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A Novel Volumetric Feature Extraction Technique
with Applications to MR Images

Edward A. Ashton,* Kevin J. Parker,Fellow, IEEE, Michel J. Berg, and Chang Wen Chen

Abstract—A semiautomated feature extraction algorithm is
presented for the extraction and measurement of the hippocam-
pus from volumetric magnetic resonance imaging (MRI) head
scans. This algorithm makes use of elements of both deformable
model and region growing techniques and allows incorporation
of a priori operator knowledge of hippocampal location and
shape. Experimental results indicate that the algorithm is able to
estimate hippocampal volume and asymmetry with an accuracy
which approaches that of laborious manual outlining techniques.

Index Terms—Deformable model, feature extraction, MRI,
three-dimensional.

I. INTRODUCTION

M ANY anatomical feature extraction algorithms have
been proposed recently which make use of either the

two-dimensional (2-D) active contour model of Kasset al.
(snakes) [1]–[5] or one of several three-dimensional (3-D)
extensions, which are frequently referred to as eitherblobs,
balloons, [6]–[9] or deformable templates[10], [11]. These
approaches have a common origin, and as a result they share
certain common difficulties. The 2-D techniques frequently
have difficulty tracking between slices, particularly if the major
axis of the desired structure is not perpendicular to the imaging
plane. Additionally, they are generally based on edge detection
and are prone to locking onto spurious edges, requiring manual
adjustment. One primary difficulty of these 3-D algorithms
can be understood intuitively. A “snake” is a string of pixels,
with each pixel interacting directly with its neighbors, while
a deformable surface model requires a mesh of voxels, with a
corresponding increase in number of elements and number of
interactions of each element.

Clearly, it is possible for the computational complexity of
this model to increase very rapidly. Finite element techniques,
therefore, are used to reduce computation time. If large ele-
ments are used, details of the structure being extracted are lost.
If small elements are used, computation time may extend into
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hours or days. The model described in this paper requires no
such tradeoff between resolution and computational intensity.
More importantly, snake-based techniques do not incorporate
any a priori model of the expected shape and size of the
structure of interest. Therefore, they may not be useful for the
identification of structures whose boundaries may be indistinct,
such as the hippocampus, a gray-matter structure of the human
brain, which is adjacent to other gray matter structures and has
no distinguishable boundary along a significant portion of its
surface. Our algorithm begins with a simply initialized shape
model, composed of the superposition of multiple appropri-
ately placed and shaped ovoids. Thisa priori modeling allows
our algorithm to fill in areas of the surface of the structure of
interest which have no apparent boundary in the data.

We propose a deformable model technique which incorpo-
rates some of the same goals as the region growing technique,
which has been presented by Taylor and Barrett [12]. The
Taylor algorithm provides competitive region growth from
one or more seeds through comparison of border voxels to
the first-order statistics of voxels which have already been
absorbed. Our algorithm combines this concept with the idea
of the deformable model. We begin with one or more seed
voxels. Each of these seeds will, if left unconstrained, expand
into an ovoid with a predetermined volume and preset ratios
between radii in the , , and directions. Constraining forces
are elastic surface tension, deviation from the expected surface
normal, and resistance from surrounding tissue. The expansive
force is provided by internal pressure, which is gradually
increased until either the expected volume is reached or no
further expansion is possible due to constraining tissue.

One important application of this algorithm is in the quick
and accuratein vivo volume measurement of the hippocampus
and amygdala. Jacket al. and others [13], [14] have shown
that such a measurement may be an important aid in the
diagnosis of intractable temporal lobe epilepsy. Jacket al.
[15] and Kesslaket al. [16] have also shown that this data may
predict dementia of the Alzheimer type. Current techniques for
obtaining these volumes include manual tracing, thresholding,
and random marking. These processes require extensive human
interaction, and are time consuming and subject to variation.

In this paper, our algorithm is tested for robustness and
stability under a wide range of conditions. The results of
our algorithm’s identification of a phantom structure within a
series of simulated magnetic resonance imaging (MRI) scans
are tested against known correct results. We also compare our
algorithm’s performance in identifying the hippocampus on an
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actual series of MRI brain scans against a physician’s manual
identifications.

