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A B S T R A C T   

Objectives: Several ultrasound measures have shown promise for assessment of steatosis compared to traditional 
B-scan, however clinicians may be required to integrate information across the parameters. Here, we propose an 
integrated multiparametric approach, enabling simple clinical assessment of key information from combined 
ultrasound parameters. 
Methods: We have measured 13 parameters related to ultrasound and shear wave elastography. These were 
measured in 30 human subjects under a study of liver fat. The 13 individual measures are assessed for their 
predictive value using independent magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) 
measurements as a reference standard. In addition, a comprehensive and fine-grain analysis is made of all 
possible combinations of sub-sets of these parameters to determine if any subset can be efficiently combined to 
predict fat fraction. 
Results: We found that as few as four key parameters related to ultrasound propagation are sufficient to generate 
a linear multiparametric parameter with a correlation against MRI-PDFF values of greater than 0.93. This 
optimal combination was found to have a classification area under the curve (AUC) approaching 1.0 when 
applying a threshold for separating steatosis grade zero from higher classes. Furthermore, a strategy is developed 
for applying local estimates of fat content as a color overlay to produce a visual impression of the extent and 
distribution of fat within the liver. 
Conclusion: In principle, this approach can be applied to most clinical ultrasound systems to provide the clinician 
and patient with a rapid and inexpensive estimate of liver fat content.   

1. Introduction 

Due to the increasing prevalence across the globe of fatty liver dis-
ease and its many stages along the progression from early steatosis to 
metabolic dysfunction-associated steatohepatitis (MASH) and metabolic 
dysfunction-associated liver disease (MASLD), the goal of rapid nonin-
vasive assessment of liver fat has received widespread attention. Ultra-
sound (US) methods are particularly attractive since they have the 
potential for rapid, inexpensive implementations even in remote and 
underserved communities. Active research in US quantification of liver 
fat has taken at least four different approaches: first, the measurement of 
a single parameter that trends with increasing fat, for example US 
attenuation [1,2]. The disadvantage of this approach includes the 

presence of cofactors, other than fat accumulation, which can strongly 
influence any single parameter measurement and create uncertainty [3]. 
Second, one can derive analytical models based on the biophysics of 
wave propagation in the liver and solve for the unknown fat content 
based on accurate measures of fundamental properties such as phase 
velocity and attenuation [4–6]. Third, one can simply train a machine 
learning algorithm on a carefully curated set of images, and utilize 
artificial intelligence (AI) concepts without necessarily incorporating 
any biophysics [7]. Finally, the approach we take here is a multi-
parametric analysis leading to a distillation of the most important set of 
measures and their most simplified combination in order to accurately 
quantify liver fat. The combination of independent parameters allows 
for an accounting of the effects of cofactors, and a tighter correlation 

* Corresponding author. University of Rochester 724 Computer Studies Building, Box 270231, Rochester, NY, 14627, USA. 
E-mail address: kevin.parker@rochester.edu (K.J. Parker).  

Contents lists available at ScienceDirect 

WFUMB Ultrasound Open 

journal homepage: www.journals.elsevier.com/wfumb-ultrasound-open 

https://doi.org/10.1016/j.wfumbo.2024.100045 
Received 29 February 2024; Received in revised form 23 April 2024; Accepted 24 April 2024   

mailto:kevin.parker@rochester.edu
www.sciencedirect.com/science/journal/29496683
https://www.journals.elsevier.com/wfumb-ultrasound-open
https://doi.org/10.1016/j.wfumbo.2024.100045
https://doi.org/10.1016/j.wfumbo.2024.100045
https://doi.org/10.1016/j.wfumbo.2024.100045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wfumbo.2024.100045&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


WFUMB Ultrasound Open 2 (2024) 100045

2

with the key independent measure of fat, in this case the widely used 
magnetic resonance imaging-derived proton density fat fraction 
(MRI-PDFF) [8]. Our multiparametric approach can also be deployed 
with machine learning techniques such as the support vector machine 
(SVM) [9,10] where a training set using our measures can produce an 
accurate segmentation of diseases and stages of diseases in a multidi-
mensional, multiparametric space [11–13]. 

