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User-Centric VSN

R monitored by cameras {C}N
i=1.

Ci covers a sub-region Vi

cameras only communicate with
CP.

CP receives sequence of user
request for U ,

select camera to provide data,
synthesize Ũ

Lifetime: the duration a certain
percentage (e.g. 90%) of R is
covered by at least one camera
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Camera Scheduling and Energy Allocation

Questions to ask

A formulation of the network
lifetime

Given a desired view,

multiple cameras contain the
data
how to select a camera to provide
the data

Given total available energy wt

how to allocation wt among
cameras
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Notations

divide R into Mr blocks: {Rj , j ∈ [Mr ]}

coverage matrix: Br ∈ R
N×Mr , where

Br
i ,j

def
= I(Rj ⊆ Vi),

if region Rj covered by camera Ci ,
Br

i ,j = 1, otherwise 0.

U : Mu blocks {Uj , j ∈ [Mu]}

Bu ∈ R
N×Mu , where

Bu
i ,j

def
= I(Uj ⊆ Vi) (1) Figure: The

discretization of the
target plane R and
desired view U .
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Notations

pj : probability that Rj is requested by the

user,
∑Mr

j=1(pj ) = 1.

p = [p1 p2 . . . pMr
]T

w t
j : energy of camera Cj at time t.

wt = [w t
1 w t

2 . . . w t
Mr

]T

L(p,wt ,Br ): the network lifetime

E[L(p,wt ,Br )]: the expected network
lifetime Figure: The

discretization of the
target plane R and
desired view U .
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Camera Scheduling Strategy

At time t, if Cs is selected, wt

updated as wt+1
s .

optimal camera selection strategy:
maximize E[L(p,wt+1

s ,Br )].
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Camera Scheduling Strategy

coverage energy:the sum of the
energies of all the cameras that
cover Rj .

mt+1
s = Brwt+1

s ,

the j th entry mt+1
j ,s represents the

coverage energy of Rj

approximate: L(mt+1
s ,p)

the optimal camera scheduling
strategy at time t:

st = argmax
i∈λu(j)

E[L(mt+1
i ,p)]
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Abstraction

box Bi contains mi balls, i ∈ [M]

at each request, a ball is taken from Bi with probability pi .

After L requests, one of these boxes first become empty

characterization of
E[L(m,p)]
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Exact Solution for M = 2

Proposition 1

For M = 2, the p.m.f of L can be written as:

Pr(L = l) = I(m1 ≤ l ≤ (m1 + m2 − 1))α(l − m1;m1, p)

+I(m2 ≤ l ≤ (m1 + m2 − 1))α(l − m2;m2, 1 − p)

where α(k; τ, b) represents the p.m.f of a negative binomial
distribution [M.Hilbe, 2007] ,

α(k; τ, b) =

(

k + τ − 1
k

)

bτ (1 − b)k
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Exact Solution for M = 2

Proposition 1 (cont’d)

the expectation of L can be obtained as

E [L] = β(l − m1,m1, p) + β(l − m2,m2, 1 − p)

where

β(k; j , b) =
jFα(k; j , b) − (k + 1)α(k + 1; j , b)

b
(1)

and Fα(k; j , b)
def
=

∑k
i=0 α(k; j , b)
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Recursive Calculate of L for M > 2

consider a sequence of M experiments

in the kth experiment k(2 ≤ k ≤ M) only the first k boxes
{Bi}

k
i=1 are utilized

a ball requested from the i th box with normalized probability
p′

i = pi
Pk

i=1 pi

.

let Lk denote the number of requests after which one of the
boxes {Bi}

k
i=1 first becomes empty, then immediately we see

L = LM

recursively calculate the p.m.f of Lk(2 ≤ k ≤ M) from the
p.m.f of Lk−1.
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Exact Solution for General Case M > 2

Proposition 2:

Pr(Lk = l) = 1(m1 ≤ l ≤ π(k))

mk−1
X

j=0

„

l − 1
j

«

(p
′

k )
j
(1 − p

′

k )
l−j

Pr(Lk−1 = l − j)