II. M ODELING

The following deformable model algorithm is designed to
operate on data which has previously been segmented by tissue
type. An algorithm to provide such a segmentation for MR im-
ages has been presented previously in [2]. An algorithm for the
segmentation of ultrasound images has been presented in [17].

As has been implied in Section I, this deformable model al-
gorithm is essentially a region-growing technique, with added
morphological constraints which come into play only under
certain conditions. The physical system modeled is an ex-
panding bubble with a preset geometry. The final volume of
the model is limited by the ratio between internal pressure and
elastic surface tension. Local surface morphology is controlled
by the constraining force of surrounding tissue and by a
penalty for deviation from the expected surface normal.

More precisely, the expansive force at a given boundary
voxel is

(1)

where is internal pressure, given by

(2)

in which is the universal gas constant, is the current
volume of the model, is temperature, held constant at
and is set at the value necessary to reach force equilibrium at
the expected final volume and surface area—i.e., the volume
and surface area which the model would reach if it were
allowed to grow unconstrained. This volume and area are
calculated based upon ana priori shape model, the derivation
of which will be discussed in the Section III.in (1) is surface
tension, which is proportional to the total surface area of the
model. is deviation from expected surface normal, given by

(3)

where is a weighting constant, is the surface normal
expected given a purely ovoid expansion, andis the actual
local surface normal. Finally, is the constraining force of the
surrounding tissue. If this force is nonzero and is overcome,
the stiffness value associated with that voxel is distributed
among all neighboring voxels with nonzero stiffness. This
allows tissue to “give” a few voxels to the expanding volume
before stiffening and holding, which provides morphological
smoothing in three dimensions. In all experiments described
in this work, and in most cases, the evaluation ofwill be a
binary decision. If the border voxel is of the same tissue type as
the structure of interest, , otherwise will be very large.
In other words, the model is forbidden to expand into foreign
tissue. However, if morphological smoothing is desired or the
segmentation is not trusted, may be evaluated as a linear
or hyperbolic function of the absolute difference between the
tissue type of interest and the type of the border voxel.

It is the final energy term, , which gives the model much
of its flexibility. It is this term, which has a function similar
to that of the term in the originalsnakeformulation [1],

Fig. 1. (a) Sphere grown from a single seed voxel in the presence of a
constraining point withcN = 0. The model grows around the point and
absorbs it. (b)cN = 25. A deep, steep-sided crater is created by the
constraining point. (c)cN = 50. A wider crater is created. (d)cN = 75.
There is very little flexibility in the surface of the model.

which allows us to do without the finite element techniques
which are most often employed for 3-D modeling. It allows
fine control over the final morphological characteristics of the
model, while enforcing the smoothness in three dimensions
that we expect to see in biological structures. Its functioning
is demonstrated in Fig. 1. In this experiment an ovoid is grown
from a single seed voxel in the presence of a small, hard point
of constraining tissue, while the relative weighting of the
term is allowed to vary. Note that the effect is similar to what
one would expect to observe in a physical system if the model
were given stiffer or softer skin.

A flowchart for the operation of this algorithm is
given in Fig. 2.

III. FEATURE EXTRACTION

The extraction of structures from volume data sets using this
model is fairly straightforward. One or more seeds are planted
by an operator at or near the center of the structure which
is to be extracted. These seeds then grow until they either
encounter tissue walls or reach their growth potential, and form
smooth boundaries where none are apparent in the data. The
most interesting problem in this case concerns initialization.
How many seeds are planted, and where, and how is the
growth potential of each seed determined? The answers to
these questions will depend upon the geometry of the structure
of interest, which will determine the complexity of the required
a priori shape model. An ovoid or near-ovoid shape, such as
the interior of a heart chamber, may be sufficiently modeled
by a single seed. A structure with a complex shape in only
one viewing plane will require a string of seeds in that plane
with appropriately adjusted growth potentials. A structure with
a complex shape in two or more viewing planes, such as the
hippocampus, will require a string of seeds which may be
entirely nonplanar.

