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Abstract— H-scan is a promising quantitative ultrasound 
method that uses a red/blue color display to illustrate the 
frequency of backscattered signal, representative of tissue 
properties. It is based on matched filters of different 
frequencies, but has a noisy pattern due to the broad spectral 
distribution of ultrasound. We suggest an improved adaptive 
frequency estimator reducing the noise in homogeneous regions 
but maintaining sharpness at boundaries.  

The proposed frequency estimator utilizes 2D 
autocorrelation with a matched filter. This estimator provides 
an a priori estimate of the spatial distribution of frequencies 
using a matched-filter-based frequency estimation. The 
heterogeneity of the estimated frequencies is then used to define 
a 2D weighting function for a second frequency estimation stage. 
Autocorrelation, borrowing the concept of Loupas’s blood 
velocity measure, is then used to measure the axial frequency 
components with a 2D spatial kernel. We use a weighted 
summation in the autocorrelation based on the spatial frequency 
distribution within the 2D kernel. The proposed frequency 
estimator was compared with currently available frequency 
estimators, including short time Fourier transform, H-scan 
matched filter, and autocorrelation. We examined the 
performance of the frequency estimators using Field II 
simulations and in human subjects with hepatic steatosis.  

Field II simulation results showed that our adaptive 
estimator can reduce the noisy texture pattern in H-scan for 
homogeneous regions while maintaining delineation of 
boundary interfaces, whereas other estimators are only capable 
of reduce the noise or maintaining boundary delineation. We 
applied our adaptive estimator to in vivo human liver, 
demonstrating improved visualization of H-scan images while 
reducing the noisy texture pattern and improving 
differentiation of steatotic liver from gallbladder/skin layer. 

Keywords—H-scan, Frequency estimator, Tissue 
characterization, Quantitative ultrasound 

I. INTRODUCTION 
H-scan has shown promise in tissue characterization, 

enabling identification of a variety of diseases in animal 
models and human subjects by showing differentiation 
between diseases and disease progression [2-8].  

The original H-scan method evaluates the output of a pair 
of matched filters, one each at a high and low frequency [9]. 
Recently, a fine-tuned H-scan approach has been proposed 
using 256 matched filters to obtain a greater spectral 
composition, enabling improved illustration of tissue 
signatures [1]. Because ultrasound echoes are composed of a 

broad range of frequencies, displaying H-scan as a map of the 
local frequency results in a noisy texture pattern. Thus, H-scan 
is shown on a binarized red/blue color map so as to identify 
gross shifts in tissue properties rather than an exact frequency 
shift. In this study, we focus on enhancing the accuracy of 
frequency estimation to improve H-scan tissue 
characterization. 

Other methodologies for localized frequency estimation 
include the Short-time Fourier transform (STFT), matched 
filter analysis (e.g., H-scan [1]), and axial autocorrelation 
(adapted from Loupas’s 2D autocorrelator for blood flow 
[10]). For the STFT and 2D autocorrelator, setting an 
appropriate window size for the estimation kernel is critical, 
whereas the matched filter does not require a window. This 
noisy texture pattern from these estimators can be suppressed 
by low-pass filtering or setting a larger window for the 
STFT/autocorrelator, although there is a trade-off between 
estimator variance and resolution. 

Here we propose an adaptive frequency estimator that 
takes advantage of the resolution of the matched filter 
approach with the lower variance of the 2D autocorrelation 
approach. We evaluated the performance of the estimator 
using Field II simulation and an in vivo study. The 
performance of proposed method was compared with the 
STFT, H-scan matched filter, and 2D autocorrelator.  

II. METHODS 

A. Adaptive Frequency Estimator 
The proposed adaptive frequency estimator is a modified 

2D autocorrelator that utilizes a matched filter to search 
homogeneity/heterogeneity of the frequency distribution. The 
adaptive frequency estimator calculates the frequency (𝑓" ) 
from the axial/temporal autocorrelation of a discrete signal, 
𝑅(𝜏) = 𝐴(𝜏)𝑒!̂#(%) with discrete time index 𝜏. The frequency 
(𝑓") can be estimated using the correlation at lag 1 (𝜏 = 1) by: 

𝑓" = '
()
𝜙(1).                                    (1) 

Let ℎ(𝑛) ≡ 𝐼𝑄(𝑛) ∙ 𝐼𝑄∗(𝑛 − 1) for a sample index 𝑛, and IQ 
represents the in phase and quadrature data combined as 
complex numbers. Here, we use the autocorrelation at lag 1 
(𝜏 = 1) in a weighted summation: 

𝑅(1) = 3 𝑊(𝑛) ∙ [𝐼𝑄(𝑛) ∙ 𝐼𝑄∗(𝑛 − 1)]
+∈-./

 

 			= ∑ 𝑊(𝑛) ∙ ℎ(𝑛)+∈-./                                      (2) 
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where  𝑊(𝑛)  is the weight for each ℎ(𝑛)  in a region of 
interest (ROI). For the traditional autocorrelation,  𝑊(𝑛) = 1 
for all 𝑛 . Here, we adaptively sum ℎ(𝑛)  based on the 
frequency distribution within a box ROI with 𝑊(𝑛)  = 2D 
circularly Gaussian distribution with 𝜎(𝑛) where 𝜎(𝑛) is the 
standard deviation of the Gaussian distribution.  

