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Abstract
The relatively new tools of brain elastography have established a general trendline for healthy, aging
adult humans, whereby the brain’s viscoelastic properties ‘soften’ overmany decades. Earlier studies
of the aging brain have demonstrated awide spectrumof changes inmorphology and composition
towards the later decades of lifespan. This leads to amajor question of causalmechanisms: of themany
changes documented in structure and composition of the aging brain, which ones drive the long term
trendline for viscoelastic properties of greymatter andwhitematter? The issue is important for
illuminatingwhich factors brain elastography is sensitive to, defining its unique role for study of the
brain and clinical diagnoses of neurological disease and injury.We address these issues by examining
trendlines in aging fromour elastography data, also utilizing data from an earlier landmark study of
brain composition, and from a biophysicsmodel that captures themultiscale biphasic (fluid/solid)
structure of the brain. Taken together, these imply that long term changes in extracellular water in the
glymphatic systemof the brain alongwith a decline in the extracellularmatrix have a profound effect
on themeasured viscoelastic properties. Specifically, the trendlines indicate that water tends to replace
solid fraction as a function of age, then greymatter stiffness decreases inversely as water fraction
squared, whereas whitematter stiffness declines inversely as water fraction to the 2/3 power, a
behavior consistent with the cylindrical shape of the axons. These unique behaviors point to
elastography of the brain as an importantmacroscopicmeasure of underlyingmicroscopic structural
change, with direct implications for clinical studies of aging, disease, and injury.

1. Introduction

Decades of research on the aging human brain have revealed awide range of information about long term
changes inmorphology, anatomy, and composition. Amore recent addition comes from the application of
elastography, wheremagnetic resonance imaging (MRI) and other imaging platforms are adapted tomeasure
the stiffness and viscoelastic properties of tissue, in vivo (Ormachea and Parker 2020).While elastography
research has established some basic trends versus age for healthy subjects, we still lack a detailed understanding
of the dominantmechanisms that cause long-term changes in brain viscoelasticity in the healthy human adult.
This study examines some of themost prominent changes known to be present in the aging brain, from20’s to
80’s+ years (adult aging), and then seeks to derive a quantitative link to the elastography trends reported herein
and previously.

It has beenwidely recognized that at a gross level of anatomical structure and size, a highly visible (onMRI)
effect of aging is the onset and progression of the greymatter atrophy. This is associatedwith an increase in the
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proportion of total cerebrospinal fluid (CSF) and intraventricular CSF (iCSF) (Giorgio et al 2010, Statsenko et al
2021). Figure 1 shows a sharp decrease in greymatter volume fraction contrastedwith the slightly increasing
trend for thewhitematter volume fraction, as a function of age in humans.

It can also be seen from the literature thatmany physical, chemical, anatomical, andMRI-related parameters
andmeasures have been studied in the brain as a function of age, for instance potassium, calcium, and iron
(Hallgren and Sourander 1958,Hebbrecht et al 1999), andmyelin content (Schmierer et al 2004, 2007, Billiet
et al 2015, Bouhrara et al 2020). In addition, there is the overall state of inflammation and dysregulation of the
glymphatic systemof the brain as a function of age that is still under active investigation (Jessen et al 2015,
Benveniste et al 2019,Dai et al 2023). Thus, the complex,multiscale, long-term changes in the aging brain
contain numerous possible influences on the stiffness of the brain as a function of age, asmeasured by
elastography techniques.

Turningmore specifically to elastography and the viscoelastic properties of the brain, a key component in all
models of rheology andmanyMRImeasures is the percent of water and its distributionwithin a supporting
matrix. A landmark study of the dry/wetweight percent alongwith the fractions of important cellular and
extracellular components, as a function of age, was conducted by Svennerholm et al (1994) for a carefully
selected group of individuals without pre-existing neuropsychiatric conditions. The postmortem samples
demonstratedmajor decreases (on the order of 20%–25%) in the fraction of total dry solids, including
phospholipids and cholesterol, in greymatter as a function of age from20 to 100 years, as reproduced infigure 2.
Similar reductions were found inwhitematter, butwith a delay as to the onset of the decline, initiating later into
middle age and then acceleratingwith old age.

Figure 1.Distribution of results of voxel-based brainmorphometry (VBM) over age. (Top) total greymatter volume fraction. (Middle)
cortical greymatter volume fraction. (Bottom)whitematter volume. Red lines show linear, and green lines second order, fits to the
data, respectively (Statsenko et al 2021).
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In parallel with these anatomical and chemicalmeasures of the aging brain, the newer in vivomeasures of
elastography using shear waves generally show a trend towards decreasing brain stiffness as a function of adult
age (Hiscox et al 2018, Arani et al 2021,Hiscox et al 2021). The key question emerging from the above
observations is: which particularmechanisms contribute to the decreasing viscoelastic trend lines as the human
brain ages into its 80s and 90s? The answer is important beyond empirical correlations, because the causal link of
elastographymeasures to specificmechanismswill create an understanding of what elastography can uniquely
identify, beyond that available with otherMRI-derived parameters for assessment of aging, pathologies, and
response to treatments.