One possible way to obtain such an initial model is to make
use of data from an anatomic atlas, as is done for 2-D models
in [18], and for 3-D models in [11]. However, in this case
registration is a nontrivial problem. Additionally, abnormal



ASHTON et al.: NOVEL VOLUMETRIC FEATURE EXTRACTION TECHNIQUE 367

Fig. 2. Flowchart for feature extraction using the bubble algorithm.

cases (which are, after all, the ones that are of the most interest)
may vary widely from the averages found in an atlas, causing
errors in the extraction process. A simpler and potentially more
accurate solution is to provide an initial contour on one slice,
as in [2]. The algorithm then:

• identifies the long axis of this contour;
• lays a line of seeds along its center line;
• calculates the growth potential of each seed from the

width of the initial contour at that point.

If out of plane curvature is required, a single line curve in an
orthogonal plane may be provided. Fig. 3(a) shows an ovoid
grown in free space from a single seed voxel. Fig. 3(b) shows
a single plane contour such as is described in the second case
above. The resultant solid model is given in Fig. 3(c). An
orthogonal plane curve, as described in Case 3, is given in
Fig. 3(d). The solid model which results when this curve is
combined with the initialization contour in Fig. 3(b) is shown
in Fig. 3(e).

There are a number of concerns which are relevant to this
approach. First is that the “center slice” of the feature which
is to be extracted may not be precisely known. Because this
model assumes a certain amount of symmetry, an error in
centering may produce an error in the result. This error will
be quantified in Section IV. Furthermore, the assumption of
symmetry in two or three dimensions in Case 2 or Case
1, respectively, makes it necessary to carefully choose the
optimal initialization plane. This plane should be oriented
such that the symmetry of the model most accurately reflects

Fig. 3. (a) Solid model resulting from a single unconstrained seed voxel.
(b) Initialization contour. Seed voxels are laid along the center line of the
contour. (c) Solid model resulting from the unconstrained growth of seeds
resulting from (b). (d)Z-plane curve, which adjusts the placement of the
seeds resulting from (b). (e) Solid model resulting from the combination of
the initialization curve shown in (b) with thez-plane curve shown in (d).

the symmetry of the feature in question. If the feature is a
reasonably symmetrical one, such as a chamber of the heart,
this may not be difficult. However, in the case of features
which are very irregularly shaped, such as the hippocampus,
initial orientation is a serious concern.

Another concern is the selection of parameters. The two
relevant parameters in this case are, which helps determine
the final surface morphology of the extracted feature, as
illustrated in Fig. 1, and the selected ratio between theand
radii of thea priori model. If the approximate size and shape
of the target feature is known to the operator, the latter term
may be easily estimated. Furthermore, if the boundaries in
the direction are fairly well defined in the segmented data,
over-estimation of this parameter will not lead to any error in
the resultant feature extraction. Selection of is somewhat
more difficult. There is no way to algorithmically optimize
this term. Optimization must be carried out experimentally.
However, experimental experience with this algorithm, as
well as experience with other deformable model techniques
[2], indicates that this term may be optimized a single time
for application to a broad class of image sequences. The
experimental optimization of is described in Section IV.
All subsequent experiments in this work were carried out using

.

IV. EXPERIMENTAL PROCEDURE AND DISCUSSION

A. Demonstration of Concept

Our experiments have included testing this technique on a
3-D MRI phantom which mimics the statistics and morphology
of the hippocampal region of the MRI head scan used in
later experiments, as well as on an actual multiple-slice MRI
head scan. The application in this case is the extraction and
reconstruction of the hippocampus, a gray-matter structure of
the human brain whose volume and morphology are useful
in the detection and prediction of a number of neurological
disorders, including intractable temporal lobe epilepsy, and
dementia of the Alzheimer’s type [14], [15]. In the phantom
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Fig. 4. (a) Center slice from the MRI phantom. (b) Ideal segmentation
and extraction of simulated hippocampus from the center slice of the MRI
phantom. (c) Extraction of the simulated hippocampus from this slice as
calculated by our algorithm.

experiments, the experimental results were compared to the
original known phantom structure. In the clinical data set,
a physician’s manual identifications were used as a point of
comparison. The algorithm was tested for subjective visual
accuracy, as well as for accuracy in volume measurement and
voxel classification.

