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Abstract: Ultrasound B-scan images are traditionally formed from the envelope of the received ra-
diofrequency echoes, but the image texture is dominated by granular speckle patterns. Longstanding
efforts at speckle reduction and deconvolution have been developed to lessen the detrimental aspects
of speckle. However, we now propose an alternative approach to estimation (and image rendering) of
the underlying fine grain scattering density of tissues based on power law constraints. The key steps
are a whitening of the spectrum of the received signal while conforming to the original envelope
shape and statistics, followed by a power law filtering in accordance with the known scattering
behavior of tissues. This multiple step approach results in a high-spatial-resolution map of scattering
density that is constrained by the most important properties of scattering from tissues. Examples
from in vivo liver scans are shown to illustrate the change in image properties from this framework.
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1. Introduction

Ultrasound images are commonly reconstructed from echo amplitudes. Sharing some
similarity to coherent optical systems, medical ultrasound images are dominated by the
granular speckle pattern caused by patterns of destructive and constructive interference
from irregular, fine-scale scattering structures. A landmark early study of speckle in medical
ultrasound [1] said “Speckle is an undesirable property of the image as it masks small
differences in grey level. This is the motivation for studying it”. Over past decades of
research work, many attempts were made to improve reconstructions by applying various
forms of speckle reduction and deconvolution [2-6]. Ideally, the backscatter image should
present a high-resolution depiction of the tissue interior’s structures as determined from
scatterer strength, position, and density, and should not be dominated by a granular
interference pattern. Mathematical inverse methods including deconvolutions could, in
theory, be helpful in recovering the scattering distribution that underlies speckle. However,
the problems with straightforward deconvolution are many, including limited signal-to-
noise ratio, limited bandwidth, and the diffraction or spread of the interrogating pulse in
3D which confounds simpler 2D (echo vs. time) image deconvolution approaches.

In recent years, more understanding of the nature of ultrasound from soft vascularized
tissues such as the liver and thyroid have been gained. A mutually supportive set of
characteristics have been identified which all fall under a common framework of power
law behaviors, and which are all tied to the multiscale nature of tissue. For example,
the fluid transport channels in soft tissues range from submicron scales to the largest
arteries and veins on a centimeter scale and form a network of ultrasound scatterers. The
branching network structures are tightly aligned with a number of physical laws of nature
and physiology [7], including Murray’s law, Taylor’s law, and growth processes [8], where
form follows function.

The combined influence of structures and interactions across many scales of distance or
time can produce power law behaviors in key measures obtained by ultrasound [9]. These
include power laws governing (i) backscatter vs. frequency, (ii) attenuation vs. frequency,
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(iii) scatterer number vs. size, (iv) scatterer autocorrelation vs. distance, and (v) ultrasound
echo intensity histogram.

In this paper, we hypothesize that these power law behaviors create a set of consistent
constraints on the reconstruction of a high-resolution distribution of scatterers from soft
tissues. Specifically, after correction for power law attenuation, the intensity (or envelope
squared) of the echo from a vascularized tissue region will have a histogram that resembles
the Lomax distribution, and the amplitude will resemble a Burr distribution [10]. The
scatterers are assumed to be zero-mean under classical weak scattering assumptions, and
power law (Pareto) distributed following the multiscale nature of highly vascularized
tissues. Furthermore, the backscatter intensity will increase with frequency as a power
law [11-13].