+1(mk ≤ l ≤ π(k))

„

l − 1
l − mk

«

(p
′

k )
mk (1 − p

′

k )
l−mk Pr(Lk−1 > (l − mk ))

where

π(k)
def
= (

k
X

j=1

mj − k + 1).

p.m.f of L2,L3, . . . ,LM−1 are calculated in sequence to obtain
LM

direct evaluation: E [Lk ] =
∑π(k)

l=m1
lPr(Lk = l)

computationally prohibitive as k increases

need for approximation
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Approximate Evaluation of E [L]

Proposition 3

The expectation of L can be obtained as

E [L] =

π(M)
∑

l=m1

ΩM(m − 1; l − 1,p) + (m1 − 1)ΩM(m − 1;m1 − 1,p)

where ΩM(·) represents the c.d.f of a multinomial distribution.

efficient approximation for ΩM(·) exists [Levin, 1981]

allows approximation of E [L] without calculating Pr(L = l)
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Experimental Evaluation

Exact Approx Simulation

m = 5 13.55 13.59 13.33
m = 10 30.65 30.54 30.42
m = 20 66.59 66.29 66.86
m = 30 103.47 103.04 102.91

Three boxes contain (m,m, 2m) balls, p = [0.25, 0.25, 0.5]

Exact: the exact lifetime

Approx: approximate lifetime using Proposition 3

Simulation: average lifetime from 200 Monte Carlo
simulations.

further approximation ?
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Asymptotic approximation of E (L)

Proposition 4:

When M = 2 and m1,m2 are sufficiently large,

E[L] ≈

{

min(m1

p
, m2

1−p
) if m1

p
6= m2

1−p
m1

p
− (m1+1)N (m1+1;m1,p)

p
− (m2+1)N (m2+1;m2,1−p)

1−p
if m1

p
= m2

1−p

the approximation error reduces at an exponential rate
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Experimental Evaluation
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B1,B2 contain balls m1 = m2, p = [p, 1 − p],

Abscissa: the value of m1,m2, ordinate: relative error
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)

(b): refined approximation for the case m1
p

= m2
1−p
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Asymptotic Approximation for M > 2

E [L(m,p)] ≈ min(
m1

p1
,
m2

p2
, . . . ,

mM

pM

)

asymptotic approximation

hot-spot exist: the difference between the two smallest values
in {mi

pi
}N
i=1 is not negligible

very easy to calculate
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Recap

formulation of the expected network lifetime of a user-centric
VSN

exact solution for M = 2,

exact solution for M > 2: recursive approach

efficient approximation of E[L], M > 2

asymptotic analysis for E[L]

Next, camera scheduling and energy allocation schemes
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Camera Scheduling Strategy

When block Uj is requested:

s = argmax
i∈λu(j)

{min(
mi ,1

p1
,
mi ,2

p2
, . . . ,

mi ,Mr

pMr

)} (2)

interpretation: maximize the normalized energy of the hot-spot

block in the monitored plane.

if the hot-spot block doesn’t belong to λu(j),

s = argmax
i∈λu(j)

{min(
mi ,k

pk

, k ∈ κr (i))}

κr (i) denotes the set of blocks in the monitored region R covered
by camera Ci
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Camera Scheduling Strategy

stochastically optimal for lifetime-maximization

user interactions are explicitly modeled

very intuitive interpretation

computational efficient
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Energy Allocation Strategy

the expected lifetime can be given by

E[L(m,p)] ≈ min(
m1

p1
,
m2

p2
, . . . ,

mN

pN

),

Optimized energy allocation strategy is a max-min optimization,

max
w

min
i
{fi}

N
i=1 (3)

s.t.

N
∑

i=1

wi = wt

f = PBrw

wi ≥ 0

where fi
def
= mi

pi
for i = 1, 2, . . . ,N and f = [f1, f2, . . . , fN ], P is the

diagonal matrix formed by the vector [ 1
p1

, 1
p2

, . . . , 1
pN

].
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Linear Programming Formulation

introduce a new variable t,

min
w

t (4)

s.t.