The center slice of the MRI phantom used in our ini-
tial experiments is given in Fig. 4(a). The phantom has a
background graylevel of 155 and a foreground graylevel of
190 and is corrupted by spatially invariant Gaussian noise
with . An ideal segmentation and extraction of
the simulated hippocampus is given in Fig. 4(b). Note that
ideal extraction involves separation of the structure both from
statistically dissimilar and statistically identical regions. The
extraction from this slice as calculated by our algorithm is
given in Fig. 4(c). Volume renderings of the original phan-
tom (grayscale segmented), the ideally extracted feature, and
the feature as reconstructed by our algorithm are given in
Fig. 5(a)–(c). The percent of misclassified voxels, defined here
as 100* [number misclassified/correct volume], is 5.50%. The
error in calculated volume is 3.38%.

As was mentioned in Section III, the initialization technique
used here is partially based on knowledge of the center of
the feature of interest. It is important, therefore, to test the
robustness of the algorithm with regard to errors in the esti-
mation of that center. For this series of experiments we made
use of the MRI phantom described in the previous paragraph.
Repeated trials were conducted in which the initialization of
the model was moved progressively farther off center. Error
was found to remain fairly constant to an offset of ten voxels,
after which it increased exponentially. Note that the overall
width of the feature was 46 voxels. The group of slices on

Fig. 5. (a) The original MRI phantom, segmented and volume rendered.
(b) Volume rendering of the ideal segmentation and extraction of the simu-
lated hippocampus. (c) Volume rendering of the simulated hippocampus as
calculated by our algorithm.

Fig. 6. Results of the center-offset trials. The solid line indicates error in
volume estimation. The dashed line indicates error in voxel classification.
Note that error remains relatively constant until ten voxels offset—a band of
stability which covers 43% of the structure of interest.

which the model could be initialized while achieving fairly
consistent results, therefore, amounts to 43% of the total slices
containing portions of the structure. We feel that this indicates
considerable robustness in the algorithm. A plot of percent
voxel error and error in volume estimation versus center offset
for all trials is shown in Fig. 6.

Our second set of experiments was concerned with deter-
mining the model’s sensitivity and stability with respect to the
parameter , the weighting constant for the deviation from
expected surface normal energy term. These experiments also
made use of the phantom described above. Using an optimally
centered initialization, we allowed to vary from 0 to 150.
Error was calculated in terms of both volume estimation and
percentage of misclassified voxels. In both cases maximum
error was found at . This is as expected, since in this
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Fig. 7. Results of thecN trials. The solid line indicates error in voxel
classification. The dashed line indicates error in volume estimation. Note that
the error is maximum atcN = 0 and that a region of stability appears in both
error measures at values ofcN greater than 90.

Fig. 8. Comparison of manual (dashed line) to calculated hippocampal
(automated: solid line) areas for a 13-slice section of a 60-slice MRI head
study. Deviation in total volume calculation was 3.26%.

case the term is ignored and there is no control of surface
morphology. A minimum was found in percent voxel error at

and in volume estimation at . A stable region
with slightly higher error was found in both error measures
beginning at . A plot of percent voxel error and error
in volume estimation versus for all trials is given in Fig. 7.

Taken together, these two sets of experiments demonstrate a
high level of robustness and stability in this algorithm. Because
there is no algorithmic method for determining an optimal

, a high level of sensitivity to this parameter (which would

Fig. 9. (a) Hippocampal region of slice 6 from our MRI head study. (b)
Automatic identification of the hippocampus. Note that the “tail” to the left
of the circumscribed volume has not been included in the identification.
(c) Manual identification of the hippocampus. Note that the shape has been
oversimplified and that the area of the “tail” has been overestimated.

indicate a need for reoptimization for each new application)
would be a very serious drawback. Because near-optimal
results are obtained in the very large stable region of ,
no such optimization appears to be necessary.

We next wished to examine the applicability of this algo-
rithm to actual data. To that end, our next experiment was
conducted on a 13-slice section of a 60-slice coronal spoiled
grass (SPGR) MRI head sequence with 35/5/30/2 (repeti-
tion time/echo time/flip angle/excitations). Slice thickness was
3.0 mm. Imaging was performed using a General Electric
Signa 1.5-T superconducting system (Milwaukee, WI). Manual
identifications of the hippocampus were made on each of
the slices by a physician. The slices were then grayscale
segmented, using the technique described in [2], and replicated
(reproduced three times) to form nearly cubic voxels. Because
the pixel size on these images was 0.7 mm, this required
replication by a factor of four. The volume was then rotated to
obtain a sagittal view. An initialization contour was provided
for the center slice of this volume, and the algorithm was
allowed to run with . A 3-D reconstruction was
produced from the result. The volume was then rotated back
to a coronal orientation and reduced in size to the original
resolution for comparison to the manual identifications.