It is now proposed that these constraints can be applied as a step-by-step process that
can reconstruct a plausible set of scatterers at high resolution that adhere to the scaling laws
of physiology and that will reproduce the measured echo obtained by the lower-resolution
ultrasound pulse. This iterative process may have aspects that are reminiscent of computed
tomography arithmetic reconstruction (ART), projection onto convex sets, and to other
forward model iterative approaches in medical imaging [14]. However, the major departure
here is the strict application of the power law framework along with careful consideration of
how the power laws would apply at the level of joint time and frequency domain behaviors.
The improvements of higher-resolution reconstruction of ultrasound backscatter images
are many; one example is the replacement of speckle interference patterns with a more
direct mapping of scatterer strength at high resolution. This paper is organized to briefly
review the relevant theory and constructs of the power law reconstruction framework.
Then, examples are given of reconstructions from preclinical liver studies. The resulting
images are called “thru-scans” because in some respects they see through the dominating
granular speckle pattern to form a more representative map of scatterer distributions within
the body. Appendix A delves into more details of the processing and outcomes as a guide
for those who wish to program their own versions of this approach.

2. Theory

Sophisticated phased array pulse echo systems can have complicated arrangements
for transmission, focusing, receiving, and image formation [15]. However in some cases,
particularly including a higher f-number effective focusing, a simplified convolutional
approximation [16,17] can be used as a reasonable model for the propagating transmit pulse
in tissue and the returning echoes from the superposition of reflections from scatterers,
defined as a change in the local acoustic impedance mismatch from some average value Z
within the organ.

Beginning with Macovski’s convolution model of echo formation, a number of simpli-
fications can apply [16]. Let us assume that all scatterers lie in the y = 0 plane; this reduces
the problem to a two-dimensional (2-D) model, and within the paraxial approximation,
we may neglect the quadratic phase terms. Finally, we assume that the beampattern is
relatively constant for some depth near the focus. Under these assumptions, the received
radiofrequency (RF) signal R(x, z) is modeled as a simple convolution:

z

2
R(x,z) = R(x,z) * * S<szf> p(c/Z) , 1)

where x and z are the coordinates in the lateral and axial directions, respectively, R is
the reflection coefficient of the scatterers, c is the speed of sound in the tissue, S is the
beamwidth related to the spatial Fourier transform of the apodization function s, p is the
envelope of the axial propagating pulse with A as its wavelength, R is the resulting RF
signal received, z ris the focus, “**” represents the 2D convolution, and the beamwidth
and axial pulse parameters S and p are separable functions. In practice, Equation (1) only
holds approximately when the scatterer being imaged is near the focus of the system [4].
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Itis also assumed that R < 1, i.e., weak scattering, and that the scatterers are multiscale
structures leading to power law behaviors. Furthermore, we designate the following
notation in Table 1:

Table 1. Notation for key waveforms and measures.

Parameter Definition Additional Information
e(t) Analytic envelope of the F=22/c
received signal R -
I(t) Intensity Specified here as the square of the analytic envelope.
P2(f) Power spectrum of p(t) Specified here as |[F{p(t)}|?, where F{ } is the Fourier transform operator.
Unknown at high resolution and is the object of our constrained reconstruction.
In the theory of multiscale weak scattering, R is distributed as a zero-mean
R(torz) Reflection coefficient random variable with a magnitude described by the power law (Pareto)
distribution, so the ultrasound pulse will encounter few strong scatterers and
many smaller weaker scatterers according to a power law.
NR(I) Histogram of intensity of In theory approaching a Lomax distribution, or concurrently, a Burr
the echoes distribution for amplitude.
Autocorrelation function of the . .
RR[Az] reflections R|z] In theory approaching a power law function.
R2{f} Power spectrum of the In theory and from scattering experiments the ensemble average approaches a

scatterers R(t)

power law function of frequency.

Our convention in iterations is to use subscripts on these parameters, where 0 rep-
resents the original measured value of the function and integers 1, 2, 3.... represent
subsequent iterations. Finally, it is assumed that we are working with discrete samples of
the functions, sampled properly well above the Nyquist rate such that e(t) is replaced by
discrete e(n), where the integer index 7 is related to t by the sampling rate and where n
(contained in symbol here) {1...N}.