Accordingly, this paper is organized in stages to consider a broad set 
of parameters that can be measured in the liver using a clinical scanner 
(Philips EPIQ 7, Philips Healthcare, Bothell, WA, USA) on 30 patients 
who are being evaluated for steatosis. This includes US- and 
elastography-related measures. Next, the individual parameters and 
combinations of parameters are assessed for their correlation with the 
independent measure of liver fat using MRI-PDFF. Several of these pa-
rameters and correlations have been reported previously from the 
original study conducted at Stanford University [14], and in this 
follow-up we add additional measures related to the H-scan analysis and 
the power law framework leading to Burr parameters for speckle char-
acterization [15], Then, an exhaustive accounting of all possible com-
binations of parameters is conducted to identify if any subset of these 
can produce a highly effective predictor of liver fat. Principal component 
analysis (PCA) is used to further simplify the combinations of parame-
ters. A limited subset of as few as four parameters (in principle, 
obtainable by most modern US scanners) is found to produce strong 
correlation against fat fraction assessed by MRI-PDFF and area under the 
curve (AUC) approaching 1.0 for classification by steatotic score of zero 
vs. all higher scores. Finally, in addition to the predictive and classifi-
cation uses of this approach, using the strongest few parameters we are 
able to make local predictions of fat content and display this information 
as color overlay images, producing an immediate visual impression of 
the amount and location of the fat within each liver. These quantitative 
imaging results are referred to as US fat fraction (USFF) images. 

Taken together, these analyses demonstrate an effective and efficient 
means to generate liver fat estimates that are strongly correlated with 
MRI-PDFF assessments, and tightly linked to steatosis scores, and can 
also produce images that convey an immediate impression of the 
quantity and distribution of fat within the liver. 

2. Methods 

2.1. Study design 

We studied in vivo human subjects with healthy livers and suspicious 
or confirmed MASLD having at least 1 associated risk factor of obesity, 
diabetes, or hypertension. The Stanford University School of Medicine 
Review Board approved this prospective Health Insurance Portability 
and Accountability Act–compliant study. The study screened 211 pa-
tients who underwent magnetic resonance imaging (MRI) liver scanning 

at Stanford University Medical Center but excluded patients for specific 
reasons; more detailed patient information can be found in the previous 
study with the same patient dataset [14]. Overall, just 30 patients were 
eligible with available US radiofrequency (RF) data, quantitative US 
(QUS) parameters, US shear wave measures, and reference MRI-PDFF 
measures acquired from the same MRI system. Moreover, clinical 
diagnosis of the patients was provided to confirm that the patients did 
not have other liver or kidney diseases, such as hepatic fibrosis and renal 
diseases, other than hepatic steatosis. The patients had reference stea-
tosis MRI-PDFF ranging from 1.25 % to 42.8 % (14.1 % ± 11.3 %). 

The previous study [14] provided 8 measures incorporated into this 
study, related to ultrasound measures of: hepatorenal index (HRI), 
Nakagami analysis, spectral slope, spectral intercept, midband fit, plus 
elasticity measures of shear wave speed (SWS), shear wave viscosity 
(SWV), and shear wave dispersion (SWD at 100–150 Hz, 150–200 Hz, 
and 100–200 Hz), and this study extracted 5 additional measures 
(H-scan, attenuation, Burr lambda, Burr b, B-scan intensity). A total of 
13 measures were utilized for multiparametric analysis, which evalu-
ated all possible combinations and ranked them based on correlation 
coefficient and the AUC with reference to MRI-PDFF measures. This 
evaluation determined the best subset to quantify liver steatosis, pro-
ducing a combined parameter which was utilized to visualize steatosis 
color overlay on traditional B-mode images. 