As has been previously noted, one important application
of this algorithm is thein vivo volume measurement of the
hippocampus. For this reason, we first compared the calculated
area of the hippocampus on each slice of the scan to the area of
the manual identifications. A plot of this comparison is given in
Fig. 8. Close correlation between manual and automatic area
calculation is found on nearly every slice. Additionally, an
examination of the slices where large deviations exist shows
that at least part of the error is in themanual identification.
An example of this is slice 6; see Fig. 9. While the algorithm
has clearly left off a portion of the “tail,” to the left of the
outlined structure, it is also clear that the manual identification
overestimates the area of that portion of the structure. Despite
these errors, the total calculated hippocampal volume deviated
from the manual volume by only 3.26%. Note that Jack [13]
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Fig. 10. (a) Physician’s manual identification of the hippocampus on one
slice of a coronal volumetric MRI head scan. (b) Hippocampus as identified
by our algorithm on that same slice. (c) Volume-rendered reconstruction of
the right hippocampus as identified by our algorithm. (d) Volume-rendered
reconstruction of the right hippocampus as identified manually.

has reported a coefficient of variation in manual identification
of the volume of the hippocampus by expert users of 1.9%.
The percentage of differently classified voxels between these
two volumes was 4.35%.

The hippocampal region of slice 9 of 13 from our MRI head
scan is given in Fig. 10(a). The physician’s manual identifica-
tion of the hippocampus is shown in white. Fig. 10(b) shows
our algorithm’s identification of the hippocampus on that
same slice. A volume-rendered reconstruction of the automat-
ically identified full hippocampus is given in Fig. 10(c). The
corresponding manual reconstruction is given in Fig. 10(d).
Examination of the reconstructions shows some of the possible
advantages this algorithm may have over manual segmen-
tation, other than a saving of man-hours. The automatic
reconstruction has a smooth and continuous surface, as one
might expect from a natural structure, while the manual
reconstruction is blocky and clearly truncated at the end planes.
Additionally, there are discontinuities in the surface of the
manual reconstruction, which are a result of the physician
having only one slice of data available at a time, while our
algorithm has access to the entire volume as a whole. These
observations indicate that some of the difference between the
manual and automatic segmentations may in fact be due to
error in the manual outlining, rather than to error produced by
our algorithm.

B. Application to MR Clinical Study

As has been previously stated, it is known that numerous
chronic conditions such as normal aging [19], Alzheimer’s
disease [16], autism [20], and schizophrenia [21], are as-
sociated with anatomic changes within the brain that can
be detected with quantitative measures of various structures
on MRI studies of the head in populations of patients. In
certain disorders, pathologic changes occur to a significant
enough degree that they can be detected within the individual
patient. For example, in temporal-lobe epilepsy, structural
abnormalities within the hippocampi can be detected with MRI
[13]. Unilateral or asymmetric atrophy of the hippocampi,
identified on MRI, correlates with hippocampal sclerosis,
location of seizure onset, and outcome after epilepsy surgery
(temporal lobectomy) [15], [22].

In all of these studies, the assessment of brain structures
on the MRI was done by manual outlining of the structure
of interest. This is a time consuming, labor intensive process
that is subject to intraobserver and interobserver measurement

errors. The extensive labor requirements for manual mea-
surements has resulted in the almost exclusive use of visual
(qualitative) analysis of brain structures in the clinical setting.
In many cases, this likely results in lost information. In order
to implement routine quantitative analysis of MRI (and other
medical imaging modalities), automated systems need to be
developed. It is with this end in mind that the algorithm
presented in the previous section was developed.