Our problem can then be stated as follows: given e(n) and p(n), determine R(n)
such that:

e R(n)xp(n) —e(n);
e |[R(O)]* = a power law function of discrete frequency () in the expected value of the
ensemble average;

|R(n)| — a power law distribution of amplitudes, i.e., Burr distribution;

NR(I) — a Lomax distribution of the intensity;

RR[An] — the spatial autocorrelation function of R approaches a power law function

of lag.

Of these, we will particularly focus on the first two in the following sections.

3. Methods
The iterative approach proceeds as follows:

(i) Initial conditions: From the received echo R(n) , calculate the analytical envelope
e(n) and intensity Ip(n); optionally check the histogram of NR(I) within a region of
interest in tissue.

(i) Generate a random uncorrelated noise distribution Ny(7) from Gaussian or uniform
zero-mean white noise adjusted locally such that the mean is equal to B * ey(n) and
where B is a scale factor adjusted such that p(n) = Np(n) has approximately the same
energy as ¢(n). In two dimensions, Ny(x, 1) is formed as a discrete and whitened
version of R(x,z).

(iii) Filter Np(x,n) with a two dimensional, isotropic f? filter in the frequency domain
(or by convolution with the equivalent filter in the sampled time domain) to pro-
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duce Nj(x,n), which then would have an ensemble-averaged power law spectrum

approaching f20.

(iv) The magnitude of N (x, n) serves as the first iteration estimate of the local scattering
density and can be used as an initial image. The above steps can be repeated and aver-
aged, to obtain an ensemble average estimate of the inherent scattering distributions,
and, optionally, further iterations can be taken as follows.

(v) Calculate the new image lines as e1 (1) = p(t) * | Ny (n)|, and the new intensity I; (n).

(vi) Adjust the local amplitudes of Nj so that the convolution with the pulse yields a better
match to the original envelope: Np(n) = Nj(n)(eo(n)/e1(n)).

(vii) Optionally enforce any of the constraints on the intensity, autocorrelation, and power
spectra listed in Section 2.

(viii) Repeat steps (v)—(vii) until a convergence criteria is met.

In practice, white noise distributions are employed initially in step (ii) because they
are produced by common software routines and because a simple filter operation can then
produce the power law spectral distribution, as noted in step (iii). While Waag’s data [11,12]
indicated a power law exponent of 1.4 for liver scattered intensity vs. frequency (thus,
0.7 for amplitude vs. frequency), we could expect an upper bound of Rayleigh scattering
(exponents of 4 for intensity and 2 for amplitude vs. frequency). This could be an adjustable
input parameter based on any a priori or independently measured knowledge of the organ
and condition. For now, we implemented an intermediate value of 1 for the exponent of
amplitude, falling between the range of Waag and Rayleigh. Interestingly, an isotropic filter
of the form f! is similar to the “rho” filter in filtered backprojection algorithms [16]. The
conditioned implementation in the image domain is given by discrete samples of

o(r) = _etdmr? )

(e — 4mr2)*’

and we take € as 0.1 within a matrix size for convolution of 25 x 25 using Mathematica
Version 13 (Wolfram Research, Champaign, IL, USA). All B-scan and thru-scan images
are produced in native RF sampled space (typically larger than 300 A-lines by 6000 depth
samples) and then are reduced for printing at smaller scale by applying a 3 x 3 pixel median
filter and then outputting a .pdf version of the image in Mathematica. Our implementation
of the major steps (ii), (iii), and (iv) in Mathematica notebook implementation running on a
MacBook Air laptop will be completed in approximately 2 s per image.