In order towinnowdown the large possible set of contributors to the decreasing brain stiffness versus age,
and to identify amore focused set of dominantmechanismswhich plausibly set the trendline, we utilize a
multiscale biphasicmodel offluid channels in an otherwise elastic parenchymalmatrix, generically called the
‘microchannel flowmodel’ (MFM).Within the framework created by themodel, we examine and attempt to
model key changes in the elastic nature of the brain as a function of age using shear wave elastography techniques
presented inKabir et al (2023), Kabir (2023).

The following sections first review themathematicalmethods applied to the biphasic,multiscale rheological
model of the brain, then the experimentalmethods and results fromMRI including diffusion tensor imaging
(DTI) and neurite orientation dispersion and density imaging (NODDI), andfinally the plausiblematch
between theory and experimental observations. The key role of extracellular free water, its distribution and
quantification, alongwith the gradual change in composition of the brain, are seen to be influential in creating a
decreasing overall trendline versus age for greymatter stiffness, butwith somemodifications noted forwhite
matter. Numerous studies have leveraged diffusionMRI (DTI andNODDI) to explore the impact of aging on
brainmicrostructure (Pfefferbaum and Sullivan 2003,Davis et al 2009, Sexton et al 2014,Nazeri et al 2015,

Figure 2.Concentration of dry solids, phospholipids, and cholesterol in frontal cortices of subjects, age 20–100 years (Svennerholm
et al 1994).
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Cox et al 2016,Merluzzi et al 2016,Miller et al 2016, Guerreri et al 2019, Slater et al 2019).While a consistent age-
related increase in free water has been noted, earlier research has revealed some discrepancies concerning
changes in neurite density index (NDI) and orientation dispersion index (ODI), likely due to variations in the age
groups studied (Billiet et al 2015, Kodiweera et al 2016,Merluzzi et al 2016). In an exceptionally extensive dataset,
a confirmed decline inNDIwas observed frommiddle to old age, whileODI generally exhibited a nonlinear
increase until around 60 years, followed by a decrease (Cox et al 2016). Previous studies (Cox et al 2016, Slater
et al 2019) consistently highlightmean diffusivity (MD) as themost sensitive among diffusionMRI parameters
(fractional anisotropy (FA),MD,NDI,ODI, and extracellular free water (FW)) to aging effects. Furthermore,
other studies have incorporatedmyelin-sensitive quantitativeMRI data, emphasizing the necessity of
integrating complementary techniques to fully understand the temporal and spatial heterogeneity across tracts
(Billiet et al 2015, Slater et al 2019, Faizy et al 2020).

2. Theory

Wederived the stress–strain behavior of the brain as a two-componentmodel with a larger scale network
representing the vascular and perivascular branching structures, down to the level of capillaries, and then
including an additional version representing the smaller scale fluid channels within the interstitial spaces, in
particular the glymphatic system. These parameters are conditioned by anatomicalmeasures, including a key
power law parameter a that captures themultiscale fractal nature of the fluid channels within the soft tissue
parenchyma, discussed inmore detail inGe et al (2022, 2023). The complex Young’smodulus as a function of
frequency is then derived by Laplace transform theory as the sumof components. However, a simplified form
for the stiffness versus frequency is possible in the typical range of elastography frequencies (40–200 Hz for adult
human brains) and so ourworking approximation for the complex Young’smodulus E is:

E A I A , 1a
1 2( ) ( ) ( )w w= - +

where w is the radial frequency of the shear waves employed in elastography, I is the imaginary unit, a 0> is the
power law exponent linked to the distribution offluid channel sizes, and A1 and A2 represent the relative
contributions from the vascular and glymphatic portions of thefluid channels responding to stress and strain,
respectively, within the parenchymalmatrix. The basicmodel can similarly bewritten for shearmodulus G ,( )w
under the assumption that the elasticmatrix or tissue parenchyma is nearly incompressible such that
G E 3( ) ( )/w w= (Parker 2017b). The shear wave speed (SWS) as a function of frequency (the phase velocity and
dispersion) can also be calculated from this quantity. In this equation, the A2 term is an asymptotic
approximation to the glymphatic terms that are characterized by very long time constants valid over the typical
range of frequencies used in elastography. This is a result of the time constants within the glymphatic system
being so long as to result in a nearly constant termover the typical range of brain elastography experiments above
10Hz shear excitations.

Next, we consider dilation or constriction of the fluid channels within either of the two compartments. It can
be shown that this change can be treated simplywith scale factors shifting both themagnitude and the time
constants associatedwith the network offluid channels.