2.2. Ultrasound parameters 

2.2.1. Ultrasound acquisition 
The patients were US-scanned using the Philips EPIQ 7 system 

(Philips Healthcare, Bothell, WA, USA) equipped with a C5-1 convex 
transducer. Up to 12 views of US images were acquired for liver and 
kidney in each patient. The liver images were used to measure all US 
parameters, whereas the kidney scans were only used to measure HRI. 
These scans saved US RF data for our analysis. Following the B-scan, US 
shear wave elastography (SWE) was performed, and SWE parameters 
were measured. Example views of B-mode kidney and liver and SWE are 
illustrated in Fig. 1. 

2.2.2. H-scan 
Analyzing the RF data enables H-scan and attenuation estimation 

based on frequency information. The H-scan is a matched filter analysis, 
which is capable of characterizing tissue properties. As a preprocessing 
for H-scan, attenuation correction was applied to the RF data [16] since 
the US attenuation effect causes frequency down-shift along depth, 
resulting in a red-shift of H-scan. We multiplied eαftxxz to 
Fourier-transformed RF data in each zone (z) where the overall depth 
was divided into 10 zones, with each zone having a length of 1.6 cm, and 
xz is the center depth of zone z. α and ftx are the attenuation coefficient 
(α = 0.5 dB/MHz/cm) and transmission frequency 3 MHz, respectively. 

Fig. 1. Ultrasound (US) acquisitions with different views and techniques. (a) B-mode hepatorenal view for quantifying the hepatorenal index (HRI), (b) B-mode liver 
view for the other B-mode parameters extracted using radiofrequency (RF) data, (c) Shear wave elastography (SWE) mode for shear wave propagation parameters. 
Reused with permission [14]. 
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The matched filtering was applied to the attenuation-compensated RF 
data which then produced convolved signals highlighting specific scat-
terer sizes related to peak frequencies of the filters. In this study, we 
utilized 256 Gaussian filters with peak frequencies between 1.5 MHz and 
4.5 MHz, with equivalent difference of 23.6 kHz. Each pixel had 256 
convolution values, and a maximum of the convolution can be selected. 
The maximum convolution had a corresponding Gaussian filter index 
between 1 and 256. The indices of maximum convolved signals were 
color-coded to produce H-scan images using the H-scan colormap in 
Fig. 2. 

The lower peak frequency indices mapped into lower color levels 
showing more red color represent relatively larger US scatterers, 
whereas the higher frequencies/color levels showing more blue repre-
sent smaller US scatterers. The H-scan color levels were used as an US 
parameter characterizing US scatterer sizes, which can vary due to 
pathological changes. 

2.2.3. Attenuation estimation 
The attenuation coefficient can be estimated using the H-scan pro-

cedure without applying attenuation correction (RF data preprocessing 
for H-scan). Thus, raw RF data without attenuation correction were used 
as the input. The raw RF data were match filtered, which can provide 

peak frequency components along with depth ( f̂ p(x)). Then, estimated 
attenuation coefficient (α̂(x)) can be calculated: 

α̂(x)= −
f̂ p(x) − ftx

xσ2 , (1)  

where σ is bandwidth of the frequency spectrum; more details of this 
estimation method can be found in Baek et al. [10]. α̂(x) was averaged 
along with depth, and the average was used as one of our US parameters. 

2.2.4. Burr and Nakagami parameters 
Derived from speckle theory tracing back to Rayleigh’s 1880 deri-

vations [17], a number of treatments of speckle conclude with a prob-
ability density function (PDF) including an exponential or Gaussian tail. 
The Nakagami parameter (m) is one of these, comprising a 
two-parameter distribution given as: 

P(A)=
2mmA2m− 1

Γ(m)Ωm exp
(
−

m
Ω

A2
)

U(A), (2)  

where Γ and U are the gamma and unit step functions, respectively, A is 
the echo amplitude, Ω is the scaling parameter defined as Ω = E(R2

env), 
where E denotes the statistical mean and Renv is the echo envelope sig-
nals [18]. 

