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Abstract: The use of multipoles, otherwise called spherical wavefunctions, has been ex-
plored for acoustic fields that can be omnidirectional, for example, in scattering theory.
Less developed is the use of spherical harmonic multipoles for the construction of directed
beams, such as the Gaussian unfocused beampattern, which is an important reference beam
in many practical applications. We develop the straightforward construction of a Gaussian
unfocused beam using the special properties of the sum of spherical harmonics; these
include the use of an imaginary offset in directing the forward propagation to the desired
beampattern. Examples are given for narrowband and broadband pulse propagation in
the ultrasound MHz range, with comparisons against a classical acoustics formulation of
the Gaussian beam. The use of spherical harmonics forms an alternative framework for
devising beampatterns, with apodization and concentration issues of the beam linked to an
array of a limited number of discrete multipoles at the source.
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1. Introduction
The Gaussian beam is an important practical and theoretical benchmark in acoustics,

optics, and electromagnetic wave propagations [1]. The Gaussian function itself is special as
an eigenfunction of the Fourier transform, jointly having the absolute minimum spread (or
uncertainty) in both domains, with no sidelobes [2,3]. A number of papers by Breazeale and
associates describe straightforward implementation approaches with analytic expressions
for the beampatterns produced by an acoustic piston source with Gaussian apodization [4,5].
There are several reasons to consider the usefulness of multipole expansions that can be
configured to produce a useful Gaussian beam in acoustics and optics. It has been shown
that a range of general beampatterns and scattering patterns are well described by the
superposition of spherical Bessel and spherical harmonic functions [6–8]. The particular
case of the Gaussian beampattern is treated in Section 4.10.2 of the paper by Alonso and
Moore [9] with multipole expansions. It also includes the use of an imaginary offset of
the source locations, a scheme originally suggested by Kravtsov [10] and Deschamps [11]
as a means of creating a more directional wave distribution. The imaginary source offset
has also been applied to scalar Gaussian configurations [12], reflections, and the method
of images that produce Gaussian electromagnetic beams [13,14]. More recently, the mul-
tipole framework for beampatterns was reconsidered in light of the special interpolation
and localization properties of sums of spherical Bessel functions and spherical harmonic
functions that form the free-space solution to the Helmholtz wave equation [15]. This
framework enables the recasting of important beamforming topics, including apodization,
focusing, and the axial and lateral intensity profiles in terms of the special properties of
the spherical functions. However, it is not obvious that the sums of the spherical functions
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can be formulated into a classical Gaussian beampattern. We demonstrate that this can
be realized in several ways, based on the unique properties of the spherical functions.
Simulations were conducted using a 5 MHz ultrasound beam as an example.

2. Theory
The free-space solution to the Helmholtz equation for monochromatic waves in spher-

ical coordinates is configured within a source cone of angle θs, as depicted in Figure 1.
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Figure 1. Definition of the spherical coordinate system (r, θ, φ) along with Cartesian coordinates (x, z).
The active sources are, in general, located on the upper surface of the cone of angle θs; however, for
the conventional unfocused Gaussian beam, we examine the case where this is coincident with the x
axis to form a flat planar source.

The solution, limited to radially symmetric beampatterns and functions that are finite
at r = 0, is given by

A(r, θ) =
N

∑
n=0

an jn(kr)Y0
n(θ), (1)

where r, θ, and φ are spherical coordinates, A is the scalar wave in free space with wavenum-
ber k, an denotes the weights, jn denotes the spherical Bessel functions, and Y0

n denotes the
spherical harmonic functions with rotational symmetry [16]. Some of the special properties
of these functions and their sums are as follows:
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where n is an integer, and f (x) is a well-behaved bandlimited function with discrete
samples f (n). Generally, these relationships are compatible with the classical series of
functions, such as Neumann’s expansion, the Fourier–Bessel series [16,17], and others
found by Stevenson [18], Watson [19], and Erdélyi et al. [20]. These relationships can also be
considered, from the point of view of signal processing, as interpolation functions analogous
to the use of the “sinc” function (which is identical to the j0 function) for the interpolation of
sampled signals. For example, Equation (5) can be interpreted as a reconstruction of some
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well-behaved continuous function f (x) from discrete samples f (n). The approximation
signs are used in Equations (3)–(5) due to the small oscillations or ripples associated with
band-limited interpolation. Furthermore, and importantly, Equation (1) can be considered
a design specification, for if we generate a particular spherical harmonic pattern as an
active source at the surface of the cone of Figure 1, the resulting free-field solution will be
constructed in the interior. For flat pistons, theta at the source plane is simply π/2.