If all thefluid-filled spaces within the glymphatic system (and correspondingly thewater fraction) are
increased or decreased by a factor of r r2 c= where 1c > represents dilation and 1c < represents constriction
of nominal radius or axis r, thenwe can determine in theory how this affects the complex Young’smodulus and
shearmodulus G. Furthermore, if the elastic properties of the cellular structures change, without any alteration
of vessel diameters we can account for that change aswell. Electro-chemical influences on various cells, axons,
dendritic spines, cellmembranes, and actinfilaments have been reviewed byTyler (2012) andBarnes et al (2017).
Functional stimulimay incite regional electro-chemical changes (Patz et al 2016). Thus, ourmodel recognizes
that the intracellular water content, boundwater, and components includingmyelin and proteoglycans
(Svennerholm et al 1994)will not be a constant across the different decades of life, so themodel’s baseline
parenchymal stiffness will itself have a trend as a function of age.

It is convenient to assume a baseline case of shearmodulus G at a reference age or condition, then amodified
shearmodulus G GE2 c= is observed in the elasticmatrix, captured by the fractional factor of ,Ec and this
modification can be can be derived through the transformation rules (Parker 2017a).

Now summarizing and combining these influences for the brainmodel (Ge et al 2023), the leading terms in
the equations for the complexmodulus can bewritten approximately as:

G
G

, 2E
a

a2
0

1

1.5
( )

( )

( )

c

c
=

-

where G2 is the alteredmodulus as c and Ec are varied around a reference point of 1 corresponding to a
referencemodulus of G .0 Wenext hypothesize that Ec can be approximated as inversely proportional to the

4

Phys.Med. Biol. 69 (2024) 115037 K J Parker et al



fractional change inwater volume fraction W ,∆ whichwill change over time proportional to 3c in ourmodel
(dilated radii contain increasedwater volumes, and volume is proportional to radius to the cube power for
spherical shapes). A stronger relationshipwould be to have the parenchymal stiffness vary as inversely
proportional to W ,2∆ where WD is thewater volume fraction or .3 2( )c This square termhas some support
frommeasured dependence of biomaterials as a function of water/solid content (Nguyen et al 2014), depending
on the exact formulation used. Assuming the square dependence and combining the terms yields an
approximate expression for long term changes of the complexmodulus G2 in the brain from some nominal
value G ,0 where G2 is given as:

G
G G

, 3
a a a2

0
1.5 1 6

0
6 4.5

( )( ( ) ) ( )c c
= =

+ - -

and, for example, if a 0.05,= then the denominator term is ,5.75c a very strong dependence of themodulus with
variations in fluid content. Itmust be understood that equation (3) represents afirst order approximation of
small changes in c andwater volume around a reference state in an elasticmatrix that contains amultiscale or
fractal branching network offluids.

3.Methods

3.1. Subject demographics
MR images were obtained from28 healthy subjects with age ranging from22 to 79 years, who had no
neurological disorders. The studywas reviewed and approved by theResearch Subjects ReviewBoard (RSRB
#67634) at theUniversity of Rochester, and informed consent was obtained from the study participants. A
summary of the patient demographics is given in table 1.

3.2. Image acquisition
All imagingwas conducted on a research-dedicated 3Twhole-body Siemens Prisma scanner (Erlangen,
Germany), equippedwith a 64-channel receive-only head coil and body coil transmission, and high-
performance gradients ofmax strength 80mTm−1 and slew rate of 200mTm−1 s−1.

3.2.1. Anatomical imaging
T1-weighted images were collected using a 3DMPRAGE sequencewith the following scan parameters: inversion
time (TI)= 962 ms, repetition time/echo time (TR/TE)= 1840 ms/2.34ms,field of view (FOV)= 256×
256mm2, number of slices= 176, and resolution= 1× 1× 1mm3.

3.2.2.MR elastography
The shearwave elastographywas implemented on theMRI scanner. The shearwave excitations at 50 Hzwere
applied by a pair of air pads located under the subject’s head and activated by an air cylinder providing oscillating
pressure. Thewaveform generator was triggered three seconds prior to the start of the imaging to ensure steady
state shear wave propagation.

The tissue displacements weremeasured using a single-shot spin-echo planar imaging (SE-EPI) sequence
(Hirsch et al 2014)with the following scan parameters: TR/TE= 5100 ms/76 ms, number of slices= 45,
FOV= 200× 200mm2, and resolution= 2× 2× 2mm3. Eight phase offsets were taken, and amotion encoding
gradient (MEG) amplitude of 70 mTm−1 was employed for the acquisitions.

Table 1. Subject demographics.