 The matched filter in H-scan [1] is first used to estimate 
the frequency distribution (𝑓"0123456). Next, the homogeneity 
within an ROIn centered at sample index 𝑛 is defined as the 
averaged difference between 𝑓"0123456(𝑛)  and 𝑓"0123456(𝑖) , 
where 𝑖 ∈ ROI+ . The homogeneity is linearly mapped to 𝜎, 
the standard deviation of the Gaussian distribution, defining 
𝑊(𝑛); For lower homogeneity, we assigned low 𝜎(𝑛)  for 
W(n); whereas we assigned higher 𝜎(𝑛) for a homogeneous 
area. The frequency from the adaptive estimator is borrowed 
from the concept of Loupas’s blood flow velocity estimator 
[10], which estimates the ensemble directional frequency in 
the axial direction: 

𝑓" = '
()
tan7' B∑ [/:(;(+)∙4(+))]!∈#$%

∑ [-5(;(+)∙4(+))]!∈#$%
C.              (3) 

TABLE I.  FIELD II SIMULATION PROPERTIES 

Property Value 

Transmit Frequency 3.15 MHz 

Attenuation Coefficient 0 dB/MHz/cm 

Cycles 2 

Sampling Frequency 100 MHz 

# Elements 129 Elements 

Kerf 24 𝜇m 

Pitch 513 𝜇m 

 

B. Field II Simulation 
We performed Field II simulations [11] to evaluate our 

adaptive frequency estimator. The Field II simulation 
parameters are summarized in Table 1. RF data with 0 
dB/MHz/cm attenuation were simulated and then processed to 
generate artificial frequency shift by: 

𝐼𝑄(𝑡) = 𝑅𝐹	(𝑡) ∙ exp	(−𝚥̂2𝜋𝑓>4?@2𝑡).             (4) 

where 𝑓>4?@2  is an artificial frequency shift. The simulated 
phantom is visualized in Fig. 1.  

C. In vivo Study 
RF data from a patient with a stage 3 steatotic liver from a 

previous Stanford IRB approved protocol with informed 
consent were obtained. The stage 3 steatosis case is metabolic 
dysfunction-associated fatty liver disease (MAFLD). The 
patient liver pathology was confirmed by magnetic resonance 
imaging-derived proton density fact fraction (MRI-PDFF) 
measures.  

D. Frequency Estimator Validation  
The performance of our proposed adaptive frequency 

estimator was compared with currently available frequency 
estimators, including short time Fourier transform (STFT), the 
matched filter based estimator from H-scan [1], and 2D 
autocorrelation without adaptive weighting.  

III. RESULTS 

A. Field II Simulation 
Field II simulation results are displayed in Fig. 2: from 

left to right, the ground truth, STFT, matched filter, median 
filtered STFT, median filtered matched filter, 2D 
autocorrelation, and the proposed estimator. The same 2D 
kernel size was applied to the median filter, autocorrelation, 
and the proposed method. ROI 1 includes the entire image, 

 
Fig. 1. Validation phantom simulated by Field II and artificial frequency 
shift.  

 

 
Fig. 2. Simulated phantom results. *GT: ground truth, STFT: short time Fourier transform, Median STFT: median filtered STFT, Median MF: median 
filtered matched filter.  
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and ROI 2 only includes the area denoted by the black box. 
The STFT and matched filter showed sharper boundary area 
transitions but a salt-and-pepper noise texture. The median-
filtered STFT, median-filtered matched filter, and the 2D 
autocorrelator results showed reduced noise at the expense of 
boundary sharpness. The proposed approach shows low 
estimator variance in the homogeneous area and sharper 
boundary delineation.  

B. In vivo Study 
Fig 3 shows an example of a stage 3 steatotic human liver: 

(a) B-mode, (b) matched filter H-scan [1] with jet colormap, 
(c) H-scan matched filter [1] with H-scan binarized colormap, 
and (d) H-scan with the proposed frequency estimator jet 
colormap. Applying the jet colormap to the H-scan matched 
filter frequency estimator results (Fig. 3 (b)) in noisy 
frequency measures. While the binarized colormap enabled 
H-scan to better visualize progression of diseases, such as 
hepatic steatosis [8] and pancreatic cancer metastasis in liver 
[12], quantification of disease progression is assessed by the 
ratio of red to blue. The non-binarized maps allow 
comparison of the magnitude of the frequency shift, but the 
noisy texture pattern makes this estimation difficult. As 
shown in Fig. 3 (d), our proposed frequency estimator 
reduces the noise pattern while avoiding loss in resolution of 
the H-scan image, without requiring a binarized colormap for 
H-scan. Thus, it shows better visual differentiation between 
tissues, such as differentiation of steatotic liver from 
gallbladder/skin layer while simultaneously providing a 
quantitative value for tissue characterization.  

As shown in Fig. 3 (c), H-scan typically is illustrated as 
relatively larger and smaller scatterers, which is an 
ambiguous measure without a quantitative value. Our results 
in Fig. 3 (d) show a clear quantitative value of frequency 
measures.  
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Fig. 3. In vivo frequency estimation results applied to H-scan matched filter analysis[1] and our proposed method for a steatotic liver. (a) B-mode (b) H-
scan matched filter analysis [1] with jet color map (c) H-scan matched filter analysis [1] with H-scan binarized colormap (d) the proposed frequency 
estimator with jet colormap.   
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