4. Results

In this section, we examine standard B-scan envelope images and their reconstruction
using steps (i)—(iii) in Section 3 and produce an ensemble average of five independent
realizations of the random Gaussian noise scatterers used in the initial steps. First, a normal
rat liver on a standard diet is shown in Figure 1a from a study approved by the Institutional
Animal Care and Use Committee (IACUC) at the University of Texas at Dallas [18]. The
rat liver scan data were obtained using a Vevo 3100 scanner (FUJIFILM VisualSonics Inc.,
Toronto, ON, Canada) with a 15 MHz center frequency linear probe (MX201) [19] and
with the beamformed RF sampled at 50 MHz. This image and subsequent B-scan images
are displayed in the conventional sense, on a log amplitude scale of approximately 50 dB
dynamic range. The power law reconstruction, or “thru-scan”, is shown in Figure 1b. Note
the alternative tissue rendering, presenting a different type of texture, arguably representing
the anatomical hepatic structure comprising extensive fluid (hypoechoic) channels. Also
seen in Figure 1b is the emergence of small hyperechoic spots, which are usually linked to
the local maxima of the original envelope. The possible link of these hyperechoic foci to
scattering structures is explored further in Appendix A.
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(@) (b)

Figure 1. (a) Conventional B-scan at 15 MHz from a control group rat liver, in vivo. (b) Constrained

reconstruction from power law principles, which we call “thru-scan”, demonstrating a modified tex-
ture across the liver interior and the emergence of specific hyperechoic points, many of which appear
coincident with the local maxima of the original envelope. The images are displayed conventionally
using log-compressed 50 dB dynamic range grayscale.

Similarly, a B-scan from a subject on a steatotic diet [19] is shown in Figure 2a, demon-
strating the classic general hyperechoic pattern as compared to normals. The corresponding
“thru-scan” is shown in Figure 2b. Again, a pattern of possible fluid channels (hypoechoic
spaces) along with small hyperechoic foci is seen throughout the background scattering
amplitude. Compared with the normal liver’s constrained reconstruction (Figure 1b),
the steatotic liver in Figure 2b appears more hyperechoic, and the hyperechoic spots are
distributed throughout the liver. The speckle pattern within the liver in Figure 2a from the
conventional envelope has a mean/standard deviation ratio of 1.97, close to the theoretical
Rayleigh speckle ratio of 1.91 expected from ensembles of subresolved scatterers [1]. In
comparison, the constrained power law reconstruction of Figure 2b has a mean/standard
deviation ratio of 2.18, indicating a higher value of what Burkhardt termed as the “signal
to noise” ratio of speckle patterns [1]. Similar trends are seen in the processing of human
livers at 3 MHz, normal vs. steatotic, but these images are not available at this time for
distribution, only by request.

s

Figure 2. (a) Conventional B-scan at 15 MHz from a diet-induced steatotic mouse liver, in vivo. (b)
constrained reconstruction from power law principles, which we call “thru-scan”, demonstrating a
modified background and the emergence of specific hyperechoic points. The images are displayed
conventionally using log-compressed 50 dB dynamic range grayscale.

5. Discussion and Conclusions

A primary consideration of the reconstructions outlined in this framework is that the
resulting image of scatterers (the 2D distribution of the magnitude of R(x, z)) is not unique
in the sense of a mathematical exact solution to an inverse problem. However, it represents
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a constrained solution where the constraints are derived from the echo amplitudes and from
the theoretical power law distribution of scattering from vascularized tissues. Scattering
of ultrasound from soft vascularized tissue is not a white noise process; instead, the
nature of a multiscale or fractal distribution of internal structures leads to a power law
in scattering [13,20], and this is enforced by filtering in our processing. In practice, we
observe a stable rendering of reconstructions by averaging the results from five independent
realizations of the random multiplication step. However, the usefulness of this approach
outside of soft vascularized tissues, for example, tendons where strong anisotropy or
periodicity is present, remains to be evaluated.