Age range

(years)
Mean age (years

± SD)
Number in age

range

Number,

gender=male

Number,

gender= female

Number,

race=white

Number,

race=non-white

20–29 23.50± 1.50 2 2 0 2 0

30–39 31.00± 1.00 2 2 0 0 2

40–49 46.75± 2.86 4 3 1 3 1

50–59 55.40± 2.73 10 8 2 7 3

60–69 67.50± 1.89 6 3 3 5 1

70–79 72.25± 2.49 4 2 2 4 0

Total 28 20 8 21 7
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3.2.3. DiffusionMRI acquisition
Diffusionweighted images (DWI)were collected using a 2D single-shot SE-EPI pulse sequence via simultaneous
multi-slice (SMS) acquisition techniquewith the following parameters: TR/TE= 4300 ms/69.0 ms, b= 1000,
2000 s mm−2, 64 directions/shell, GRAPPA= 2,multiband factor= 3, FOV= 256× 256 mm2, number of
slices= 96, resolution= 1.5× 1.5× 1.5mm3. Seven T2-weighted reference images were acquiredwith a
b-value= 0 s mm−2 to normalizeDWIswith b> 0 s mm−2. Imageswith opposite polarity (i.e. AP and PA
directions)were acquired to rectifyDTI distortion.

3.2.4.Myelin water imaging (MWI) acquisition
Whole brainMWIwere performed using a 3D gradient and spin echo (GRASE) sequence with TR= 1000ms,
first TE= 10ms, number of echoes= 32, echo spacing= 10ms, number of slices= 24, slice thickness= 5mm,
and resolution= 1.5× 1.5× 5mm3.

3.3. Image processing
Image pre-processing and analyzes were performed using FMRIB’s Software Library (FSL) (Jenkinson et al
2012), AdvancedNormalization Tools (ANTs) (Avants et al 2009, 2011),MATLAB (version 2018b, The
MathWorks, Inc., Natick,Massachusetts, United States) and Python (version 3.7.4). All raw images were
checked for any severe artifacts such as gross geometric distortion, bulkmotion, or signal dropout.

3.3.1.MR elastography
Two independent techniques were employed to reconstruct local SWS and the reported G is taken as the average
of the two independent estimates: first, themulti-frequency dual elasto-visco (MDEV) reconstructionmethod
(Papazoglou et al 2012,Hirsch et al 2014, Barnhill et al 2018,Meyer et al 2022), and secondly the reverberant
shear wave autocorrelation technique (Parker et al 2017, Ormachea et al 2018,Ormachea andZvietcovich 2021).
The 3D-MDEV reconstructionmethod is awell-established direct inversion approachwhich can be applied to
single ormultiple frequency excitations. Thismethod utilizes low-passfilters tomitigate noise interference
(Papazoglou et al 2012,Hirsch et al 2014, Barnhill et al 2018,Meyer et al 2022). The reverberant shear wave
elastography (RSWE)method is a relatively new techniquewhich has been adapted toMREwith estimators
based on themagnitude and phase of any component of an assumed 3Ddistribution of shear waves (Kabir et al
2023). Since these two techniques employ different approaches to the estimation of SWS (inverseHelmholtz for
MDEVversus autocorrelation for RSWE), the combination is proposed as ameans of conditioning the results
against noise and artifacts.

3.3.2. DTI/NODDI
TheDWIswere corrected for eddy current-induced distortion, inter-volume subjectmotion, and susceptibility-
induced distortion using ‘topup’ and ‘eddy’ tools in FSL (Andersson et al 2003, Andersson and
Sotiropoulos 2016). DTImetrics such as FA andMDwere computed by usingDTIFIT in FSL (Smith et al 2004).
FA indicates the degree of anisotropy or directionality of water diffusion in the tissues whileMD is ameasure of
averagewater diffusion of watermolecules in all directions.

ANODDImicrostructuralmodel was fitted using theNODDI toolbox (https://www.nitrc.org/projects/
noddi_toolbox/) running inMATLABwhich yieldsmaps ofNDI,ODI, and FW (Faiyaz et al 2022). NDI reflects
neurite density, encompassing both axons and dendrites, whileODI represents the variability in neurite
orientation. The FW indexmeasures the relative fraction of freely diffusingwater in the extracellular space,
providing insights into neuroaxonal damage and its impact on tissue diffusion characteristics.

3.3.3.MWI
Voxel-wisemyelinwater fraction (MWF)mapswere computed using a regularized, non-negative least squares
algorithm,while compensating for stimulated echoes, as reported previously (Prasloski et al 2012). In this way,
MWFwas calculated as the ratio of the T2 signal from10 to 40ms (i.e.myelinwater) divided by the total T2
signal from10 to 200ms (i.e. myelinwater plus intra/extracellular water). T2wGRASE images at 12th echo in
native spacewere then co-registered (affine)with each participant’s bias-field corrected T1w image and then the
brainmaskswere applied. The same brainmasks were applied toMWF. Spatial normalization of theMWFmap
was performed using FSL.