N
∑

i=1

wi = wt

f = PBw

fi ≤ t,wi ≥ 0, for i = 1, 2, . . . ,N

efficient optimization in polynomial time

25



Outline

1 Introduction
User-Centric VSN
Camera Scheduling and Energy Allocation

2 Modeling Network Lifetime
Formulation
Abstraction

3 Lifetime-Maximizing Camera Scheduling

4 Lifetime-Maximizing Energy Allocation

5 System Setup and Simulations

6 Concluding Remarks

26



System Setup

plane-based camera calibration

image mosaicing
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Image Mosaicing

Figure: image coordinate of Xh in the second (desired) view x2 can be
obtained from x1 through the homography.

x ∼ HXh

H−1
1 x1 = Xh = H−1

2 x2, x1 = H1H
−1
2 x2
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Simulation Setup

target plane R: size 4m × 3m

N cameras placed randomly within a 4m × 3m field, 3m from
R

Users’ viewpoints: a Markov random walk on a 16 × 16 grid

cameras and users’ views point toward R, random rotation
within ±0.1 radian along each of the three axes.

all images of 200 × 200 (in pixel units)

Mu = 100,

bilinear interpolation.

for camera scheduling: focal length f = 218.75, N = 36

results averages over 100 simulations.
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Simulation: Camera Scheduling

three schemes compared

OptCOV: proposed scheme

MinANG: most similar viewing direction

CovCOST: a heuristic defining a coverage cost [Yu et al., 2007]

ξi =
∑

j∈λr (i)

1

mj
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Simulation: Camera Scheduling
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Figure: Simulation results. (a): comparison of percentage coverage
(b): comparison of distortion in output image.

OptCOV significantly prolongs network lifetime
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Snapshots of rendered images

Figure: Snapshots of images rendered in the simulation. Top row: Mosaiced image using OptCOV at the

20th
, 27th

, and54th user request. The desired views are fully covered. Middle: Using CovCOST, minor part of the
desired view is not covered, denoted by black area in the mosaiced image. (d) Using MinANG, significant fraction
of the desired view is not covered.
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Simulation: Energy Allocation

three energy allocation schemes compared:

uniform allocation: UniForm

using LP: LinOpt

using max-min optimization: MaxMin
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Simulation: Energy Allocation

0 20 40 60 80 100
time(t)

70

75

80

85

90

95

100

co
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e

LP Optim.
Max-Min Optim.
Uniform

Figure: Comparison of coverage from different energy allocation
schemes.

Optimized energy allocation significantly prolongs network
lifetime
LP optimization: 2.3 sec, Min-Max optimization: 157.2 sec,
Pentium IV 3.0G CPU, 1M memory, implemented in MatlabTM
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Summary

stochastic formulation of the expected network lifetime

coverage/lifetime of a VSN differs from traditional WSN
user interaction

abstraction of expected network lifetime

exact and approximate solutions: computational expensive
asymptotic analysis

lifetime-maximizing camera scheduling

hot-spot of the network

lifetime-maximizing energy allocation

LP formulation
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Remarks

simplicity

well known: binomial/multinomial
known: negative binomial/multinomial
proposed: bounded negative binomial/multinomial

exact, approximate, asymptotic behaviors
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Remarks

simplicity

well known: binomial/multinomial
known: negative binomial/multinomial
proposed: bounded negative binomial/multinomial

exact, approximate, asymptotic behaviors

generality

other VSN applications: coverage information Br ,Bu by
suitable discretization (e.g in 3D domain).
e.g. task (storage, bandwidth) allocation among networked
computing servers,
sensor deployment problem: much larger parameter space,
location, rotation

sub-optimality

neglected the dependency of each block being requested
mitigation: parameters updated afresh at each request
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Ongoing work

collaborative transmission between
two sensors

wyner-ziv coding techniques

certain robustness to calibration
error
certain tolerance to non-planar
scenes
complexity: a fraction of JPEG
compression
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Ongoing work
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