Within this framework there is an expansive parameter space that can be explored
further. These implementation parameters include the probability distribution of the
random multiplication step (we utilized uniformly distributed white noise), the rho filter
(our implementation is shown in Appendix A), and any prefiltering steps applied to
the envelope prior to use in the algorithm. These parameter choices and trade-offs will
influence the final rendition of the reconstruction. However, due to resource constraints,
the detailed description of these effects is left for future research. Nonetheless, the examples
provided and related studies have shown that an alternative reconstruction process, based
on constraints from the received echo envelope and the power law framework, can produce
an image that is not dominated by the traditional granular speckle pattern, and may more
visibly portray some of the key structural components of tissue parenchyma.
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Appendix A

Here, we explored a 2D simulation of the pulse echo model using the hepatic vas-
culature model in a mouse liver as the dominant scattering structure within the liver
and comparing a high-resolution (high-frequency ultrasound) version with the thru-scan
version of a low-resolution (low-frequency ultrasound) version. Figure A1 shows (a) the
scattering model of the vasculature covering approximately 1.1 x 1.1 cm. This follows the
reconstruction of liver vasculature described by Zhang et al. [21] with a thickness projection
of 100 um. In (b) is the high frequency (approximately 50 microns wavelength and 50%
bandwidth pulse-echo envelope, vertical is the axial direction of the pulse echo scan, hori-
zontal is lateral); in (c) is the upper 20% of speckle amplitude (only the maximum quintile
amplitudes are shown) co-located over the vascular pattern; and in (d) are the results after
lower frequency (approximately 100 microns wavelength) convolution, followed by the
thru-scan processing, showing only the upper 20% of echo amplitude, the hyperechoic
regions. The high-frequency scan and the power law reconstruction from lower frequencies
both produce hyperechoic foci that coincide with strongly reflecting orientation of the
structures. When the cylindrical vessels are oriented horizontally, the lateral direction of
the scan maximizes the backscatter from that structure [13,22,23].

Furthermore, there is reasonable co-location between the hyperechoic peaks of the
high-resolution scan and the power law reconstruction from the lower-frequency, lower-
resolution scan. However, the lower-resolution scan evidently includes more regions where
a closely located parallel pair of horizontal cylinders were included in the larger pulse
at lower frequency, creating a stronger overlapping echo than in the case of the higher-
resolution scan. Overall, these simple simulations support the hypothesis that hyperechoic
points in thru-scans are plausibly related to strong scatterer orientations within the liver,
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similar to, but not identical to, all peaks that would be seen from a much-higher-frequency
scan of the same tissue.

(c) (d)

Figure Al. (a) Scattering structure of vasculature within a liver, represented simply as a binary

image with an image scale of approximately 1 cm square. (b) Echo pattern from a high-frequency
(wavelength approximately 50 microns) scan, simulated using 2D convolution of a pulse with the
binary structure of (a). (c) The top 20% of the amplitudes, the hyperechoic regions (only the top
quintile of amplitudes), are superimposed on the vascular tree showing the pattern of high scattering
from laterally oriented cylinders. (d) Top 20% of amplitudes of the thru-scan reconstruction from a
lower-frequency scan (wavelength approximately 100 microns). The thru-scan reconstruction has
numerous hyperechoic areas that correspond to structures highlighted at the 2x higher frequency
shown in (c). Vascular tree reproduced with permission [21].

It is instructive to examine the spatial Fourier transform of the process in order to
visualize how the spectra are modified during the steps outlined in Section 3. In these
examples, the discrete time Fourier transform operation is implemented through the
“ListFourierSequenceTransform” routine in Mathematica, and ContourPlot displays are
produced, utilizing the log-compressed magnitude and a color scale where dark to light
hues represent the minimum to maximum values. The spatial Fourier transform of the
binary scattering object of Figure Al representing the fractal branching vasculature is
shown in Figure A2a. In this and following plots, the half plane of the transform space
(k-space) is shown, the horizontal scale is the transform of the horizontal axis (—7/2 to
1t/2), and the vertical scale represents the transform of the vertical axis of Figure Ala (0
to 7t/2) in discrete frequency units (the upper half of k-space). Shown in Figure A2a is
the spatial transform magnitude of the binary scattering object, which is maximum near
the low-frequency origin (0,0 is located at the center of the bottom axis), and generally
diminishes as a function of increasing spatial frequency, as would be expected for the
Fourier transform of a binary fractal object [20]. Shown in Figure A2b is the transform
of the low-frequency pulse described in the previous section. After convolution of the
low-frequency pulse with the scattering vasculature, the resulting spectrum of the RF
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“echo” is shown in Figure A2c. Since convolution in the spatial domain is a multiplication
in the transform domain, the support of the RF “echo” has been limited by the pulse, so
most of the information contained in the higher spatial frequencies is absent. However,
after multiplication of the envelope by random white noise and then “rho” filtering of the
scatterers (steps (ii) and (iii) of Section 3), the resulting set of scatterers has a transform,
shown in Figure A2d, that more closely resembles the pattern of the original in Figure A2a.