3.4. Region of interest (ROI) analysis
FMRIB’s Automated Segmentation Tool (FAST) (Zhang et al 2001)was utilized to segment the brain regions,
and registration employedANTS (Avants et al 2011). Prior to segmentation, non-brain tissuewas eliminated,
and bias correctionwas performed using FSL’s brain extraction tool (BET) (Smith 2002). FSL’s brain anatomy
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pipeline, ‘fsl_anat,’was employed to isolate brain tissues. The segmented regions included global grey andwhite
matter, alongwith several subregionswithin subcortical greymatter, andwhitematter tract regions utilized for
other studies. In addition, theHarvard–Oxford (subcortical, and cortical) and JHU-ICBM (whitematter) atlases
were used to calculate regional averages in standard space (1 mm) in pre-definedROIs.MRmetrics were
extracted fromglobal grey andwhitematter using correspondingmasks. Tomitigate partial volume effects
caused byCSF inNODDImetrics such asNDI,ODI, and FW,we exclusively utilized the average values of all
ROIs from theHarvard–Oxford cortical and subcortical GMatlas for assessing global greymatter. Similarly, we
employed the average values of all ROIs from the JHU-ICBMatlas for analyzing global whitematter.

3.5. Statistical analysis
The primary statistical approaches used in this studywere the Pearson correlation and least squares error linear
regression to assess the trends with age-related changes of shearmodulus and diffusionMRImetrics (i.e. FA,
MD, FW,NDI,ODI), as well as the degree of correlation betweenMRImetrics and shearmoduluswith aging as
a parametric (implicit or hidden) parameter.

4. Results

Themeasured shearmodulus and otherMRI parameters are considered in three stages in the following sections.
First, we examine the trends as a function of subjects’ age. Next, to assess deeper interrelationships, we plot the
correlations between shearmodulus and the otherMRImeasures. Finally, the trends for shearmodulus are
examined as a function of total dry/wetweight ratios as determined from the extensive studies of Svennerholm
et al (1994).

4.1. Primarymeasures versus age and trendlines
Figure 3 provides the shearmodulus for grey andwhitematter as a function of age. Consistent with other studies
from the literature (Arani et al 2015,Hiscox et al 2021), thewhitematter exhibits higher stiffness than grey
matter, and the general trend lines indicate decreasing stiffness as a function of age across the adult lifespan.

Applying a linearfit to the data, the equations for G as a function of age are given by:

G

G

age 9.3 age 2320 Pa

age 10.7 age 2950 Pa 4
grey

white

( ) ( )
( ) ( ) ( )

= - ´ +
= - ´ +

Other parameters as a function of age are plotted in the appendix.However, wewish to focus on themost
influential factors that strongly correlate withG, that is with r 0.5> or significant p-values< 0.05. Tables 2 and
3 list the correlations and normalized ranges of each of themeasured parameters, and in bold indicate the few
that lie above that level.

4.2. Correlations between shearmodulus and other parameters
Herewe seek the strongest link between shearmodulus and the othermeasuredMRImetrics, regardless of age.
Among themeasured parameters in this study, free watermeasures within the range of 0.1–0.6 across the

Figure 3. Shearmodulus G| |* as a function of subjects’ age, reverberant+MDEV, for grey (GM, in blue) andwhite (WM, in red)
matter. The overall trend is towards a softening of the brain in old age.
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subjects, produced the highest correlationwith shearmodulus, as shown infigure 4.Other parameters as a
function of shearmodulus are plotted in the appendix.

4.3.Models of shearmodulus as a function ofwater content
In this section, we examine the results of the biphasic rheologicalmodel of the brain that was summarized in
section 2 (Theory) and simplified to equation (2), against the trendlines for our study and that of Svennerholm
et al (1994).We assume, arguendo, that our trendline for shearmodulus versus age (figure 3) and Svennerholm’s
trendlines for dry/wetweight versus age (derived from figure 2(a)) provide jointly valid averages as a function of
age. In that case, age between 20 and 80 years can be treated as a parametric variable, enabling a direct
computation of shearmodulus as a function of water fraction, and this inter-relationship is shown in solid
(black) lines infigure 5(a) for greymatter andfigure 5(b) for whitematter. In theory, any small change in c and

W∆ around a reference state can bemodeled forfirst approximation by equation (2), andwe assume the changes
in thewater fraction are assigned to the glymphatic system.

In particular, using Svennerholm’s values for water fraction inmiddle age (40–45 years) as our reference
value, and assigning all the small fractional changes inwater spaces, c andwater volume fraction W∆ to the
glymphatic system, assumed to be approximately 12%of the total water fraction at the reference conditions at

Table 2.Pearson’s correlation coefficients (R), p-values, and linearfit equations (grey
matter).

x y R p-value Linear fit equation

G| |* −0.67 0.0001 y x9.29 2.32 103= - + ´
ODI −0.083 0.67 y x0.000137 0.446= - +

Age NDI 0.59 0.00083 y x0.00118 0.487= +
FA −0.17 0.4 y x0.000135 0.215= - +
FW 0.58 0.0018 y x0.00233 0.273= +
MD 0.48 0.022 y x1.15 10 0.0007186= ´ +-

ODI 0.096 0.63 y x1.14 10 0.4185= ´ +-

NDI −0.64 0.00024 y x9.16 10 0.7185= - ´ +-

G| |* FA 0.50 0.0096 y x2.74 10 0.1595= ´ +-

FW −0.75 1.2 10 5´ - y x0.000208 0.777= - +
MD −0.70 5.8 10 5´ - y x1.26 10 0.001017= - ´ +-

FA= fractional anisotropy;MD=mean diffusivity; FW= extracellular freewater;

NDI=neurite density index; ODI= orientation dispersion index; G| |* = shear

modulus. Bold font highlights significant p-values. Due to the low signal-to-noise ratio

(SNR), greymatter forMWFdatawas excluded.