The bubble algorithm has been validated under realistic
circumstances previously in [23]. However, in order to test the
algorithm in a clinical environment, a study was conducted
using patients with temporal-lobe epilepsy who were poorly
responsive to appropriate antiseizure medications. These pa-
tient all underwent evaluation for epilepsy surgery. MRI is a
primary study performed in this preoperative evaluation, be-
cause it can detect hippocampal sclerosis (gliosis and neuronal
cell loss). Hippocampal sclerosis is the hallmark feature of
temporal-lobe epilepsy. Surgical removal of a sclerotic hip-
pocampus and adjacent structures eliminates seizures in many
patients with medically intractable temporal-lobe epilepsy. The
results of manual outlining of the hippocampus were compared
to the results of the bubble algorithm on the preoperative MRI.
These results were correlated to side of seizure onset.

MRI was performed using a 1.5-T superconducting system.
A volume study consisted of a SPGR sequence with 35/5/30/2
(repetition time/echo time/flip angle/excitations). The sections
were 256 256 pixels with a field of view of 16-cm square
and a slice thickness of 1.5 mm.

Nine patients, five with right-temporal-lobe epilepsy and
four with left-temporal-lobe epilepsy, were selected randomly
from those with an adequate-quality MRI study from the
University of Rochester Comprehensive Epilepsy Program
archives.

All raters were blind to patient information and results of
the other method at the time of the rating. Manual outlining
was performed by a trained neurologist on a SUN SPARC
5 workstation. The bubble algorithm was initialized by a
nonmedical operator with a cursory knowledge of the location
and structure of the hippocampus.

The results of this experiment are given in Table I. The
statistic of interest in this case is the percentage difference
in volume from left to right hippocampus (i.e., the degree
of asymmetry.) The manually outlined results showed three
patients with atrophic right hippocampi and six patients with
atrophic left hippocampi. The automatically identified results
show five with atrophic right hippocampi and four with
atrophic left hippocampi. Note that the side in which the
seizures are known to occur is expected to be atrophic. A
scatterplot of automated results versus manual results is given
in Fig. 11.

The average error between manual and automated asymme-
try measures was 0.016. The standard deviation of the error
distribution was 0.065. These figures show good agreement be-
tween the manual and automated identification of asymmetry.
The identification of the side of atrophy was identical in seven
of the nine cases, with the two cases of disagreement both
having asymmetry of less than 7%. Interestingly enough, in the
two cases in which the automated and manual identification
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TABLE I
SUMMARY OF RESULTS FROM CLINICAL TRIALS

Patient
No.

Epilepsy
Side

Automated
(R � L)=(R+ L)

Manual
(R� L)=(R+ L)

Error
Auto.
Vol R

Auto
Vol L

Man.
Vol. R

Man.
Vol. L

2 Right �.003 �.003 �.003 5.172 cc 5.203 cc 4.991 cc 5.367 cc
7 Left .383 .281 �.101 4.003 cc 1.786 cc 3.661 cc 2.055 cc
10 Left .186 .257 .070 4.231 cc 2.904 cc 4.866 cc 2.882 cc
12 Right �.065 .022 .088 4.129 cc 4.703 cc 4.601 cc 4.403 cc
14 Right .315 �.344 �.029 2.371 cc 4.552 cc 2.397 cc 4.901 cc
15 Left .061 .138 .078 4.482 cc 3.966 cc 4.719 cc 3.574 cc
17 Right �.023 �.016 .007 3.931 cc 4.116 cc 4.121 cc 4.254 cc
18 Right �.004 .068 .073 5.531 cc 5.580 cc 5.749 cc 5.012 cc
19 Left .354 .343 �.011 3.595 cc 1.715 cc 3.484 cc 1.704 cc

Note that a negative number in(R�L)=(R+L) indicates right hippocampal atrophy, while a positive number in this column indicates left hippocampal atrophy.

Fig. 11. Scatterplot of automated versus manual measures of asymmetry.

of atrophy disagree, the known origin of seizures is consistent
with the results of the automated identification.

This study, while clearly limited in scope, demonstrates the
utility of the algorithm described in this paper in a clinical
setting. The bubble algorithm is clearly able to identify asym-
metry in the hippocampi with an accuracy that surpasses the
visual examination which is current clinical practice, and may
approach in accuracy, manual outlining of the hippocampus
on each slice. Finally, it should be noted that even greater
accuracy could most likely be achieved in the automated
identifications by an operator with a more thorough knowledge
of neurological anatomy.
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