a ] r]

(c) (d)
Figure A2. Representation of the half planes of the transform (k-space). The horizontal scale is the
transform of the horizontal axes (—7t/2 to 7/2), and the vertical scale represents the transform of
the vertical axis of Figure Ala (0 to 71/2) in discrete frequency units. Zero frequency is located in
the middle of the lower horizontal axis in each case, and the color scale for magnitudes is dark to
white (the maximum normalized value is shown in white). (a) Magnitude of the spatial Fourier
transform of the binary scattering pattern of Figure Ala. (b) Support of the pulse used as the
model of the ultrasound pulse echo convolution. (c) Product of (a,b), representing the transform of
the RF echo produced by convolution. Comparing (a—c), the loss of information across k-space is
significant and unrecoverable by traditional means. (d) Transform after the power law constrained
reconstruction. This solution is not exact or unique but conforms to the most important constraints,
the echo amplitude, and the power law nature of the scattering structures.

Thus, the processing forms an ersatz solution which approximately conforms to the
original envelope and to the general power law behaviors of multiscale scattering structures
in tissue. We note that these steps are illustrative of the process but do not represent a
complete 3D scattering simulation, which would include scattering theory, including a k*
weighting of smaller structures (the long wavelength or Rayleigh scattering regime) [20].

Another important implementation detail is the choice of rho filter (Equation (1)
or alternative power law filter for use in the algorithm). Key issues include the spatial
sampling rate for use of Equation (1) and avoiding discontinuities and Gibbs phenomenon
in the filter response. Our implementation is shown in Figure A3; in (a) is the rho filter as a
function of position along the transverse axis (the filter is symmetric in 2D), and in (b) is the
magnitude of the discrete time Fourier transform showing the half plane of k-space. Note
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that this is designed to have zero amplitude at zero frequency and to be increasing from
the origin, but then flattens to condition the high frequencies and the periodic replication
in discrete frequency space. Final image reconstructions will be affected by the spatial and
transform properties; however, a detailed exposition of these is left for future research.

(a) (b)

Figure A3. (a) Axis symmetric rho filter along the transverse axis. The filter is implemented as a 2D
convolution kernel of 25 x 25 pixels. (b) Magnitude of the discrete time Fourier transform of this
2D filter, showing the half plane of k-space. This filter is designed to enforce a power law behavior
on the scatterers and have zero amplitude at zero frequency. To condition the high frequencies
and smooth the periodic replication in discrete frequency space, the function flattens at the highest
spatial frequencies.
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Figure 1

(a) Conventional B-scan at 15 MHz from a control group rat liver, in vivo. (b) Constrained reconstruction
from power law principles, which we call “thru-scan”, demonstrating a modified texture across the liver
interior and the emergence of specific hyperechoic points, many of which appear coincident with the local
maxima of the original envelope. The images are displayed conventionally using log-compressed 50 dB
dynamic range grayscale.

Figure 2

(a) Conventional B-scan at 15 MHz from a diet-induced steatotic mouse liver, in vivo. (b) constrained
reconstruction from power law principles, which we call “thru-scan”, demonstrating a modified
background and the emergence of specific hyperechoic points. The images are displayed conventionally
using log-compressed 50 dB dynamic range grayscale.
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