Separately, the solution for a Gaussian beampattern from a specified piston source with
Gaussian apodization was derived by Huang and Breazeale [5], valid within a binomial
approximation in cylindrical coordinates as

GB[x, z] =
A0 exp[Ikz](

σ2 + 2Iz
k

) exp

 −x2(
σ2 + 2Iz

k

)
, (6)

where σ is the beamwidth at the source, I is the imaginary unit, and A0 is an amplitude term.
Thus, a Gaussian piston source at the origin produces a Gaussian-shaped beampattern

that expands gradually in a lateral direction with increasing range, as expected from general
considerations of Fourier acoustics [21].

3. Results
Assuming we have a circular piston source with specified excitation or source function

at θ = π/2, we find that there are several ways of configuring the weights and spherical
Bessel functions so as to produce a close approximation to the Breazeale Gaussian beam.
First, by identifying f (x) in Equation (5) as a Gaussian function and f (n) as discrete
samples, we make use of the interpolation property along the radial direction. We also
introduce a rotating phase on In to compensate for the modulo 4 phase relations of the
spherical Bessel functions with increasing n [16], and then we can construct

BY[x, z] =
120

∑
n=0

In(n + 1/2)
1/2 exp

[
−n2

(2 · 402)

]
· jn

[(
2π

0.3

)(√
x2 + z2

)]
· Y0

n [θ, 0], (7)

where θ = arctan[x/z]. The scale factor on the Gaussian weights and the spherical Bessel
function wavenumber k are set assuming a 5 MHz beam in water with λ = 0.3 mm, a
source width, or standard deviation of approximately 2 mm. The resulting beampattern in
this and subsequent cases is calculated using Mathematica (version 13, Wolfram Research,
Champaign, IL, USA) and is shown in Figure 2, top. With these practical 5 MHz param-
eters, the beampattern exhibits only a small amount of lateral spreading at 40 mm range
(far right).

The second plot, Figure 2, bottom, removes the In factor but includes the imaginary
offset z → z + Iq, where q is set to 1/3. In this case, the equation can be given as

BY4[x, z] =
120/4

∑
n=0

(4n + 1/2)
1/2 exp

[
−(4n)2

(2 · 402)

]
· j4n

(2π

0.3

)√
x2 +

(
z +

1
3

)2
 · Y0

4n[θ, 0], (8)

Also, for BY4, the summation takes place only for modulo 4 (i.e., 0, 4, 8. . .120) be-
cause this matches the coherent modulo 4 behavior of the spherical functions. A lateral
cross section at 30 mm range is shown in Figure 3, representing the similarities between
the Breazeale Gaussian and the spherical harmonic solutions. We note that despite the
imaginary components in the formulas of GB, BY, and BY4, all three formulations have real
(effectively zero imaginary) amplitudes at the source, z = 0.
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Figure 2. Amplitude plots of 5 MHz fields synthesized from a circularly symmetric source on the left,
radiating into free space out to 40 mm on the extreme right, utilizing sums up to integer order 120.
The top uses all orders from Equation (7) with a Gaussian weighting function. The bottom uses only
every fourth order, with an imaginary offset q = 1/3 on the z-coordinate system.
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Figure 3. The lateral beamplots for the 5 MHz case of Figure 2, top, and for the Breazeale Gaussian
beam (Equation (6) in blue and the BY beam, Equation (7), in yellow, at a 30 mm range (left) and at
the source (right), assuming a flat piston source at θ = π/2). These are similar functions but are not
identical due to differences in formulation: paraxial approximation for the Breazeale Gaussian vs.
limited multipoles for the BY beam. The vertical axis is in arbitrary amplitude units; the horizontal
axis is in mm.

