogeneity.~bottom!
Total observed vibration which is the sum of a and b.
Parker et al.: Imaging elastic properties of tissue



FIG. 6. Summary image showing the continuum from step displacement through dynamic vibration and multiple tones. The displacement fielduy is given in
each case. The solution for displacement in homogenous object is linear for the static case, sinusoidal for modal patterns at eigen-frequencies, andapproaches
a constant for multiple, simultaneous ‘‘chord’’ excitation.
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noelastic vibration image will be comprised of the additi
of a homogeneous solution to Eq.~13! ~right-hand side equa
to zero! plus the scattered wave. This is depicted in Fig.

Conceptually, this means that even a very small po
inhomogeneity, even one well below the resolution of t
imaging system, can be detected as a localized disturban
the form of a free space Green’s function, that is a 1/r falloff,
as depicted in Fig. 5. This is similar to a small point sou
of light detected~and then blurred! by an optical imaging
system, even though the point source aperture may be b
the nominal resolution of the imaging lens. However, t
strength of the inhomogeneity’s signature increases with
creasing frequency. Simulations and experiments have d
onstrated that the sonoelastic image contrast of lesions
creases with increasing frequency8 until other frequency-
dependent effects, such as lossy behavior, present a pra
upper frequency limitation.40

This wave behavior limits the resolvability of two sma
neighboring points since the Green’s function scatte
waves pattern produced by each has an inherent type of
which will add coherently when the two points are close
spaced. Thus, no general claim for subresolution resolva
ity can be made, even though a general claim for subres
tion detectability can be made.

IV. DISCUSSION AND CONCLUSION

A plethora of techniques for estimating and imaging t
elastic properties of tissue have been proposed, each
employing a unique excitation function to create displa
ments in tissue. We demonstrate, however, that the m
commonly utilized methods, from step-compression elast
raphy through vibration~sono! elastography, fall on a con
tinuum of elastic behavior. The information that can be d
rived from an ideal imaging system can be used, in e
case, to identify an inclusion that is defined by some ela
contrast compared to the background. However, the part
lar details of preprocessing, detectability, and resolvabi
do change from static and quasistatic to dynamic syst
where wave behaviors are exhibited. Figure 6 compares
shear behavior of a simple homogeneous system as it is
cited by different displacement functions along the co
tinuum of frequencies.

As a practical matter, the imaging system~typically ul-
trasound or MRI! resolution and noise characteristics w
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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limit the performance of elasticity imaging and reconstru
tion schemes, along with the other practical limits from t
sue motion and loss mechanisms. Specifically, on the s
and low-frequency side of the continuum, tissue motion o
of-plane, noise, and speckle decorrelation artifacts from
tations all limit the displacement and derivative of displac
ment estimations.39 At the other end of the continuum, th
high losses or attenuation of shear waves above 200–40
creates a practical limitation on whole organ penetration
potential increases in lesion contrast that would otherwise
predicted from Eq.~12!. Lower bounds on correlation-base
displacement estimates40 and Doppler estimates of vibratio
amplitudes,38 and MRE detection of vibration23 have demon-
strated very fine scale~micron or below! possibilities given
an adequate signal-to-noise ratio.

There is another important topic of exact inverse so
tions ~of unknown elastic properties from the imaging da!
that is beyond the scope of this paper. However, a few g
eral remarks can be made. The exact inversion of static
quasistatic cyclic compression cases requires knowledg
boundary conditions that in most cases lie outside of
imaged region of interest. Solving for the unknown stre
field ~including localized stress concentrations! is difficult
but necessary to utilize the local stress–strain behavio
solve for elastic parameters. In shear wave propagation, h
ever, local estimates of displacement and wave behavior
be used to generate localized estimates of elastic proper
either through direct inversions or through forward iterati
approaches. In all cases, the problem of noise in estima
spatial~or temporal! derivative terms can be a major limitin
factor.

In this paper we have emphasized the common grou
work, and common information, that is obtainable over
wide range of experimental approaches to elastography.
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