A more recent alternative is derived from the premise that there 
exists in tissue a multiscale, power law distribution of scattering sizes, 
leading to a Burr distribution of speckle amplitudes. This can be char-
acterized as a “long tail” distribution, and is given as a two-parameter 
PDF by: 

P(A)=
2A(b − 1)

λ2

[(
A
λ

)2

+ 1

]b , (3)  

where λ and b are the two Burr parameters to be estimated. λ is a scale 
factor related to echo amplitude and gain and b is a power law exponent 
related to scatterer distribution. These two distributions can have 
similar shapes on a linear histogram plot, the major difference is present 
in the tails, exponential vs. power law. 

2.2.5. B-scan intensity and hepatorenal index 
Analyzing B-mode echogenicity can produce B-scan intensity and 

HRI. To measure B-scan intensity, the saved RF data were processed to 
IQ-data and then envelope data. The envelope data amplitudes were 
averaged within a region of interest (ROI) including only soft tissues 
after excluding vasculature. HRI was calculated by setting two boxes in 
the liver and kidney as previously described [14]: 

HRI=
mean liver echogenicity

mean kidney echogenicity
. (4)  

2.2.6. Shear wave parameters 
SWE imaging sequences produced the six shear wave related pa-

rameters for this study: elasticity (shear modulus); a fit of data to a Voigt 
rheological model (Voigt-viscosity) [19] or to an experimental hybrid 
model (WE-viscosity) [20]; dispersion from the range of 100–150 Hz; 
dispersion 150–200 Hz; and dispersion 100–200 Hz. These parameters 
were measured as part of the previous study; the extraction details are 
available in Pirmoazen et al. [14]. 

2.3. MRI-PDFF 

As an independent reference measure for the patient data set, MRI- 
PDFF was used. Standard MRI scanning for the patients was per-
formed at Stanford Medical Center by a radiologist with 10-years of 
experience using a 3.0 T scanner (Discovery MR750, GE Medical System, 
Waukesha, WI, USA) within 14 days of the US scanning. 55 % of the 

Fig. 2. H-scan flow chart.  
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patients underwent both MRI and US scanning on the same day, and the 
average number of days between the MRI and US was 3.93 ± 5.25 days. 
The MRI-PDFF measures were obtained using a 6-echo 3-dimensional 
(3D) spoiled gradient recalled echo sequence (IDEAL-IQ). The radiolo-
gist created ROIs in segments 5–8 of the right hepatic lobes. The four 
measurements were averaged and used as the reference MRI-PDFF. 
Utilizing the MRI-PDFF measures, hepatic steatosis was staged using 
the following MRI-PDFF cutoffs: Normal (S0) < 5 % < S1 < 10 % < S2 <
20 % < S3. 

2.4. Multiparametric analysis 

2.4.1. Feature selection 
Multiparametric analysis was performed to select the best combi-

nation which accurately estimated fat fraction by extracting and 
combining information from the individual features. We investigated all 
possible combinations with two categories. The first category included 
all combinations from the 13 parameters from RF data and SWE, and the 
second included only parameters extracted from B-mode, without SWE. 
Since measuring SWE requires SWE transmissions in addition to the B- 
mode sequence, we evaluated the performance of the simpler protocol 
only with B-mode. The first category has 8191 possible unique combi-
nations: 
(

13
13

)

+

(
13
12

)

+

(
13
11

)

+⋯+

(
13
2

)

+

(
13
1

)

=
∑13

k=1

(
13
k

)

= 8191,

(5)  

where 
(

13
k

)

denotes the binomial coefficient, representing the possible 

number of combinations when selecting k parameters from among 13 
parameters. In the same way, the second category had 127 possible 
combinations: 

∑7

k=1

(
7
k

)