Turning to broadband pulse examples, we repeat the case of Equation (8) and Figure 2,
bottom, with a more broadband pulse centered between 1 and 4 MHz. Following the general
definition of a broadband signal from its Fourier transform superposition of different
frequencies, we write

BY4B[x, z, t] =
∞∫

0

A(ω) exp[Iωt]BY4
[

x, z,
ω

c

]
dω. (9)

A specific example of this type was calculated using numerical integration (NIntegrate)
in Mathematica with

A(ω) = ω2 exp
[
−ω2

2π4

]
. (10)

This spectral function was chosen for two reasons: it has a practical bandpass shape,
and as we show with Parker and Alonso [22], closed-form analytical solutions are available
and are compact for the integrand containing products of this type with Bessel functions.
The broadband propagation is shown as an intensity plot as a function of time (0–40 µs) in
Video S1, and the real part of the pulse is shown in Video S2.

Finally, for cases where the center of the source is reserved for other sensing devices
or for cases where the center of the overlying tissue is protected, the convergence of the
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spherical harmonics is demonstrated from a ring-shaped source. In this case, a Gaussian
set of weights an are specified by a Gaussian offset, where n2 in Equation (7) is replaced
with (n − 50)2, effectively pushing the peak source strength outward from the center. A
broadband spectrum centered around 5 MHz is employed, and the convergence of the
waveforms toward the axial centerline can be seen in Video S2.

This example demonstrates that a range of customized beampatterns can be con-
structed using the framework based on the interpolation and localization properties of the
sum of the harmonic functions.

4. Discussion and Conclusions
The reconsideration of the classical spherical harmonics solution, along with the

recognition of some of the unique properties of these functions, enables the recasting of
classical concepts such as apodization and focusing in the design of beampatterns. In
the spherical harmonics frame of reference, the specification of the sum of the harmonics
with varying weights across a cone or piston source is capable of generating a variety of
beams that can be concentrated along the central axis. This includes the classical Gaussian
beampattern, which is a useful benchmark function both in experimental work and in
theory. We note that the Breazeale Gaussian beampattern from a continuous analytic source
function was experimentally realized with a piezoelectric source excited with a similarly
shaped voltage. However, the summation formulas of Equations (7) and (8) are compatible
with a discrete set of multipoles, as in an array configuration. Thus, these formulations
provide an alternative conceptualization and source configuration for the production of
Gaussian and other beams. Limitations of this study include the assumption of the high-
resolution reproduction of spherical Bessel function waves across the source plane; in
reality, the source array elements will have a finite extent, and so the specific measurements
of any array configuration would need to be incorporated into a more realistic simulation
of the wave propagation into free space. Further research is required to optimize the spatial
configuration of source elements and spectral bandwidth for particular uses.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/acoustics7010014/s1; Video S1. The broadband version of BY4,
which employs a practical bandpass shape with 50% bandwidth from approximately 1 to 4 MHz. The
bandpass shape is of the form (2π f )2exp

[
−(2π f )2/

(
2π4)], which has favorable properties when

combined with Bessel functions in a Fourier transform. The simulation covers 40 µs of propagation
over 32 mm of range. The axial range shown is ±5 mm from the center line, and the speed is
1.5 mm/µs. (a) The intensity of the complex propagating waveform. This is a “.gif” (15 KB) filetype.
(b) The real part of the complex waveform, rendered in linear gray scale, with the maximum value
saturated white. This is “.gif” (41 KB) filetype; Video S2. A ring-shaped source created by centering
Gaussian apodized elements around j50 and using the broadband solution. The axial localization
property of the superposition of spherical Bessel functions creates a merging zone at an axial distance;
no other focusing is employed. A practical bandpass shape centered around 5 MHz. The simulation
covers 40 µs of propagation over 40 mm of range. The axial range shown is ±5 mm from the center
line, and the speed is 1.5 mm/µs. (a) The intensity of the complex propagating waveform. This is a
“.gif” (37 KB) filetype. (b) The real part of the complex waveform, rendered in linear gray scale, with
the maximum value saturated white. This is a “.gif” (105 KB) filetype.
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