Table 3.Pearson’s correlation coefficients (R), p-values, and linearfit equations
(whitematter).

x y R p-value Linearfit equation

G| |* −0.61 0.0005 y x10.7 2.95 103= - + ´
ODI 0.28 0.15 y x0.000302 0.339= +
NDI 0.29 0.13 y x0.0004 0.538= +

Age FA −0.39 0.047 y x0.000582 0.351= - +
FW 0.49 0.012 y x0.00108 0.121= +
MD 0.27 0.18 y x4.49 10 0.0006247= ´ +-

MWF 0.43 0.028 y x0.000369 0.0652= +

ODI −0.37 0.051 y x2.33 10 0.4115= - ´ +-

NDI −0.11 0.56 y x8.99 10 0.5826= - ´ +-

G| |* FA 0.38 0.055 y x3.15 10 0.2445= ´ +-

FW −0.36 0.07 y x4.48 10 0.2885= - ´ +-

MD −0.22 0.29 y x1.99 10 0.0006968= - ´ +-

MWF −0.083 0.69 y x3.97 10 0.09626= - ´ +-

FA= fractional anisotropy;MD=mean diffusivity; FW= extracellular free water;

NDI=neurite density index; ODI= orientation dispersion index; G| |* = shear

modulus;MWF=myelinwater fraction. Bold font highlights significant p-values.
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middle age, ourmodel for total water fraction in grey andwhitematter are:

W
73.5 12

100
5grey

3

( )c
=

+

and

W
58.5 12

100
6white

3

( )c
=

+

for grey andwhitematter water fractions, respectively. In this accounting, thewater fractions atmiddle age
(40–45 years) equal the trendline values fromSvennerholm’s data, described inmore detail in the appendix,
equations (7) and (8). However, the small changes from this reference point are attributed to the extracellular
spaces associatedwith the glymphatic system, assumed to hold awater fraction of 0.12 at the reference point (the
other largerfluid volumes associatedwith blood, perivascular, andCSF spaces are not altered in thismodel). The
most plausible agreements we found, in terms of dependence on c to rational powers (1 n/c where n is an
integer exponent) are shown in figure 5.

In these theoretical calculations (dashed lines), we note that the fit to greymatter is approximately
proportional to 1 6/c or W1 ,2/D whereas the fit towhitematter is a lesser power law1 .2/c This indicates that
separatemechanisms are responsible for the trendlines in grey andwhitematter, and these will be detailed in the
next section.

5.Discussion

5.1. The biophysics of trendlines
Themajorfinding of this study is that within our framework, the softening of the aging brain and elastography
measures can be plausibly tied to the progressive loss of proteoglycans, phospholipids, cholesterol, and other
extracellular (and intracellular) components that are depicted infigure 6, with a corresponding increase in the
fraction of water. This has the effect of softening the tissue, at least in terms of its response to shear waveswithin
the frequency range commonly associatedwith elastography. The annual decrease in shearmodulus we found,
on the order of−10 Pa per year, is within the range of otherMRE aging reports summarized byHiscox et al
(2021). However, wefind the overall elastography trendline takes differentmathematical form in greymatter
versus whitematter. Ourmodel finds a plausiblematch of theory to trendline data by assuming that themajor
changes inwater fraction are associatedwith the glymphatic system,where the extracellular fluid channels
account for somewhere between 10%and 20%of the totalfluid content of the brain (Rasmussen et al 2022).
Tightly correlatedwith increases and decreases in this compartment over decades of age is the change in the
shearmodulus of the parenchymalmatrix. The net result is that the shearmodulus varies inversely as water

fraction squared W1 2/D in greymatter, but only as W1
2
3/D inwhitematter. The greymatter results are

consistent with trends found in some isotropic biomaterials (Nguyen et al 2014), whereas thewhitematter
results are consistent with some anisotropic composite formulas whichmaymodel thewhitematter’s long
axonal tracks. Specifically, the square root of volume fraction is a key parameter in elasticmodels of cylindrical