= 127, (6)  

where 
(

7
k

)

represents all possible combinations when selecting k pa-

rameters among seven. 
The performance of all possible combinations were evaluated using 

linear (R) and Spearman’s (Rs) correlation coefficients and the AUC with 
three different thresholds: (1) S0 vs. S1/S2/S3, (2) S0/S1 vs. S2/S3, (3) 
S0/S1/S2 vs. S3. To assess the performance considering the total of five 

evaluations, including correlation coefficients and AUCs, we propose a 
combined metric (CM): 

CM= 0.5 ⋅
(

R + Rs

2

)

+ 0.5⋅
(

AUCS0 vs. S1S2S3 + AUCS0S1 vs. S2S3 + AUCS0S1S2 vs. S3

3

)

,

(7)  

where AUCS0 vs. S1S2S3 is the AUC with the threshold between S0 and S1, 
AUCS0S1 vs. S2S3 is the AUC with the threshold between S1 and S2, and 
AUCS0S1S2 vs. S3 is the AUC with the threshold between S2 and S3. The 
metric has 50 % weight from correlation coefficients and 50 % weight 
from AUCs. When R and Rs were used to evaluate individual parameters’ 
performance, p-values less than 0.001 were considered statistically 
significant. 

The metric (eqn (7)) was calculated for all 8191 and 127 feature 
combinations for the first (all US parameters) and second (B-mode pa-
rameters excluding SWE) categories of parameters, respectively, and we 
found the best performing combinations from each category and 
compared the two. 

2.4.2. Multiparametric quantification and imaging 
Once we determined the best performing parameter combinations, 

multiparametric analysis combined information from the selected pa-
rameters using principal component analysis (PCA). The first principal 
component (PC1) can be considered to be a combined, or synthesized, 
single parameter, whose performance was evaluated using the correla-
tion coefficients and AUCs and compared with the 13 individual pa-
rameters. The combined parameter was utilized to estimate USFF, and 
the estimated USFF was color-coded using the USFF color bar (Fig. 3) 
and overlaid onto B-mode images. 

Fig. 3 depicts the USFF imaging method. MRI-PDFF is used as a 
reference standard for fat quantification. US parameters are measured, 
and feature selection (Section 2.4.1.) finds the best performing feature 
combination. PCA combines the parameters and provides a combined 
parameter of PC1. The strong correlation between PC1 and MRI-PDFF 
produces a linear fit line. This overall approach to quantifying hepatic 
steatosis utilizes information from feature selection and PCA. Thus, for 
prediction, we only measure the selected features, excluding features 
that do not contribute to better performance of the multiparametric 
analysis for steatosis evaluation. The parameters are sent to PCA using 
the PCA matrix calculated from training. Then, the combined parameter, 
PC1, is calculated from the measurements and the PCA matrix. Using the 
linear fit line from training, we can estimate USFF from the PC1. The 

Fig. 3. Multiparametric imaging flow chart. MRI-PDFF = magnetic resonance imaging-derived proton density fat fraction, PCA = principal component analysis, PC1 
= the first principal component. 
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USFF is color-codded and overlaid onto B-mode images. 

3. Results 

3.1. Individual ultrasound parameters 

The 13 US individual parameters were measured and compared 
using MRI-PDFF (Fig. 4). Both H-scan and attenuation measures showed 
the highest correlation of |Rs| = 0.90 (p < 0.001) with MRI-PDFF. The 
Nakagami parameter also showed high correlation, with |Rs| = 0.88 (p 
< 0.001). Further, the Burr lambda, Nakagami, and HRI correlated well 
with MRI-PDFF with correlation higher than Rs = 0.70 (p < 0.001). 
However, all SWE parameters failed to show significant correlation with 
MRI-PDFF; for all SWE parameters, |Rs| < 0.50 (p > 0.01). 

Of all the 13 individual parameters, H-scan and attenuation out-
performed the others. These two parameters were extracted from our 
frequency-domain signal processing and thus frequency analysis out-
performed echogenicity- and shear wave-based analysis to assess hepatic 
steatosis. 

Our combined metric (CM, eqn (7)), obtained from correlation co-
efficients and AUCs, evaluated the performance of individual parame-
ters (Fig. 5). H-scan and attenuation performed the best with CM greater 
than 0.9, as provided in Fig. 5. Also, Nakagami, HRI, and Burr lambda 
showed high performance (CM > 0.8). However, shear wave parameters 
provided relatively poor steatosis assessment. 

3.2. Multiparametric quantification 

Fig. 6 shows performance for all possible parameter combinations 
when including all 13 parameters (Fig. 6(a)) and then including only B- 
mode derived parameters without SWE (Fig. 6(b)). Fig. 6(c) and (d) 
show the highest 30 combinations for the two categories. The best 
performing combination for both categories is (H-scan, attenuation, Burr 

Fig. 4. Fat quantification performance of individual parameters was compared with reference MRI-PDFF. (a) H-scan color level, (b) attenuation coefficient, (c) B- 
scan envelope intensity, (d) Burr lambda, (e) Burr b, (f) hepatorenal index (HRI), (g) Nakagami, (h) SW elasticity [kPa], (i) WE viscosity, (j) Voigt-viscosity, (k) SW 
dispersion 100–150 Hz, (l) dispersion 150–200 Hz, and (m) dispersion 100–200 Hz. SW = shear wave. 

Fig. 5. Performance of individual parameters evaluated by our combined 
metric (CM, eqn (7)) utilizing correlation coefficients and AUCs. HRI = hep-
atorenal index. 
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lambda, Nakagami), with CM = 0.938. This combination does not 
include any SWE parameter and, thus, SWE is not essential for the 
overall assessment. The parameters extracted from B-mode alone can 
accurately assess hepatic steatosis, resulting in a strong agreement with 
MRI-PDFF. 

Fig. 7 provides more information on the best performing feature 
combination’s performance. Fig. 7(a) shows the correlation plot be-
tween MRI-PDFF and our CM, showing strong correlation (Rs = 0.93). 
Fig. 7(b) provides receiver operating characteristic (ROC) curves with 3 
different thresholds: (1) S0 vs. S1, S2, S3 (AUC = 1.00); (2) S0, S1 vs. S2, 
S3 (AUC = 0.98); (3) S0, S1, S2 vs. S3 (AUC = 0.96). Fig. 7(c) provides 
contribution from each parameter when we calculated our CM. It in-
dicates that H-scan contributed more than the other parameters. The 
contribution from frequency-related parameters (H-scan and attenua-
tion coefficient) is higher than echogenicity-based analysis (Burr lambda 
and Nakagami). Furthermore, the results of these combined parameters 
(Figs. 6 and 7) outperformed any individual parameters (Fig. 5), indi-
cating that multiparametric analysis resulted in improved steatosis 
assessment. 

3.3. Multiparametric imaging: USFF 

Multiparametric analysis produced a combined parameter from 
selected individual features: H-scan, attenuation, Burr lambda, Naga-
kami. The combined parameter for each pixel was color-coded and 
overlaid onto B-mode imaging (Fig. 8). Fig. 8 compares patient images 
from B-scan, H-scan, and multiparametric analyses, without and with 
segmentation, with increasing fat accumulated from left to right. The 
figures show that fat accumulation causes intensity transition from dark 
to bright for B-scan and color transition from blue to red for H-scan. 
Multiparametric imaging illustrates more yellow-overlaid tissues and 
transition from dark to bright yellow as fat increases from left to right: 
for normal or low-stage steatosis, traditional B-mode images are more 
visible, but for steatotic cases, there are more highlighted fatty tissues. 
Although all imaging methods are capable of illustrating fat accumula-
tion in liver, H-scan and multiparametric imaging tend to display the 
changes better than B-scan. Furthermore, multiparametric imaging can 
also provide quantitative fat percentages with color and color bar, 
whereas B-mode and H-scan only provide relative changes. 