Figure 4. Freewater (FW)measurement versus shearmodulus across all subjects, without consideration of age, subjects’ shear
modulus calculated from the average of reverberant+MDEVestimators, for grey (GM, in blue) andwhite (WM, in red)matter.
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Figure 5. Shearmodulus versus the total water percent weight, experimental and theoretical for greymatter (a) andwhitematter (b).
We note that the range of the two plots are different, there is a higher total water fraction for greymatter. The solid (black) line is the
trend line frommeasured populations. Age is a parametric (hidden) variable in this plot, but generally trends from left to right,
meaning that older brains tend to havemorewater content and are softer. The dotted line is the theoretical curvefit using ourMFM,
andwith a perturbation 1 n/c linking changes in shearmodulus to changes exclusively within the extracellular water content around a
central reference point, taken as approximately 0.85 and 0.70 total water weight fraction (grey andwhitematter, respectively) from
adultmiddle age using the data of Svennerholm et al (1994). Importantly, the greymatter varies as 1 6/c but thewhitematter as 1 ,2/c
indicating distinctly differentmechanisms at work.Note that the scales on the two graphs cover different ranges.

Figure 6.The basal lamina network is depicted schematically. Both laminin and collagen IV form a network resembling a sheet, along
with other compounds forming an extracellularmatrix that also permits fluidflow. In our rheologicalmodel, the aging brain is
associatedwith a progressive loss of the structural components of the network, with free water increasing and shearmodulus and
‘stiffness’ decreasing (Cieśluk et al 2022).
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inclusions. For example, the Chamismodel of compositematerial with aligned cylinders (Chamis 1984) has
been described as the ‘most widely used and trustedmodel’ (Younes et al 2012) and thismodel derives a shear
modulus that varies as the square root of the volume fraction of the cylindrical inclusions. This trend, plus the
fluid changes associatedwith demyelination, are plausibly responsible for the observed dependence on changes
in shearmodulus with age.

As a final comparison, it should be noted that general compositemodels, for example those outlined by
Christensen (1969) and Lakes (1999), are not able to capture the relationship between G andW shown in
figure 5. This inability has previously been depicted infigure A.1 ofGe et al (2023) for the agingmurine brain,
and strongly implies thatmore specificmodels, such as the framework developed herein, are required to capture
the behavior of the aging brain.

5.2. CorrespondingMRmeasures
OtherMRI parametersmeasured in this study also seem consistent with earlier reported trends with aging
(Motovylyak et al 2022). For greymatter G, the strongest correlationswe found included FW, FA,MD, andNDI,
plausibly related to the trendlines shown infigures 1 and 2.However, for whitematter, the link between
extracellular free water and shearmodulus is weak and not significant, as depicted infigure 4. The oriented
axonal nature of whitematter suggests a stronger linkwithmeasures such as fractional anisotropy but only
weaklywithmyelinwater fraction, ameasure of water trapped in themyelin sheath. The strongest correlationwe
foundwithin our set ofmeasurements was the inverse relationship between free water and shearmodulus as
depicted infigure 4. This negative correlation ismost pronounced in the greymatter where greater amounts of
extracellularmatrix (or glymphatic) free water are associatedwith softer greymatter, which is consistent with
our earlier results both theoretical and experimental (Ge et al 2022, 2023) as detailed in the following section.
Moreover, our results suggest a positive relationship betweenNDI andMDwith age and stiffness in greymatter,
while FA exhibits a negative correlationwith stiffness and age inwhitematter. Conversely, ODI did not display
any significant correlation. The increase inMD in greymatter with stiffness and age is expected due to increased
isotropic diffusivity resulting from age-related edema or neuroinflammation, leading to increased extracellular
free water. The decrease in FAwith stiffness and age in greymatter is anticipated, while the elevatedNDI in grey
matter presents a contradiction, warranting further investigationwith larger sample sizes. These age-related
findings are in linewith several prior studies (Kodiweera et al 2016), though inconsistencies across the literature
may stem fromvariations in the age ranges utilized in these investigations (Billiet et al 2015, Kodiweera et al
2016,Merluzzi et al 2016, Slater et al 2019).

5.3.Ofmice andmen
There is a profound difference in trendline between the aging effects we found inmouse studies (Ge et al
2022, 2023) and this human study. Earlier experiments found that themouse brain cortical greymatter stiffens
and becomes drier (lowerW )with age, whereas the human brain softens and has a higher water fractionW as a
function of age.However, at a deeper level of analysis, both species exhibit an inverse relation between grey
matter shearmodulus G and W .2D Other studies on the younger developingmouse brain demonstrated a shift
in properties towardsmore solid–elastic behavior during adolescentmaturity (Guo et al 2019), whereas
demyelination is associatedwith decreased stiffness (Schregel et al 2012). Any species differencesmust be
investigated further, but our working hypothesis is that the noted opposite trends as a function of age are tied to
the relatively short lifespan ofmice,measured on the order of 30months. Additionally, there is a reported
thickening of the basementmembranes of the brainwith age over the shortmurine lifespan. The basement
membranes comprise a thin butwidely distributed extracellularmatrix within the blood–brain barrier and have
been found to double in thickness with age in rodent brains. Themembranes thicken in response tomechanical
stresses and can develop altered lipid, laminin,fibronectin, and other proteoglycan components (Ceafalan et al
2019, Reed et al 2019). Inmarked comparison, the long-termdysregulation and inflammation of the brain in
humans alongwith the progressive loss of solid weight fraction leads to the accelerating increase inwater fraction
towards the later decades of human life. Additional effects in the aging human brain that can influence
viscoelasticmeasures include ß-amyloid burden, whitemattermicrobleeds, enlarged perivascular spaces, and
gradual decrease in neuronal density (Hiscox et al 2021). Overall, ourMFMbiphasicmodel with the
approximation for small changes influid spaces (andfluid volume) around a reference point, is able to capture
the trendlines for bothmice and human aging brains within a commonunderlyingmathematical framework.