Fig. 6. Feature selection results when (a) including all US parameters and (b) including only B-mode parameters but excluding SWE parameters. (c) and (d) include 
the best 30 combination for (a) and (b), respectively. H=H-scan, A = attenuation coefficient, B=B-scan intensity, BuL = Burr lambda, Bub = Burr b, N = Nakagami, E 
= SW elasticity, Wvs = WE-viscosity, Ds1015 = SW dispersion 100–150 Hz, Ds1020 = SW dispersion 100–200 Hz, Ds1520= SW dispersion 150–200 Hz. 

Fig. 7. Best performing feature combinations found using multiparametric analysis. (a) shows correlation coefficient (Rs = 0.93) between our combined metric (CM) 
and MRI-PDFF. (b) shows ROC curves with different cutoffs. (c) provides contribution from each parameter. 
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4. Discussion 

This study addresses two levels of questions about diagnostic US. The 
larger question is: how can we integrate a wide range of measurable 
parameters to accurately stage disease and report to the clinician? The 
narrower question is: what subset of measurable parameters is best able 
to quantify liver steatosis? Our approach to these questions included a 
comprehensive look at 13 individual measures related to US and shear 
wave propagation in the liver and then examined a fine-grain, exhaus-
tive study of all possible combinations of subsets of the measured pa-
rameters. We then applied a set of techniques to integrate the best 
measures, classify results, and produce images with color overlays to 
indicate the extent and severity of the liver fat. 

The leading parameters for assessing steatosis included fundamental 
properties related to power law relations that underlie medical US. 
Backscatter, attenuation, and the Burr distribution of speckle all 
contributed to a strong multiparametric assessment of fat, and all are 
related at a deep level of biophysics to power laws stemming from the 
multiscale distribution of structures within the soft tissues [21]. Also, 
the hepatorenal index, a time-honored comparison of the B-scan 
brightness of the liver compared with the kidney, worked well in our 
study, implying that in the 30 subjects, kidney echogenicity was rela-
tively unchanged by the progression of fatty liver, MASH, and MASLD. 
This may not always be the case in patients with comorbidities and will 
have to be examined in larger populations. The speckle distribution 
characterized by the Nakagami distribution is also found to be a valuable 
contributor. This distribution bears a strong resemblance to the Burr 
distribution except at the high intensity tail (the Burr distribution is a 
“long tail” distribution unlike most earlier models tracing back to Ray-
leigh), yet the tail represents a minimal percent of the data within small 
ROIs, so it may be a minor distinction in practical applications. We note 
that the elastography-related measures were not strong contributors to 
correlations against the independent MRI-PDFF measurement of liver 
fat. This is likely to be related to the influence of cofactors that can be 
present and can also influence shear wave propagations [3]. As a 

practical matter, this relatively poor correlation implies that clinical 
B-scan platforms, properly arranged for basic US measures, would not 
require additional elastography capabilities (for example, high intensity 
push-pulse capabilities) to extract an accurate estimate of liver fat. This 
simplifies the requirements for implementing our approach. 

Our multiparametric approach enabled more accurate assessment of 
hepatic steatosis for human subjects compared to the individual US 
parameters. Our in vivo animal study [22] concluded that our analysis 
enhanced steatosis evaluation performance compared to individual US 
parameters and further achieved better performance than MRI-PDFF. 
We expect to see our multiparametric analysis outperforming 
MRI-PDFF for human subjects once we compare US and MRI data with a 
biopsy reference. 