5.4.Other factors
Wenote that the results andmodel in this study pertain to long-term changes extending over decades. This is
very different from the short-term sleep/wake cycles that have been shown to produce changes in stiffness of
cortical greymatter ofmice (Ge et al 2022). It remains to be seen if human sleep/wake cycles do produce short-
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term cycling of elastographymeasures, and this is a topic for future work. The reported G values in the results
sections are the average ofMDEV andRSWE estimators.We found that the correlation r between these two
estimators was greater than 0.9 across the entire population. RSWE values of G were, on the average,
approximately 10%–15%higher thanMDEV estimates for the same subject, and the detailed reasons for this
will require further research.

Limitations of this study include the limited numbers available (N= 28) and the lack of an independent
gold-standardmeasure of water fractionwithin the extracellularmatrix of grey andwhitematter. Partial volume
effects are expected to beminimal for the healthy cohort utilized in this study. Additionally, while efforts were
made tomitigate partial volume effects formore accurate estimation ofMRImetrics, specifically extracellular
free water, it remains possible that unavoidable partial volume effectsmay occur due tofluid in the subarachnoid
space.We utilized the trendlines fromSvennerholm’s landmark study as a population average, but individual
variationswould be desirable forfine-tuning of themodel and for understanding the role of co-factors. Future
work should exploremodels that include the particular roles of theDTI andNODDI parameters including FW,
FA,MD, andmyelinwater imaging parameters such asMWFwhich have varying degrees of correlationwith
elastography G but each pertain to distinctmicrostructural factors. Also,measures of the vascular and
perivascular spaces should be included in futuremodels. Finally, the larger goal relegated for future work is the
study of howdisease states and injuries change the elastographymeasures and if themodel presented herein can
capture these changes with orwithout significant additional terms.

6. Conclusion

The long-term trend towards softening in the aging human brain has nowbeenmodeled as a tight coupling
between the progressive loss of solid fractionwith the concomitant gain inwater fraction, resulting in a softening
of the brain especially approaching the 7th decade and beyond. In some respects, these trends resemble the game
of Jenga (the game of incremental removal of building blocks while avoiding collapse), played over decades on
the extracellular or basementmembrane level, with corresponding decrease in shearmodulus, a softening effect.
Elastography thereby produces a uniquemacroscopic view of amicroscopic structural change that has
important implications for function and dysfunction, for example the efficient functioning and fluid flowwithin
the glymphatic system (Rasmussen et al 2022). The shearmodulus under ourmodel framework is also consistent
with trends found by otherMRImeasures (free water, fractional anisotropy, and others), however elastography
provides a direct link to the physical stress–strain response of the parenchyma and its role influid transport and
response tomechanical forces. The trendline for any individual’s elastography results can provide an insightful
biomarker of the accumulation offluids at the expense of the parenchymalmatrix solid fraction that peaks in
healthy young adults.
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Appendix

For completionwe include themeasured parameters fromMRI as a function of age (figure A.1) and then as a
function of estimated shearmodulus G (figure A.2), with linear correlation fits for both greymatter andwhite
matter. Those linearfit equations can be found in tables 2 and 3.

Next, we include the equations derived fromSvennerholm et al (1994), wherewe assume that thewater
fractionW is given as (1—the solid fraction). The solid fraction is presented in graphical form and in tabular
formby Svennerholm alongwith theirfirst and second order fits (with some errors in decimal point placement).
From these, we utilize the following functions in ourmodels:
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Wwhite matter 1 0.303 0.000013 age 20

where 20 age 90 years, 7

2[ ( ( ) )]
( )

= - - -
< <

and

Wgrey matter 1 0.152 0.0003 age 20

where 20 age 90 years. 8

[ ( ( ))]
( )

= - - -
< <

Wenote that, consistent with their plotted data and trendlines, the trendline forwhitematter is essentially
second order, accelerating in later years, whereas the trendline for greymatter is well-represented by a simple
first order curve. These equations, alongwith equation (4), provide themeans for producing the parametric
plots of G versusW , shown infigure 5, representing the population trendlines.

Figure A.1. Scatter plots depicting the correlations betweenMRImetrics and age in both grey andwhitematter. Dashed lines indicate
linearfits.
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