We investigated ultrasound parameters, including speckle distribu-
tion, attenuation, spectral analysis, and shear wave measures, which 
have been verified as significant for tissue characterization across 
numerous studies. Furthermore, there are more emerging ultrasound 
measurements that can be used as additional parameters to improve 
diagnostic performance. Recently, sound speed estimation has shown 
promise in phase aberration correction and beamforming [23], and the 
local sound speed estimation can be further used as a biomarker for 
tissue characterization, including steatosis measurement [24]. However, 
many sound speed estimation techniques use pre-beamformed channel 
RF data, which has low accessibility and is computationally intensive, 
hindering real-time processing. 

Our approach combined the multiple parameters using linear PCA, 
but as shown in Fig. 7 (a), the scatter plot showed non-linearity. The 
linear and non-linear correlation coefficients are R = 0.87 and Rs = 0.93, 
respectively; the non-linear Spearman’s correlation coefficient is higher 
than the linear coefficient. Thus, non-linear feature combination 
methods could enable more accurate steatosis estimation. For example, 
non-linear PCA for mapping from MRI-PDFF to PC1 and mapping from 
PC1 to fat percentages in Fig. 3 can be considered. Further, our previous 
study [25] suggested a new non-linear method utilizing a non-linear 
hyperplane obtained from the support vector machine, which 

Fig. 8. Illustration of fat accumulation: from top to bottom, B-scan, H-scan, multiparametric imaging, and multiparametric imaging segmentation. MRI-PDFF from 
left to right: 2.5, 4.8, 12.1, 19.9, and 25.9 %. 
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achieved higher diagnostic accuracy compared to linear combinations of 
PCA and inner-product. 

We scanned the livers multiple times for the same patient (mean: 3.5, 

minimum: 3, maximum: 7). Fig. 9 displays example scans for two pa-
tients, one with normal liver and one with steatotic liver. The liver 
sections are slightly different between scans, but show comparably 

Fig. 9. Multiple scans from normal and steatotic patient.  

Fig. 10. Possible display mode of our proposed multiparametric imaging for commercial machines, which requires a simple ROI selection for clinicians. Top to 
bottom: B-scan, H-scan, and multiparametric imaging. Left to right: livers with gradations of normal to severe steatosis. 
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highlighted portions of yellow between the scans. For the normal and 
steatotic case, USFF is 5.78 % (standard deviation, SD = 1.02) and 27.3 
% (SD = 1.44), respectively. For all 30 patients, the average SD is 1.38 
%, which proves our estimator’s reliable measurements from scan to 
scan. 

Limitations of the study include the limited size of the patient pop-
ulation and the difficulty of extracting reliable measures from the most 
distal portions of the liver. In longer propagation paths, on a scale 
greater than 10 cm, the issues of attenuation, gain, noise, and beam 
diffraction all accumulate to create larger uncertainty in the measure-
ment of parameters and the proper correction for depth-dependent ef-
fects. Nonetheless, we have reasonable stability in our multiparametric 
synthesis and USFF images throughout this population, as seen in Figs. 8 
and 10. 

The overlying tissue of patients can influence B-mode parameters 
since ultrasound attenuation varies depending on thickness and 
composition, which affects speckle and frequency distributions. To 
address the attenuation issues, we applied time gain compensation 
(TGC) and global attenuation correction for intensity- and frequency- 
dependent attenuation, respectively. However, local attenuation esti-
mation and correction could enable more accurate measurements for 
future study. 

We further provide a possible display mode of our multiparametric 
imaging when it is applied to commercial machines. Overall analysis of 
this study investigated the liver segmented ROIs for more accurate 
evaluation for this hepatic steatosis study. However, for routine use, 
clinicians can set the ROI box as shown in Fig. 10, simply indicating the 
angle and depth range to be investigated. 

5. Conclusions 

In summary, the results here show promise for US-related parameters 
(without the need for elastography) that can be integrated into a reliable 
measure of liver fat and simultaneously can produce color overlay im-
ages that provide a visual depiction of the extent of the fat within the 
liver. These capabilities are germane to the broader goal of providing 
rapid, inexpensive assessment of steatosis and liver disease to the global 
population. 
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